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AbstrAct
Although brain tumors have been known tremendously over the past decade, 

there are still many problems to be solved. The etiology of brain tumors is not well 
understood and the treatment remains modest. There is in great need to develop a 
suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm 
and subsequently get more efficient therapeutic approaches for these disorders. In 
this review, we described the current status of animal models of brain tumors and 
analyzed their advantages and disadvantages. Additionally, prokaryotic clustered 
regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 
9 (Cas9), a versatile genome editing technology for investigating the functions of 
target genes, and its application were also introduced in our present work. We firstly 
proposed that brain tumor modeling could be well established via CRISPR/Cas9 
techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more 
suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform 
was a simple and more efficient biological toolbox for implementing mutagenesis of 
oncogenes or tumor suppressors that were closely linked with brain tumors.

current stAtus: AnimAl models of 
brAin tumors

Primary brain tumors have the highest mortality 
rates among all the cancers worldwide [1]. From the 
knowledge about the subtypes of gliomas, the etiology and 
the molecular mechanism, especially the origins [2], we 
learned that there were differences between rodent model 
of gliomas and glioblastoma in human patients. Due to the 
inconvenience of interference of brain tumor patients in 
clinical practices, it is of desperate need to develop in vivo 

animal models with brain tumors that faithfully mirror 
human disease, finally finding an effectively therapeutic 
target for treating brain tumors. 

Several brain tumor models have been established 
as shown in Table 1. For example, it was reported that 
the rat glioma model could be induced by implantation 
of cultured glioma cells (Cell-derived xenograft: CDX) 
[3, 4] and transplanted tumor fragments (Patient-derived 
xenograft: PDX) [5]. Medulloblastom was regarded as the 
most common malignant brain tumor in pediatrics with 
a poor prognosis and in vivo investigation; it was often 
induced by transplantation of chemically modified human 
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medulloblastoma cells such as Daoy, ONS76 and D425 
[6]. Although these animal models have the advantage 
of making the tumor models for a short time and are 
widely used for the study of brain tumors, they do not 
comprehensively recapitulate human neoplasms and often 
caused the inhibitory tumor-host immunoresponses [7, 8]. 

Besides, genetically engineered mouse models 
(GEMMs) are also extensively employed for investigating 
the pathogenesis of glioma. It was usually generated by 
introducing the mutations and genetic aberrations of 
both germ-line cells and somatic cells [9]. For instance, 
previous investigations illustrated that the introductions 
of mutant Ras protein, including HRas, VRas and NRas 
could trigger brain tumors [10, 11]. Postnatal PTEN loss 
or mutant epidermal growth factor receptor expression 
was also found to result in the generation of glioma 
in a transgenic mouse glioma model [12]. Similarly, 
platelet-derived growth factor subunit B overexpression 
contributed to the occurrence of brainstem glioma after 
human cells were injected into the brain stem of neonatal 
mouse [13]. The GEMMs has the advantage of resembling 
human glioblastoma as the tumor histology in the 
transgenic mouse is similar to that in human. However, 
the big disadvantage is that GEMM generation takes really 
long time and it is difficult to distinguish the primary 
mutation and the secondary mutation. 

Collectively, those animal models as noted above 
possess respective shortages and it is essential for 
developing a new brain tumor model in order to more 
deeply probe molecular mechanisms of brain tumors and 
obtain better therapeutic approaches. 

crisPr/cAs9 system: A Powerful 
tool for genome editing

The recently mentioned prokaryotic clustered 
regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (Cas9) system is a powerful 
genetic engineering tool in which guide RNA (gRNA) 

targets the programmable nuclease Cas9 to a desired 
genomic DNA sequence and Cas9 precisely cleaves both 
strands of interest [14-18]. 

As shown in Figure 1, the genomic editing for 
CRISPR/Cas9 system mainly requires two biological 
components: Cas9 and an engineered single guide RNA 
(sgRNA). The sgRNA is composed of both a CRISPR 
RNA (crRNA) component and a trans-activating crRNA 
(tracrRNA). SgRNA recognizes the complementary 
genomic DNA sequences flanked by a protospacer 
adjacent motif (PAM), which is made up of NGG or 
NAG trinucleotide for Cas9 [19]. After Cas9 is combined 
with a sgRNA which is complementary to a target DNA 
sequence, the double-stranded break (DSB) is formed 
and then repaired by either non-homologous end-joining 
(NHEJ) or homology-directed repair (HDR) pathway [20]. 
Figure 2A and Figure 2B showed the crystal structure 
and model graph of wild type Cas9 from S. pyogenes 
(wt SpCas9). Additionally, the catalytically dead Cas9 
mutant (dSpCas9) and other SpCas9 variants were also 
indicated in this Figure 2B. These SpCas9 mutants were 
shown to significantly minimal off-target effects [21, 22]. 
A small Cas9 from Staphylococcus aureus (SaCas9) was 
also recently obtained for eukaryotic genome engineering 
[23]. SaCas9 shared only 17% of identical sequence with 
SpCas9 [23]. And smaller size of SaCas9 makes it easier 
deliver to somatic tissues for genome editing, compared 
with SpCas9 (Figure 2B). The centromere and promoter 
factor 1 (Cpf1) was hypothesized to be the effector of a 
CRISPR locus that was different from the Cas9-containing 
class 2 CRISPR system [24]. Structurally, Cpf1 is lack of 
a second HNH endonuclease domain, which is inserted 
within the RuvC-like domain of Cas9, as shown in Figure 
2B. It was previously reported that Cpf1was a CRISPR-
associated two-component RNA programmable DNA 
nuclease and exhibited robust nuclease activity in human 
cells [24]. 

RNA-guided nucleases Cas9 employs simpler, 
Watson-Crick base-pairing rules between the sgRNA and 

table 1: Animal models of brain tumors

tumor type model type engineered drivers description ref

Glioma CDX HOTAIR-knock down; 
Bmi1- deficient

Transplantation of HOTAIR 
shRNA; Injection of Bmi1 
-deficient astrocytes

[6-7]

Glioma PDX Hedgehog-responsive Injection of Biopsy -derived 
glioma cells [5]

Glioma GEMM Platelet-derived growth 
factor subunit B overexpression 

Tranfection of human cells 
by avian sarcoma- leucosis 
virus

[13]

Medulloblastom CDX MET kinase-driven
Injection of Daoy cells 
to prepare intracranial 
xenografts

[6]

Abbreviations: CDX: Cell-derived xenograft; PDX: Patient-derived xenograft; GEMM: Genetically engineered mouse model
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the genomic DNA sequence of interest, compared with the 
early method including zinc finger nucleases (ZFNs) and 
transcription activator-like effector nucleases (TALENs), 
which acquire the targeting genomes via protein-DNA 
interactions [25-27]. Although ZFNs and TALENs are 
very beneficial for performing precise genome editing, 
their applications have been limited as a result of high 
cost and difficult design of this endonucleases. The RNA-
guided endonucleases Cas9 from the microbial adaptive 
immune system CRISPR can be easily targeted to any 
selected genomic location by a short RNA guide. 

ProPosed APPlicAtions of the 
crisPr/cAs9 systems in brAin 
tumor modeling

Modeling cancer including brain tumors in mice 
through genetic manipulation in the germline of an 
organism has long been regarded as the gold criteria for 
seeking putative oncogenes or tumor suppressor genes 
(TSGs). Loss-of-function mutations in TSGs and gain-of-
function mutations in a proto-oncogene were reported to be 
involved in the generation and progression of glioma [28, 

29]. Traditional cell-type-specific knockout techniques via 
homologous recombination are shown to cause the loss of 
function for TSGs in embryonic stem cells, finally leading 
to the malignant transformation [30]. Nevertheless, the 
low efficiency of homologous recombination and the time-
consuming property for the generation of GEMMs hamper 
its applications. As alternatively, the CRISPR/Cas9-guided 
endonuclease technique provides more efficient and 
precise modification of the DSB sites at target genomes 
[31]. One big advantage of CRISPR/Cas9 is that it takes 
short time to generate GEMM model. Nowadays, this 
versatile genome editing technique has been developed 
for producing gene knockout models of various animals 
including mouse [32], rat [33-35], as it can more precisely 
understanding human diseases than the conventional gene 
knockout models.

In general, CRISPR/Cas9 system contains four 
types of genome editing techniques including CRISPR 
knock out (CRISPR KO), CRISPR knock in (CRISPR 
KI), CRISPR interference (CRISPRi) and CRISPR 
activation (CRISPRa) (Figure 2C-2F). Using the CRISPR 
KO-mediated target PTEN efficiently diminished PTEN 
expression in neurons, inducing neuronal hypertrophy 

figure 1: the crisPr/cas9 system for genome engineering.the crisPr is composed of two major components 
including a crisPr-associated endonuclease (cas9) and a single guide rnA (sgrnA). The Cas9 from S. pyogenes (wt 
SpCas9) is shown in this figure as it is the most widely used in genome editing nowadays. After wt SpCas9 and sgRNA form a riboprotein 
complex, they can bind any genomic sequence with a protospacer adjacent motif (PAM), directing DNA double-strand breaks (DSBs) at the 
target site. DSBs are then repaired by either non-homologous end-joining (NHEJ) or homology-directed repair (HDR) pathway. 
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and altering neuronal excitation, while targeting NF1 
was shown to facilitate astrocytogenesis and combined 
targeting of three TSGs (including PTEN, NF1 and P53) 
by multiplex CRISPR/Cas9 triggered the pathogenesis 
of glioblastoma [36]. Besides, CRISPR KO technology 
was also previously found to efficiently and completely 
delete two well-known synaptic proteins including GluN1 
subunit of the NMDA receptor and the GluA2 subunit of 
the AMPA receptor in neurons [37]. 

Additionally, knockin animal models has been 
successfully prepared using CRISPR/Cas9 system (which 
referred to CRISPR KI) [38-42]. It was previously 
found that Cre-dependent Cas9 konckin mice exhibited 
indel formation near predicted cleavage site on NeuN 
(a neuron-specific marker) locus indels in the brain via 
virus-mediated sgRNA expression as reported by J. 
Platt [38]. Delivery of a single adeno-associated virus 
(AAV) vector in the lung caused the genetic mutations 
of p53, LKB1 and KRAS using the Cas9 knockin mouse, 
resulting in the macroscopic tumors of adeno-carcinoma 
pathology [38]. The feasibility of direct mutations of 
TSGs and oncogenes was also reported in the liver by the 
CRISPR/Cas system [43]. What’s more important, recent 
investigations illustrated that the somatic gene transfer of 
CRISPR plasmids encoding Cas9 and gRNAs was suitable 
to induce distinct brain tumors including sonic hedgehog 
medulloblastoma and glioblastoma [44].

CRISPR/Cas9-mediated control of gene suppression 
(which referred to CRISPRi) is also an important 
application for this genetic engineering technology. 
The CRISPRi system, derived from the Streptococcus 
pyogenes CRISPR pathway, is established by the 
coexpression of catalytically incactive Cas9 (dCas9) 
fusion proteins and a customizable sgRNA [15, 45-47]. 
As dCas9 is lack of endonuclease activity and generates 
a targeted protein-RNA complex when coexpressed with 
a guide RNA. This Cas9-sgRNA complex binds to DNA 
sequences complementary to the sgRNA and specifically 
blocks transcription elongation within protein-coding 
regions, RNA polymerase binding, or transcription factor 
binding. It was previously found that usage of CRISPRi 
could remarkably suppress expressions of any target gene 
of interest in Escherichia coli, with no obvious off-target 
effects [46]. An additional investigation revealed more 
efficient gene suppression in eukaryotes by dCas9 fused 
with a transcription repression domain or exogenous 
transgene activation [45]. The multiple target genes were 
also evidently repressed in human cells via this system. 
In fact, other targeted gene modulation methods have 
been widely established in the past few years including 
RNA interference (RNAi) [48] and polydactyl zinc-finger 
proteins [49-51] and sequence-specific transcription 
activator-like effector (TALE) [52-54]. Among these 
traditional methods, RNAi is a classical technology for 
perturbing target genes on the mRNA level by designing 
complementary RNAs [28], but it is limited by evident 

off-target effects, low efficiency, serious toxicity and 
small-scale use in particular organisms [55]. The CRISPRi 
technology is more efficient and has the minimal off-
target effects due to its simple and precise design. 
Engineered DNA-binding proteins such as custom zinc-
finger or TALE proteins provide a very useful platform 
for achieving diverse targeted regulatory functions when 
combined with effector domains. Nevertheless, this 
method is a time-consuming process and the construct 
development requires high cost. As a result, it is likely to 
be very difficult to build a comprehensive protein library 
to simultaneously perturb multiple target genes [56]. In 
contrast, the CRISPRi method is very convenient and 
cheap for suppressing target genes due to use of sgRNA 
with a specific 20-nt-long complementary region. And 
with the faster and cheaper synthesis of wide-range DNA 
oligonucleotide, it allows for targeting large amounts of 
genes to probe gene function using CRISPRi system. 

Furthermore, dCas9 could also be fused to 
transcription activation domains to form RNA-guided 
transcriptional activator system (which referred as 
CRISPRa), finally regulating gene expression via targeting 
the promoter region of endogenous genes [57, 58]. Usage 
of dCas9-based transcription activators was observed to 
result in the up-regulation of several endogenous loci 
[25]. In human cells, it was also illustrated that the dCas9-
VP64 fusion protein was found to be directed by single 
or multiple gRNAs and produce robust transcriptional 
activations of endogenous human genes such as 
VEGFA [58]. This CRISPRa system was also reported 
to powerfully up-regulate multiple exogenous reporter 
genes in both human and mouse transformed cells as well 
as in embryonic stem cell cells in a tunable manner [59]. 
Endogenous IL1RN, SOX2, and OCT4 genes were also 
observed to be activated in human embryonic kidney 
293T (HEK293T) cells via CRISPRa technology [59]. 
It implicates that CRISPRa is likely to be used to target 
heterologous effector domains in human cells. In a word, 
CRISPR KO and CRISPR KI are more effective for 
making genetic mutations while CRISPRi and CRISPRa 
for genetic expressions. Besides, the latter two techniques 
seem to interference lncRNA more efficiently. 

According to these findings as mentioned, we 
propose different types of brain tumors modeling can be 
established using CRISPR/Cas9, as displayed in Figure 
2G. CRISPR/Cas9-mediated brain tumor modeling is 
likely to be more suitable for exploring the pathogenesis 
of brain tumors, as CRISPR/Cas9 platform is a simple 
and more efficient biological toolbox for implementing 
mutagenesis of oncogenes or tumor suppressors that 
are closely linked with brain tumors. Indeed, prior 
investigations supported the notion that the preparation of 
brain tumor modeling could be carried out via CRISPR 
knock out (CRISPR KO) technology [36, 44, 60-62], 
which were partly in line with our hypothesis that CRISPR 
technology was served to establish efficient knock-out 
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figure 2: Proposed applications of the crisPr/cas9 system 
for brain tumor modeling. A. shows the crystal structure of wt 
SpCas9 referred to Zhang et al [70]; b. is the model graphs of wt SpCas9, 
dSpCas9, SpCas9 variants, SaCas9 and Cpf1; c. d. e. f. display the 
processions of four different types of CRISPR-mediated genome editing 
including CRISPR knock out (CRISPR KO), CRISPR knock in (CRISPR 
KI), CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa), 
respectively; g. proposes four different sorts of CRISPR/Cas9 techniques 
are possibly involved in brain tumor modeling (BTM). CRISPR KO is 
presently successfully applied for BTM (as shown by solid arrow). We 
propose CRISPR KI, CRISPRi and CRISPRa are used for BTM (as shown 
by dotted arrows).
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brain tumor models. Recently, Zhang et al also emphasized 
that CRISPR/Cas9-mediated precise and efficient genome 
editing could help to deeply figure out the logic of neural 
circuits and disclose the mysteries of diverse neurological 
diseases including brain tumors [63]. 

further required clArificAtion 
for crisPr/cAs9 technique

Despite great progress has been made in the past two 
years with the CRISPR/Cas9 system and the establishment 
of diverse cancer models, there are still some issues that 
require further clarification. 

Firstly, the delivery of Cas9 for establishing somatic 
mutation of mouse models should be further improved. 
It was previously demonstrated that efficient delivery of 
genome-editing proteins could significantly enhance Cas9-
mediated genetic engineering of target sequences [64, 65]. 
Split Cas9 was also reported to be beneficial for in vivo 
genome editing in HEK293FT cells [66, 67]. Finding 
smaller Cas9 orthologs could also improve CRISPR 
delivery as a result of facilitating viral vector package 
[23, 68, 69]. However, it is still essential to optimize the 
methods for efficient delivery and expression of CRISPR-
Cas9 system in order to be suitable for each cell-type or 
organism. Since some cell types or tissues are resistant 
to transfection or infection by viral vectors, researchers 
should develop methods that alter the expressions of Cas9 
endonuclease or gRNAs that is specific to a tissue or cell 
type.

 Secondly, the specificity of genetic modification 
is also an important issue to be considered. As targeting 

by CRISPR/Cas9 is dependent on nearly 23 base pair 
matches [70], it may generate many nonspecific mutations 
in the genome editing. Great efforts should be made to 
improve the ratio of on- and off-target effects. Several 
research groups have developed new technologies to 
maximally diminished off-target genome editing such as 
truncated sgRNA [71, 72] and dCas9-Fok I fusions [73]. 
Additionally, employment of bioinformatic screening 
and paired Cas9 nickases were also found to remarkably 
enhance genome editing specificity [74, 75]. Cas9 off-
target sites have been reported by Genome-wide analysis 
[76-78]. Evaluation of off-target effects is a critical step 
of developing this method. Although reduced off-target 
effects are observed by tru-gRNAs and paired nickases, 
further improvements will be required, especially for 
therapeutic interferences. 

Another issue to be concerned is the safety of the 
CRISPR/Cas9 platform [79]. As this genome engineering 
technology has the unparalleled potential for modifying 
human and nonhuman genomes, it is likely to confound 
unknown risks to human health. Research is required to 
understand and avoid risks when using the CRISPR/Cas9 
technique. 

conclusion remArks And future 
PersPectives

Although brain tumors have been known for more 
than 50 years, there are still many problems to be solved. 
The etiology of brain tumors is elusive and the treatment 
is not satisfactory [80]. There is in great need to develop 
suitable brain tumor models that faithfully reflect the 

Table 2: Representative factors that can be manipulated by different types of CRISPR genome editing technologies 
for brain tumor modeling

factors role in tumorigenesis Proposed 
crisPr methods Previous methods ref

p53 (a) (b) tumor suppression CRISPR KO CRISPR KO [43, 44]
Nf1 (a) tumor suppression CRISPR KO CRISPR KO [44]
Pten (a) (b) tumor suppression CRISPR KO CRISPR KO [43, 44]
Ptch1 (c) tumor suppression CRISPR KO CRISPR KO [44]
Bmi1 (a) (d) tumor facilitation CRISPR KI Bmi1 shRNA [83, 84]
Met (e) tumor facilitation CRISPR KI CRISPR KO [85]
Notch1(a) tumor facilitation CRISPR KI Notch1 siRNA [86]
CDK6(a) tumor facilitation CRISPR KI CDK6 shRNA [87]
miR-10b(a) tumor facilitation CRISPRa miR-10b mimics [88]
TERT(e) tumor facilitation CRISPRa CRISPRa [90]
LSD1(f) tumor facilitation CRISPRa CRISPRa [90]
miR-218(a) tumor suppression CRISPRi anti- miR-218 [28]
miR-128(a) tumor suppression CRISPRi anti-miR-128 [91]

Abbreviations: CRISPR KO: CRISPR knock out; CRISPR KI: CRISPR knock in; CRISPRa: CRISPR activation; CRISPRi: 
CRISPR interference. 
Note: (a) glioma; (b) liver; (c) medulloblastoma; (d) breast cancer with brain metastases; (e) HEK293 cell line; (f) embryonic 
stem cell
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etiology of human brain neoplasms. 
Traditional animal models of brain tumor possess 

various faults. For example, the cells transplanted in the 
CDX model are mainly high-grade origin and this model 
can not comprehensively mimic different grades of brain 
tumors. In terms of the GEMM model, the generation is a 
low-efficient and time-consuming process. The CRISPR/
Cas9 system can be served as a novel tool to overcome 
the shortages of the existing methods. It can precisely 
and efficiently obtain the genetic mutations of the target 
genome at a selected DNA site. In central nervous system, 
previous investigations illustrated that animal models of 
sonic hedgehog medulloblastoma and glioblastoma have 
been successfully established using CRISPR KO [81, 82]. 
Table 2 listed several regulatory factors (p53, Nf1, Pten, 
Ptch1, Bmi1, Met, Notch1, CDK6, miR-10b, TERT, LSD1, 
miR-218 and miR-128) which were closely related to the 
etiology of brain tumors [28, 43, 44, 83-92]. It was found 
that Cas9-deletion of multiple TSGs including p53, Nf1, 
Pten and Ptch1 could induce the formation of brain tumors 
[44]. We propose that other regulators that are associated 
with the generation of brain tumors can be manipulated by 
CRISPR/Cas9 system. 

Furthermore, the CRISPR/Cas9 technology has been 
widely used for genome engineering in many stem cell 
organoids including stomach [93, 94], intestine [95-97] 
and pancreas [38, 98, 99]. In details, the locus of the cystic 
fibrosis transmembrane conductor receptor in cultured 
intestinal stem cells derived from cystic fibrosis patients 
was accurately repaired using CRISPR/Cas9 genome 
editing system via homologous recombination [97]. 
Efficient gene transfer was also successfully established in 
human intestinal organoids by this platform [96]. Human 
pluripotent stem cells (hPSCs) such as induced pluripotent 
stem cells (iPSCs) and embryonic stem cells (ESCs) are 
considered as very useful tools for elucidating regulatory 
processes during early development and the pathogenesis 
of genetic disorders [100, 101]. Since the human iPSCs 
retain the individual genetic information, combination 
with this cell and CRISPR-mediated genetic editing may 
be critical for exploring this phenotype that appears during 
cell differentiation [63]. Although traditional knockout 
of genes related to hPSCs self-renewal or survival may 
block cell propagation and survival, a recent investigation 
reported that successful knockout of multiple genes 
including SOX2, PAX6, OTX2 and AGO2 was established 
in human iPSCs and ESCs using CRISPR system [102]. 
In the future, CRISPR/Cas9 system is likely to apply for 
studying human brain tumors in human iPSCs derived 
from brain tumor patients. The large genomic mutation 
databases generated from sequencing of the GBM patient 
indicate a lot new gene mutations can potentially response 
for glioma formation. With the CRISPR/Cas9 tool, we can 
also easily generate a new model based on the information 
we learned from this database in a more effective way. 

 Although the development of CRISPR/Cas9 

technology for genome editing raises some social 
challenges to some extent and possibly brings out a series 
of uncertainty and fear of catastrophic misuse, it can never 
cease to inspire us for investigating the precise molecular 
mechanisms of brain tumors using this biological tool. 
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