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SMAD7 loci contribute to risk of hepatocellular carcinoma and 
clinicopathologic development among Chinese Han population
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ABSTRACT
Genome-wide association studies (GWAS) have identified three loci at 

18q21 (rs4939827, rs7240004, and rs7229639), which maps to SMAD7 loci, were 
associated with risk of diseases of the digestive system. However, their associations 
with hepatocellular carcinoma (HCC) risk remain unknown. A case-control study 
was conducted to assess genetic associations with HCC risk and clinicopathologic 
development among Chinese Han population. Three SNPs were genotyped among 
1,000 HCC cases and 1,000 controls using Sequenom Mass-ARRAY technology. We 
observed statistically significant associations for the three SMAD7 loci and HCC risk. 
Each copy of minor allele was associated with a 1.24–1.36 fold increased risk of HCC. 
We also found that significant differences were observed between rs4939827 and 
clinical TNM stage and vascular invasion, as well as rs7240004 and vascular invasion. 
We also established a genetic risk score (GRS) by summing the risk alleles. The GRS 
was significantly associated with increased risk of HCC and vascular invasion. Our data 
revealed the SMAD7 loci is associated with HCC susceptibility and its clinicopathologic 
development.

INTRODUCTION

Recent progress through the application of genome-
wide association studies (GWAS) have identified a 
number of common variants involved in the etiology of 
hepatocellular carcinoma (HCC) [1, 2]. While various 
genome-wide significant findings have been reported 
previously, it remains likely that a substantial number of 
additional SNPs that did not satisfy the highly stringent 
(Bonferroni) statistical threshold may nonetheless be 
important factors in modifying disease risk, if for example, 
their main effects were operative only in certain sub-groups 
of the overall population. Understanding the effects of these 
variants in different populations is extremely important in 
terms of inferring the causality and mechanisms of HCC 
tumorigenesis, as well as for the translation of these results 
into risk prediction in different populations.

HCC is a disease with very different incidence 
rates between populations [3–5]. The risk variants may 
confer different magnitudes of increased risk in different 
populations for a variety of reasons, including differences 
in allele frequency and linkage disequilibrium (LD) 
structure, and differences in genetic and environmental 
backgrounds that interact with the variants [6, 7]. Recent 
GWASs have identified three loci at 18q21 (rs4939827, 
rs7240004, and rs7229639), which maps to SMAD7, were 
associated with risk of colorectal cancer [8–10]. SMAD7 
is involved in inflammation-related pathways and has been 
shown to modulate transforming growth factor-β (TGF-β) 
and Wnt signaling, which are central to the development 
of carcinogenesis [11–15]. The Smad7 gene encodes an 
intracellular protein, which interacts with the transforming 
growth factor (TGF)-β type I receptor, targeting it for 
degradation in the proteasome, then inhibiting TGF-β1-
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induced phosphorylation of Smad2/Smad3 [16]. In vivo 
and in vitro studies also support the important role of 
SMAD7 in tumor progression of HCC [17, 18]. Given 
the role of SMAD7 in the TGF-β signaling pathway and 
carcinogenesis of HCC, we performed a case-control 
study to comprehensively examine 3 loci (rs4939827, 
rs7240004, and rs7229639), which located at SMAD7 loci, 
for their associations with HCC risk and clinicopathologic 
development in a Han Chinese population, which accounts 
for 92% of the Chinese population [19, 20]. 

RESULTS

The demographic and clinical features of individuals 
in this population are listed in Table 1. There were no 
significant differences between cases and controls in terms 
of the distribution of age, sex, smoking and drinking status. 
All four SNPs conformed to Hardy–Weinberg proportions 
in the controls (p > 0.05). 

The genotype distributions and the association 
between HCC and healthy controls with SMAD7 loci 
polymorphisms are shown in Table 2. Significant 
differences between the patients with HCC and the controls 
were detected for all three SNPs (Table 2). Compared 
with individuals with the major homogeneous genotype, 
the adjusted OR for developing HCC ranged from 1.41 
(95% CI: 1.06–1.88) to 2.64 (95% CI: 1.30–4.39) 
among those with the minor homogeneous genotype or 
heterogeneous genotype. Each copy of minor allele was 
associated with a 1.24–1.36 fold increased risk of HCC. We 
also conducted sensitivity analyses to exclude the subject 
with family history of all cancers, as well as add smoking 
and drinking status to the adjustment variables, however, 
the results didn’t changed materially. Stratified analyses by 
HBV status, smoking and drinking status were presented in 
Table 3. All the significant trend kept during the subjects 
of HBV negative, non-smokers and non-drinkers. However, 
due to the insufficient statistical power, the trend didn’t keep 
in HBV positive subjects, smokers and drinkers.

As shown in Table 4, we also analyzed the role of 
SMAD7 loci polymorphisms in the clinical TNM stage, 
primary tumor size, lymph node involvement, distant 
metastasis, vascular invasion, and Child–Pugh grade. 
Significant differences were observed between rs4939827 
and clinical TNM stage (OR = 1.44 , 95% CI: 1.12–1.85, 
P = 4.19 × 10−3), vascular invasion (OR = 1.38 , 95% CI: 
1.03–1.85, P = 0.034), as well as rs7240004 and vascular 
invasion (OR = 1.88 , 95% CI: 1.36–2.61, P = 1.55 × 10−4). 

To explore the cumulative effect of the three 
susceptibility SNPs, we established a GRS by summing 
the risk alleles (Table 5). The GRS was significantly 
associated with increased risk of HCC and vascular 
invasion. Compared with subjects with GRs ≤ 3, those 
with GRS > 3 have an 1.56 fold increased risk of HCC 
(95% CI: 1.30–1.86, P = 7.84 × 10−7), as well as 1.63 fold 
increased risk of vascular invasion (95% CI: 1.21–2.20, 
P = 1.35 × 10−3).

DISCUSSION

It is known that the contribution of risk alleles to HCC 
risk may vary between populations. This phenomenon may 
be due to differences in allelic frequencies or specific linkage 
disequilibrium (LD) structures, or because of additional 
genetic factors or environmental backgrounds may influence 
the effect of these genetic variants [25, 26]. In current study, 
we observed statistically significant associations for the 
three SMAD7 loci (rs4939827, rs7240004, and rs7229639) 
and HCC risk. We also found that significant differences 
were observed between rs4939827 and clinical TNM stage 
and vascular invasion, as well as rs7240004 and vascular 
invasion. To our knowledge, this should be the first to 
investigate the relationship between HCC risk and SMAD7 
loci polymorphisms.

TGF-β pathway regulates growth inhibition and 
apoptosis and plays an important role in cancer initiation 
and progressions [27, 28].This study highlights the potential 
importance of the TGF-β genetic polymorphisms was 
associated with HCC carcinogenesis. These data provide 
further evidence that common genetic variants in SMAD7 
may confer susceptibility to HCC, particularly in the Chinese 
Han population. More research is warranted to confirm these 
findings and functionally characterize the SMAD7 variants. 
Among the three SMAD7 loci studied, both rs4939827 and 
rs7229639 were located in the intron region of the SMAD7 
gene, while rs7240004 were located in the 3′ downstream 
of the SMAD7 gene. Using HaploReg V4.1 [29, 30], 
we found that about 16 Motifs changed for the three 
variants, especially for rs4939827, resulted in 11 altered 
motifs. While using RNA structure website (http://rna.urmc.
rochester.edu/RNAstructureWeb/), we found the variation 
these loci with resulted in the change of secondary structures 
and influence on the stabilities of SMAD7 RNA, which will 
then influence the functions of SMAD7. Vascular invasion is 
the most important predictor of survival in HCC, thus, a link 
to vascular invasion means these 2 SNPs potentially could 
be the predictor of survival in HCC [31].

In vivo and in vitro studies also support the important 
role of SMAD7 in tumor progression of HCC. Feng et al 
found YB-1/Smad7 could interfere with anti-proliferative 
/tumor-suppressive TGF-β actions in a subgroup of HCC 
cells, which may facilitate aspects of tumor progression 
[17]. High miR-520g expression promotes HCC cell 
mobility and EMT by targeting SMAD7, which is 
correlated with reduced survival in HCC patients [32]. Loss 
of Smad7 can enhance susceptibility to HCC, and SMAD7 
suppresses HCC cell growth by inhibiting proliferation 
and G1 -S phase transition and inducing apoptosis through 
attenuation of NFKB and TGFβ signaling [33].

This study had several limitations. First, selection 
bias, which is an intrinsic defect of case-control study, might 
have occurred when the sampling is not random within the 
subpopulations of cancer and cancer-free subjects; Second, 
in spite of the relatively large sample size, the power to 
elucidate gene–environment interactions was limited 
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Table 1: Characteristics of cases and controls in this study

Characteristic Case (N = 1,000) Control (N = 1,000) p-value

Sex, No.(%)

Male 620 (62.0%) 612 (61.2%) 0.713

Female 380 (38.0%) 388 (38.8%)

Age, No

< 50 523 (52.3%) 521 (52.1%) 0.929

≥ 50 477 (47.7%) 479 (47.9%)

family history of all cancers 73 (7.3%) 27 (2.7%) P < 0.01

Ever smoker 192 (19.2%) 172 (17.2%) 0.246

Ever drinker 199 (19.9%) 201 (20.1%) 0.911

HBV infection 221 (22.1%) 84 (8.4%) P < 0.01

*p < 0.05 indicates statistical significance.

Table 2: Association between SMAD7 SNPs and HCC risk

Cases (N = 1,000) Controls ( N = 1,000) adjusted OR*

rs4939827

CC 555 610 1.00 (reference)

CT 325 297 1.20 (0.99–1.46)

TT 120 93 1.42 (1.06–1.90)

T vs C 1.24 (1.07–1.42)

P trend 3.2 × 10−3

rs7240004

GG 775 820 1.00 (reference)

AG 200 170 1.24 (0.99–1.56)

AA 25 10 2.64 (1.30–4.39)

A vs G 1.36 (1.12–1.66)

P trend 2.4 × 10−3

rs7229639

GG 643 700 1.00 (reference)

AG 235 206 1.24 (1.00–1.54)

AA 122 94 1.41 (1.06–1.88)

A vs G 1.28 (1.10–1.49)

P trend 1.1 × 10−3

*Adjusted for age, gender, family history of cancer and HBV infection status.
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Table 3: Stratified analyses of association between SMAD7 SNPs and HCC risk

Variables rs4939827 (T vs C) rs7240004 (A vs G) rs7229639 (A vs G)

HBV infection
Positive 1.23 (0.82–1.86) 1.36 (0.75–2.44) 1.28 (0.82–1.99)
P trend 0.309 0.303 0.264
Negative 1.24 (1.06–1.44) 1.36 (1.09–1.69) 1.28 (1.09–1.51)
P trend 6.7 × 10−3 5.2 × 10−3 2.8 × 10−3

Smoking status
Smokers 1.24 (0.89–1.72) 1.36 (0.85–2.17) 1.28 (0.90–1.83)
P trend 0.210 0.198 0.167
Non-smokers 1.24 (1.06–1.46) 1.36 (1.09–1.70) 1.28 (1.09–1.52)
P trend 7.6 × 10−3 6.1 × 10−3 3.2 × 10−3

Drinking status
Drinkers 1.24 (0.90–1.70) 1.36 (0.87–2.12) 1.28 (0.88–1.90)
P trend 0.174 0.175 0.181
Non-drinkers 1.24 (1.06–1.45) 1.36 (1.09–1.70) 1.28 (1.09–1.52)
P trend 7.7 × 10−3 6.7 × 10−3 3.3 × 10−3

Table 4: Age and gender adjusted odds ratio and 95% confidence interval (CI) of HCC clinical 
status with SMAD7 SNPs

rs4939827 rs7240004 rs7229639

CC/
CT+TT OR (95% CIs) GG/

AG+AA OR (95% CIs) GG/
AG+AA OR (95% CIs)

Clinical 
stage

Stage 
I/II 300/200 1.00 (reference) 385/115 1.00 (reference) 350/150 1.00 (reference)

Stage 
III/IV 255/245 1.44 (1.12–1.85) 390/110 0.94 (0.70–1.27) 293/107 0.85 (0.64–1.14)

Tumor size ≤ T2 355/290 1.00 (reference) 492/153 1.00 (reference) 402/243 1.00 (reference)

> T2 200/155 0.95 (0.73–1.23) 283/72 0.82 (0.60–1.12) 241/114 0.77 (0.59–1.01)

Lymph node 
metastasis No 530/424 1.00 (reference) 736/218 1.00 (reference) 614/340 1.00 (reference)

Yes 25/21 1.05 (0.58–1.90) 39/7 0.61 (0.27–1.36) 29/17 1.06 (0.57–1.95)

Distant 
metastasis No 527/423 1.00 (reference) 740/210 1.00 (reference) 613/337 1.00 (reference)

Yes 28/22 0.97 (0.55–1.74) 35/15 1.51 (0.81–2.81) 30/20 1.21 (0.68–2.17)

Vascular 
invasion No 443/330 1.00 (reference) 620/153 1.00 (reference) 506/267 1.00 (reference)

Yes 112/115 1.38 (1.03–1.85) 155/72 1.88 (1.36–2.61) 137/90 1.24 (0.92–1.69)

Child–Pugh 
grade A 435/333 1.00 (reference) 600/168 1.00 (reference) 495/283 1.00 (reference)

B or C 120/112 1.22 (0.91–1.64) 175/57 1.16 (0.82–1.64) 148/82 0.97 (0.71–1.32)
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because of the small magnitudes of the overall associations. 
In conclusion, polymorphisms in the SMAD7 were loci 
highly associated with HCC risk among Chinese population. 
The combined effects of SMAD7 loci polymorphisms with 
environmental carcinogens significantly increase the risk of 
developing HCC, as well as clinicopathologic development.

MATERIALS AND METHODS

Study population

This study was conducted as a population-based 
case-control study among Chinese Han population. The 
case population was comprised of newly diagnosed HCC 
patients which were recruited from affiliated Lishui Hospital 
of Zhejiang University and the first affiliated hospital of 
Chongqing Medical University, while control subjects 
were randomly recruited from the health centers during 
the same period. The control population was matched with 
the case population based upon age and gender. All cases 
had histologically confirmed HCC. For each participant, 
a standard questionnaire was used to collect demographic 
information, including age, sex, HBV infection status, 
smoking status, alcohol use, and family history of all 
cancer. All subjects signed informed consent forms. Blood 

(5 ml) was collected from each subject according to the 
study protocol approved by the Clinical Research Ethics 
Committee.

Genotyping

Genomic DNA was extracted from the peripheral 
blood using the GoldMag Whole Blood Genomic 
DNA Extraction kit according to the manufacturer’s 
instructions. DNA concentrations were measured using 
a NanoDrop 2000 (Thermo Scientific, Waltham, MA, 
USA). A Sequenom Mass ARRAY mass spectrometry 
analyzer (Sequenom, San Diego, CA, USA) was used for 
genotyping, and data were managed using Sequenom Typer 
4.0 Software (Sequenom, San Diego, CA, USA) [21, 22].

Statistical analyses

Differences in the distribution of selected 
demographic variables between HCC cases and cancer-
free controls were evaluated using the Student’s t-test for 
continuous variables or Pearson’s χ2 test for categorical 
variables. The association for each of the SMAD7 
loci genotypes and haplotypes was evaluated using 
unconditional logistic regression models. In controls, 

Table 5: Association of genetic risk score with HCC risk and its clinical status

GRS

≤ 3/> 3 OR (95% CIs)

HCC risk Controls 600/400 1.00 (reference)

Cases 490/510 1.56 (1.30–1.86)

Clinical stage Stage I/II 242/258 1.00 (reference)

Stage III/IV 248/252 0.95 (0.74–1.22)

Tumor size ≤ T2 315/330 1.00 (reference)

> T2 175/180 0.98 (0.76–1.27)

Lymph node metastasis No 369/385 1.00 (reference)

Yes 21/25 1.14 (0.63–2.07)

Distant metastasis No 365/385 1.00 (reference)

Yes 25/25 0.94 (0.53–1.68)

Vascular invasion No 400/373 1.00 (reference)

Yes 90/137 1.63 (1.21–2.20)

Child–Pugh grade A 377/391 1.00 (reference)

B or C 113/119 1.02 (0.75–1.36)
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each SNP was tested to determine whether it fit with the 
Hardy–Weinberg equilibrium (HWE). Odds ratios (OR) 
and 95% confidence intervals (CI) were calculated using 
unconditional logistic regression analyses adjusted for age, 
gender, family history of all cancer and HBV infection 
status [23], and the most common control homozygote was 
used as reference. LD of the candidate SNPs was analyzed 
using Haploview v4.2 [24]. To measure the cumulative 
effect of multiple genetic risk variants, we calculated a 
genetic risk score (GRS) by summing the number of risk 
alleles at each locus (0, 1, or 2). All p-values reported in 
this study were two-tailed and p-values less than 0.05 were 
considered statistically significant. 
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