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ABSTRACT

Drug-induced aberrant DNA methylation is the first identified epigenetic marker
involved in chemotherapy resistance. Understanding how the aberrant DNA methylation
is acquired would impact cancer treatment in theory and practice. In this study we
systematically investigated whether and how ERa propelled aberrant global DNA
hypermethylation in the context of breast cancer drug resistance. Our data demonstrated
that anticancer drug paclitaxel (PTX) augmented ERa binding to the DNMT1 and DNMT3b
promoters to activate DNMT1 and DNMT3b genes, enhancing the PTX resistance of
breast cancer cells. In support of these observations, estrogen enhanced multi-drug
resistance of breast cancer cells by up-regulation of DNMT1 and DNMT3b genes.
Nevertheless, the aberrant global DNA hypermethylation was dominantly induced by
ERa-activated-DNMT1, since DNMT1 over-expression significantly increased global DNA
methylation and DNMT1 knockdown reversed the ERa-induced global DNA methylation.
Altering DNMT3b expression had no detectable effect on global DNA methylation.
Consistently, the expression level of DNMT1 was positively correlated with ERa in 78
breast cancer tissue samples shown by our immunohistochemistry (IHC) analysis and
negatively correlated with relapse-free survival (RFS) and distance metastasis-free
survival (DMFS) of ERa-positive breast cancer patients. This study provides a new
perspective for understanding the mechanism underlying drug-resistance-facilitating
aberrant DNA methylation in breast cancer and other estrogen dependent tumors.

cancer chemotherapy agents usually develop global DNA
hypermethylation, both in vitro and in vivo [4-8]. This
drug-induced DNA hypermethylation may create drug
resistance by randomly inactivating genes whose products

INTRODUCTION

Epigenetic instability plays an important role in
cancer progression and metastasis [1-4]. Aberrant DNA

methylation is the first identified epigenetic marker
involved in chemotherapy resistance. Tumor cells
exposed to toxic concentrations of commonly used

are required for chemotherapy agents to kill cancer
cells [7, 9]. The DNA hypermethylation can result from
aberrant expression of DNA methyltransferases (DNMTs)
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[10-13], primarily DNMT1, DNMT3a, and DNMT3b
[14]. However, the mechanism that leads to the acquisition
of aberrant DNMT expression in cancer drug resistance is
poorly understood.

The functions of steroid hormones and their
receptors in regulation of DNA methylation status have
recently begun to draw attention [15-17]. Breast cancer
is a highly hormone dependent cancer, with estrogen
recognized as a classical etiological factor for breast
carcinogenesis, development, and drug resistance.
Estrogen mediates its biological effects in target tissues
primarily by binding to specific intracellular receptors, the
estrogen receptors ERa and ERp [18]. Approximately 65%
of human breast cancers express ERa [19] and around
40% of ERa-positive breast cancer patients inevitably
relapse and have poor prognosis [20].

Chemotherapy is the usual treatment choice for
early-stage invasive and advanced-stage breast cancer,
before surgery or after surgery [21-22], as well as for
recurrent and metastatic breast tumors [23-24]. However,
chemoresistance is still a major obstacle limiting the
success of breast cancer treatment. ERa has been
confirmed to contribute to drug resistance of breast
cancer, acting through mechanisms including inhibition
of apoptosis and up-regulation of ABC transporters
[25-26]. However, little is known about the functional
relationship of ERa and drug-induced aberrant DNA
methylation, although several reports have suggested
ERa may be involved in regulation of DNMTSs in lung
cancer and endometrial adenocarcinoma [27-28].
Elucidation of a functional link between ERa and drug-
induced hypermethylation will provide a special insight
into mechanisms underlying drug-resistance-facilitating
aberrant DNA methylation in breast cancer and other
estrogen dependent tumors.

We have previously examined global DNA
methylation alterations in ERa-positive and ERa-negative
drug-resistant breast cancer cell lines based on analysis
of the LINE-1 promoter methylation [29]. LINE-1, a
type of repetitive element, comprises approximately
20% of human genome and has been usually used as a
surrogate marker for estimating global DNA methylation
[30-31]. We have found that paclitaxel-induced DNA
hypermethylation is positively associated with the ERa
expression status. ERa-positive drug-resistant MCF-7/
PTX cells gain increased global DNA methylation (DNA
hypermethylation), while ERa-negative drug-resistant
MDA-MB-231/PTX cells lose global DNA methylation
(DNA hypomethylation) compared with their parental
cell lines cultured in parallel [29]. This finding suggests
that ERo may be involved in drug-induced global
DNA hypermethylation. Another indication of ERa
involvement in epigenetic regulation from our previous
work is that ERa significantly up-regulated DNMT1-
luciferase reporter gene activity in breast cancer cells [29].
Genomatix software analysis (http://www.genomatix.de/

index.html) showed that the promoter regions of DNMT1
and DNMT?3Db contained ERa binding sequences.

The aim of the present study is to determine
whether and how ERa promotes aberrant global DNA
hypermethylation in the context of breast cancer drug
resistance. To this end we systematically investigated the
role of ERa in regulation of DNMT gene activity and the
resulting effect on global DNA methylation based on two
PTX resistant breast cancer cell lines, MCF-7/PTX and
ZR-75-1/PTX and their parental cell lines. The in vitro
data were further evaluated in breast cancer tissue samples.
Our data demonstrated that ERa propelled aberrant global
DNA hypermethylation by activating the DNMT1 gene to
enhance anticancer drug resistance in human breast cancer
cells.

RESULTS

The expression level of ERa was positively
correlated with DNMT1 and DNMT3b
expression in breast cancer cells

To determine the role of ERa in regulation of the
DNMTs expression, we first examined the expression
levels of ERa and the three DNMTs in the PTX-resistant
MCF-7/PTX and ZR-75-1/PTX cell lines established
in our laboratory. Western blot analysis showed that
the expression of ERa, DNMT1, and DNMT3b was
significantly increased in MCF-7/PTX and ZR-75-1/PTX
cell lines, when compared with the paired parental MCF-7
and ZR-75-1 cell lines (Figure 1A & 1B). By contrast, the
expression level of DNMT3a was the same in the drug-
resistant breast cancer cell lines and the parental controls.
The increased expression of DNMT1 and DNMT3b was,
at least in part, a result of transcription up-regulation of
these two genes, as the mRNA levels were correspondingly
increased in these two drug resistant breast cancer cell
lines (Figure 1C). The positive correlation between ERa
and DNMT1 and DNMT3b expression suggested that
ERo might be involved in up-regulation of the DNMTs in
breast cancer drug response.

ERa up regulated the expression of DNMT1 and
DNMT3b in ERe-positive breast cancer cells

To determine the functional role of ERa in up-
regulation of DNMT1 and DNMT3b expression, we tested
whether change in ERa expression altered the promoter
activity of the DNMT genes by reporter gene analysis
and real time PCR. Luciferase reporter vectors containing
the DNMT1, DNMT3b, or DNMT3a promoters were
prepared and transfected into MCF-7 cells where ERa was
over-expressed. The transfection efficiency was confirmed
by Western blot analysis (Figure 2A). The results showed
that introduction of ERa into MCF-7 cells significantly
increased the DNMT1 and DNMT3b reporter gene
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activities (Figure 2B), while only slightly affecting the
DNMT3a reporter gene activity. Consistently, the cellular
mRNA and protein levels of DNMT1 and DNMT3b, but
not DNMT3a, were elevated by ERa over-expression
(Figure 2C & 2A).

The promoting effect of ERa on DNMT1 and
DNMT3b expression was further confirmed by RNA
interference experiments. ERa expression was knocked
down in MCF-7/PTX cells with plasmids expressing
short hairpin RNAs (shRNA) and the targeting
efficiency was confirmed by Western blot analysis
(Figure 2D). As expected, ERa knockdown attenuated
the DNMT1 and DNMT3b reporter gene activities
(Figure 2E) and reduced the cellular mRNA and protein
levels (Figure 2F & 2D). These results verified that ERa
was able to promote DNMT1 and DNMT3b expression
in breast cancer cells.
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ERa is known to function as transcription factor by
directly binding to a specific estrogen response element
(ERE) within the promoter or by interacting with other
transcription factors that bind to the promoter [32-33].
Bioinformatics analysis revealed that the DNMT1 and
DNMT3b promoters contained several potential ERa binding
sequences (Figure 3A). We tested whether DNMT1 and
DNMT3b were the direct target genes of ERa by performing
ChIP assays using an anti-ERa antibody to examine ERa
binding to the gene promoters. As indicated in Figure 3B, the
DNMT1-S2, DNMT1-S3, DNMT3b-S1, and DNMT3b-S3
sequences were specifically immunoprecipitated with anti-
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Figure 1: The expression of ERa was positively correlated with that of the DNMT1 and DNMT3b in breast cancer cell
lines. A. Western blot analysis of the ERa expression in PTX-resistant breast cancer cell lines and their paired parental cell lines (left); the
histogram depicting the relative ERa protein levels (right). B. Western blot analysis of the DNMTs protein levels in the two pairs of PTX-
resistant breast cancer cells (left); the histogram depicting the relative expression levels of DNMTs proteins (right). C. Real-time PCR was

performed to check the DNMTs transcriptional products.
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in vivo. No specific precipitates were detected for DNMT1-S1
and DNMT3b-S2.

The functional relationship between the ERa binding
and breast cancer drug resistance was further evaluated
by qChIP assay. Our data showed that ERa binding
to the DNMT1 and DNMT3b promoter regions was
significantly increased in MCF-7/PTX drug-resistant cells
when compared to the parental MCF-7 cells (Figure 3C).
These results were further confirmed in ZR-75-1/PTX and
ZR-75-1 breast cancer cells (Figure 3D). These findings
suggested that ERo activated DNMT1 and DNMT3b
expression by direct binding to the gene promoters in the
response of breast cancer cells to anticancer drugs.

DNMT1 or DNMT3b expression enhanced
drug resistance of breast cancer cells and was
negatively correlated with the prognosis of
breast cancer patients

Subsequent to determination of the ERa activating
role in DNMTs genes, we evaluated the role of ERa-
induced DNMTs up-regulation in acquired drug resistance

of breast cancer cells by testing whether alteration of
DNMT1 and DNMT3b expression change drug sensitivity
of breast cancer cells. MCF-7 cells were transfected
with DNMT1 or DNMT3b expression plasmids and the
transfection efficiencies were confirmed by Western blot
analysis (Figure 4A & 4B). At 24 h after transfection, the
cells were treated with PTX at different concentrations
for 48 h and then harvested for viability tests using
MTT assays. The over-expression of either DNMT1 or
DNMT3b increased cell viability when compared with
the control (Figure 4A & 4B), indicating that increased
DNMT1 or DNMT3b expression promoted cell survival in
the presence of PTX. These results were further confirmed
by knockdown of DNMT1 in MCF-7/PTX and ZR-75-1/
PTX drug resistant breast cancer cell lines. As expected,
reduction of DNMT1 expression by RNAi could partly
reversed drug resistance phenotype of these two PTX-
resistant breast cancer cell lines (Figure 4C & 4D).

The clinical significance of the DNMTI1 and
DNMT3b high expression was evaluated in ERa-
positive breast cancer patients by Kaplan-Meier Plotter
analysis (http://kmplot.com/breast/). As shown in
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Figure 2: ERa activated DNMT1 and DNMT3b genes in ERa-positive breast cancer cells. A. Western blot was performed
to check the expression levels of ERo and DNMTs in MCF-7 cells transfected with ERo expression vectors. B. Luciferase reporter assay
showed that over-expression of ERa enhanced the promoter activities of DNMT1 and DNMT3b, but not DNMT3a, in MCF-7 cells. C. Real-
time PCR showed that over-expression of ERa up regulated the intracellular mRNA levels of DNMT1 and DNMT3b, but not DNMT3a,
in MCF-7 cells. D. Western blot was performed to check the expression levels of ERa and DNMTs in MCF-7/PTX cells transfected with
ERa-shRNA plasmids. E. Luciferase reporter assays showed that knockdown of ERa reduced DNMT1 and DNMT3b promoter activities
in MCF-7/PTX cells. F. Real-time PCR showed that knockdown of ERa reduced the DNMT1 and DNMT3b intracellular mRNA levels in

MCF-7/PTX cells.
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Figure 4E & 4F, patients with high DNMT1 expression
in their breast cancer samples had lower relapse-free
survival (RFS) and distance metastasis-free survival
(DMFS) than those with low DNMT1 expression in the
samples. Similar results were obtained for the DNMT3b
expression (Figure 4G & 4H). The negative correlation

between the DNMT1 and DNMT3b expression levels
and the prognosis of ERa-positive breast cancer patients
was consistent with the observations in breast cancer
cell lines, suggesting that high expression of DNMT1
and DNMT3b has a detrimental effect on breast cancer
drug response.
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Figure 3: ERa occupancy on the DNMT1 and DNMT3b promoters was significantly increased in PTX-resistant breast
cancer cells. A. Diagram of the ERa binding sites in the human DNMT1 and DNMT3b gene promoters indicated by bioinformatics
analysis. B. ChIP assay revealed that the DNMT1-S2 and DNMT1-S3 and the DNMT3b-S1 and DNMT3b-S3 were immunoprecipitated
with ERa antibody, confirming ERa binds to theses sequences in breast cancer cells. C. qChIP assay indicated that the bindings of ERa
to the DNMT1 and DNMT3b promoters were significantly increased in MCF-7/PTX cells when compared with the parental MCF-7
cells. D. The qChIP assay was repeated in ZR-75-1/PTX cells and similar results were obtained, indicating that anticancer drug exposure

enhanced binding of ERa to the DNMT1 and DNMT3b promoters.
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Both DNMT1 and DNMT3b were downstream
target genes of ERa and involved in ERa-
induced drug resistance

ERa is known to be an important contributor to
breast cancer chemoresistance [25-26]. To determine the
functional link of ERa, DNMTs and breast cancer drug
resistance, we first confirmed the effect of ERa on the drug
resistance phenotype with our PTX-resistant breast cancer
cell lines by RNAI experiments. As expected, knockdown
of ERa in MCF-7/PTX and ZR-75-1/PTX cell cells
partly reversed the drug resistance phenotype. The IC50
values decreased from 16.61 = 2.78 pM to 7.42 + 0.57
uM and 17.23 + 2.09 uM to 6.16 + 2.34 uM, respectively
(Figure 5A & 5B). Then we addressed whether DNMT1
and DNMT3b were the downstream target genes of
ERa in breast cancer drug resistance. MCF-7 cells were
co-transfected with ERa expression plasmid together
with either DNMT1-shRNA or DNMT3b-shRNA. The
targeting efficiencies were confirmed by Western blot
(Figure 5C & 5D). At 24 h after transfection, the cells
were treated with PTX at different concentrations for
48 h and then harvested for viability tests. The MTT
assays showed that DNMT1 or DNMT3b knockdown
partly restrained the effect of ERa over-expression and

sensitized the MCF-7 cells to PTX (Figure 5C & 5D).
The IC50 values significantly decreased from 1.57 = 0.41
uM to 0.52 + 0.09 uM and from 1.52 £+ 0.1 uM to 0.46
+ 0.07 uM for the DNMT1 and DNMT3b knockdown,
respectively. Furthermore, double knockdown of DNMT1
and DNMT?3D restrained the effect of ERo over-expression
more efficiently than the DNMT1 or DNMT3b single
knockdown. The IC50 value decreased from 1.6 + 0.08
uM to 0.35 £ 0.05 uM (Figure SE). These results strongly
indicated that DNMT1 and DNMT3b were downstream
target genes of ERa and involved in ERa-induced drug
resistance.

Estrogen increased DNMT1 and DNMT3b
expression and enhanced the multi-drug
resistance of ERa-positive breast cancer cells

The functional relationship between ERa, DNMT],
and DNMT3b was further validated by treating MCF-7
cells with estrogen (E2), a ligand of ERa. As indicated in
Figure 6A, E2 dose-dependently increased the DNMT1
and DNMT?3b reporter gene activities and up regulated
both mRNA and protein levels of DNMT1 and DNMT3b,
as confirmed by real time PCR and Western blot analysis
(Figure 6B & 6C). This stimulatory effect was induced
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Figure 4: DNMT1 or DNMT3b expression enhanced drug resistance of breast cancer cells and was negatively correlated
with the prognosis of breast cancer patients. A. Western blot analysis of DNMT1 expression in MCF-7 cells transiently transfected
with DNMT]1 expression plasmids (upper panel). MTT assay indicated that over-expression of DNMT]1 increased viability of breast cancer
cells under the stress of PTX treatment (lower panel). B. Similar experiments were performed to test the effect of DNMT3b on the response
of breast cancer cells to PTX. DNMT3b over-expression increased the cell survival in the presence of PTX. C, D. Western blot analysis of
DNMT1 expression in MCF-7/PTX (upper left) or ZR-75-1/PTX (upper right) cells transiently transfected with DNMT1-shRNA plasmids
(upper). MTT assay was performed to determine cell viabilities of MCF-7/PTX (lower left) or ZR-75-1/PTX cells (lower right) treated
with PTX at different concentrations. E, F. Kaplan-Meier analysis revealed negative correlation between DNMT1 and RFS and DMFS of
ERa-positive breast cancer patients. G, H. Kaplan-Meier analysis displayed the similar results regarding the correlation between DNMT3b

and the RFS and DMFS.
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by activation of ERa, as qChIP assay demonstrated that
E2 treatment significantly increased ERa binding on the
DNMT1 and DNMT3b promoters (Figure 6D).
Subsequently, we tested whether E2 enhanced the
multi-drug resistance of ERa-positive breast cancer cells.
MCF-7 cells were pretreated with 1 nM E2 for 24 h and
then treated with different chemotherapeutic agents, PTX,
EPI, or VCR. 48 h after drug treatment, cells were harvested
for testing viability with MTT assays. The results showed
that the cells pretreated with E2 were more resistant to these
anticancer drugs than the control (Figure 6E—6G). These
results were further confirmed in ZR-75-1 cells (Figure
6H—0J). These data, together with those already described,
strongly indicated that ERa activated-DNMTs promoted
multi-drug resistance of ERa-positive breast cancer cells.

ERa-activated DNMT1 induced the global DNA
methylation level dominantly

LINE-1 is a type of repetitive element that
comprises approximately 20% of the human genome.
Its methylation status closely parallels the overall
global methylation level, so it is considered as a valid
surrogate marker for estimating global DNA methylation
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[30-31]. Subsequent to identification of ERa function
in activating DNMT1 and DNMT3b expression, we
tested the effects of ERa on genome-wide methylation
level and its relation to the specific DNMT in MCF-7
cells by determination of LINE-1 methylation levels
with methylation-sensitive PCR (MSP). As expected,
introduction of ERa into MCF-7 cells significantly
increased the global DNA methylation level, while ERa
knockdown attenuated the global methylation level
(Figure 7A).

Notably, DNMT1 over-expression doubled the
global DNA methylation level compared with the
control and DNMT1 knockdown reversed ERa-induced
global hypermethylation (Figure 7B & 7C). By contrast,
alteration of the DNMT3b expression had no detectable
effect on the global DNA methylation (Figure 7D &
7E). These findings suggested that ERa induced global
DNA methylation dominantly by activation of DNMT]1
in breast cancer cells. The notion was supported by the
positive correlation between DNMT1 and ERa expression
(P=0.046) detected by our immunohistochemical analysis
in 78 breast cancer tissues samples (Figure 8). No
significant correlation between ERo and DNMT3b was
observed (Figure 8).
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Figure 6: Estrogen increased DNMT1 and DNMT3b expression and enhanced the multi-drug resistance of ERa-
positive breast cancer cells. A. Luciferase reporter assay was performed to detect DNMTs promoter activities following treatment
with graded concentrations of estrogen. B. Real-time PCR was performed to detect transcriptional levels of DNMTs in MCF-7 cells
treated with estrogen. C. Western blot was performed to detect the expression levels of DNMT1 and DNMT3b in MCF-7 cells treated
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including PTX (E, H), EPI (F, I) and VCR (G, J).

www.impactjournals.com/oncotarget

20973

Oncotarget



DISCUSSION

Aberrant DNA methylation is the known epigenetic
marker involved in chemotherapy resistance. It can be
resulted from abnormal expression of DNMTs [10-13].
In this study we systematically investigated whether and
how ERa regulated DNMTs to facilitate drug resistance
of breast cancer cells. Our data demonstrated that ERa
increased the drug-induced global DNA hypermethylation
through activation of the DNMT1 gene to enhance
the anticancer drug resistance of breast cancer cells.
Consistently, the DNMT1 expression was positively
correlated with ERa expression in breast cancer tissues
and negatively correlated with RFS and DMFS of ERa-
positive breast cancer patients.

ERa propelled drug-resistance-facilitating global
DNA hypermethylation by activation of the
DNMT1 gene in breast cancer cells

Several studies have suggested a role of estrogen
in regulation of DNMTs; however, the results were
discrepant. For example, estrogen was reported to increase
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DNMT3b expression in endometrial adenocarcinoma
cells [28], but decrease DNMT3b transcription in an
endometrial explant culture [34]. Estrogen treatment down
regulated DNMT1 expression in lung cancer [27], but had
no effect on DNMT1 in endometrial adenocarcinoma
[28, 34]. Furthermore, little is known whether and how
estrogen/ERa is involved in drug-induced aberrant DNA
methylation. Our results strongly confirm that ERo can
activate DNMT1 and DNMT3b genes by direct binding
to the gene promoters in breast cancer cells. Estrogen
enhanced multi-drug resistance of breast cancer cells by
up-regulating DNMT1 and DNMT3b expression. These
results are in contrast with those observed in lung cancer
and endometrial adenocarcinoma [27-28, 34] and indicate
that ERa is an activator for DNMT1 and DNMT3b
genes in breast cancer cells. The discrepancy between
the previously reported work and our results may mainly
reflect the tissue specific function of ERa in regulating
DNMTs expression.

It is notable that over-expression of DNMTI
alone doubles the global DNA methylation level in
breast cancer cell lines examined and knockdown of
DNMT1 significantly blocks the ERa-induced global
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Figure 7: ERa elevated the global DNA methylation level through DNMT1. Quantitative methylation-sensitive PCR (qQMSP)
was performed to detect the genomic DNA methylation levels. A. gqMSP showed that global methylation level was increased in MCF-7 cells
transfected with ERa expression plasmids and was decreased in MCF-7/PTX cells transfected with ERa-shRNA plasmids when compared
with their controls. B. qMSP showed that global methylation level was increased in MCF-7 cells transfected with DNMT1 expression
plasmids compared with the control. C. qMSP showed that knockdown of DNMT1 in MCF-7 cells significantly restrained the ERo-induced
global hypermethylation. D, E. qMSP showed that over-expression or knockdown of DNMT3b had no detectable effect on global DNA

methylation level.
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DNA hypermethylation. Nevertheless, altering DNMT3b
expression had no detectable effect on the global DNA
methylation in the breast cancer cells. We speculate that
ERa-activated-DNMT1 pathway dominantly propels the
drug-induced global DNA hypermethylation in breast
cancer, although the effects of DNMT3a/3b cannot be
fully excluded in this experimental system and remains
to be tested further. This notion is also supported by our
previous observations that only DNMT1 expression was
positively correlated with global DNA methylation level
in two PTX-resistant breast cancer cell lines, MCF-7/
PTX and MDA-MB-231/PTX. No significant correlation
was detected in the case of DNMT3a and DNMT3b [29].
Further support is from our IHC analysis of 78 breast

cancer tissue samples. DNMT1 expression is confirmed
to be positively correlated with ERa expression in the
breast cancer tissues. The Kaplan-Meier Plotter analysis
indicates that DNMTI1 expression was negatively
correlated with RFS and DMFS of ERa-positive breast
cancer patients. The data in vitro and in vivo together
support the propelling role of ERa-activated-DNMT1
pathway in drug-resistance-facilitating aberrant global
DNA hypermethylation.

Unexpectedly, we do not observe the significant
correlation between DNMT3b and ERa expression in the
78 breast tissue samples, which is inconsistent with the
observation in vitro. This discrepancy might be resulted
from high heterogeneity of breast cancer. It deserves

DNMT1 DNMT3b

Correlation between ERa expression and DNMTs expression in breast cancer tissues

Variable n High level of ERa (%) Low level of ERa (%) P
DNMT1 status
High level 29 24(82.76) 5(17.24) 0.046°
Low level 49 30(61.22) 19(38.77)
DNMT3b status
High level 54 39(72.22) 15(27.78) 0.391°
Low level 24 15(62.50) 9(37.50)

& According to Fisher’s exact test
® According to 2 test

Figure 8: ERa expression was positively correlated with DNMT1 expression in breast cancer patients. Representative
immunohistochemical staining pictures of ERo, DNMT1 and DNMT3b in breast cancer tissues. The upper panel represented the strong
positive staining and the lower panel represented the weak positive staining. The level of ERa in breast cancer tissues showed a statistically
positive correlation with DNMT 1, while no significant correlation with DNMT3b was observed.
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further investigating with more breast cancer cell lines
and tissue samples, since DNMT3b expression is shown
to be negatively correlated with RFS and DMFS of ERa-
positive breast cancer patients by the Kaplan-Meier
Plotter analysis.

The identification of ERa-DNMT1-global DNA
hypermethylation is also informative regarding the distinct
function of individual DNMT in DNA methylation. It
implies that DNMTT plays a significant role in de novo
DNA methylation in breast cancer cells in addition to its
function in maintaining DNA methylation. This is in line
with the recent notion that DNMT1 has a considerable
de novo methylation activity [35]. Thus, investigating
the distinct role of DNMTT1 in drug-induced global DNA
hypermethylation and its relation to the other DNMTs will
provide new clues for understand complex mechanisms of
DNA methylation.

ERa could epigenetically regulate multi-drug
resistance of breast cancer cells through inducing
aberrant DNA methylation

Aberrant DNA methylation has an important impact
on gene expression. Global DNA hypermethylation may
randomly inactivate genes whose products are required
for chemotherapy agents to kill cancer cells [7]. In
addition to global DNA hypermethylation, some genes
may specifically undergo de novo methylation, leading
to lack of specific gene products required for killing
cancer cells [36-37]. We speculate that ERa facilitates
drug resistance mainly through randomly inactivating
genes required for killing breast cancer cells in the case
of its epigenetic regulation, since ERa-activated-DNMT 1
was dominantly involved in drug-induced global DNA
hypermethylation. Extensive study to find out the genes
that can be inactivated by ERa-DNMT1-propelled global
DNA hypermethylation and to elucidate their functions in
drug response will be very significant.

ERo-DNMT3b may catalyze specific gene de novo
methylation, as it seems not to be involved in global
DNA hypermethylation. Many genes, including MTSS1,
RASSF1a, APC, TBX18, p16, and HOXB13, have been
confirmed as targets of DNMT3b [38-40]. However, the
functional relationship between ERa and DNMT3b needs
to be further determined in more breast cancer tissue
samples as described above.

The epigenetic function of ERa in breast cancer
drug resistance implies that selective estrogen receptor
down-regulators (SERDs) could have a potential
role in inhibiting anticancer drug-induced aberrant
DNA methylation. Since DNMTs inhibitors have the
potential risk in inducing carcinogenesis, our results are
illuminating regarding epigenetic correction of cancer
drug resistant phenotype. It deserves testing whether
combination of anticancer drugs with SERDs could inhibit
anticancer drug-induced aberrant DNMT expression and

DNA hypermethylation. This will provide insight into
development of new chemotherapy strategies for breast
cancer and other estrogen dependent cancers.

Maintaining the balance between ERa and
DNMTs expression might be a promising
strategy for treatment of ERa-positive breast
cancer

ERa is encoded by the ESR1 gene, and most studies
have focused on regulation of ESR1 expression by DNMTs
[41-43]. DNMT1, DNMT3a, and DNMT3D all function as
suppressor of ERa expression by increasing methylation
level of the ESR1 promoter. Specific difference in ESR1
gene methylation has been found between normal and
breast tumor-adjacent tissues, and between ERa-positive
and ERa-negative breast cancer cells [41]. In contrast,
the knowledge of ERa function in regulating DNMTs
expression is very sparse and discrepant. Our present
study demonstrates that ERa is an activator of DNMT1
and DNMT3b in breast cancer cells. We suppose there
may be a feedback loop to maintain a balance between
ERa and DNMTs in normal breast cells. Disruption of
this balance might result in abnormal ERa expression and
aberrant DNA methylation in estrogen-dependent cancer
cells. From this point of view, restoring the ERa-DNMTs
balance might be a promising strategy for breast cancer
treatment.

Taken together, the present study investigates the
acquisition of aberrant DNA methylation from a new
perspective and reveals an intrinsic link between ERa
and drug-induced aberrant DNA methylation in the
context of anticancer drug resistance. This study will
provide valuable clues for understanding the mechanism
underlying drug-resistance-facilitating aberrant DNA
methylation in breast cancer and other estrogen dependent
tumors.

MATERIALS AND METHODS

Cell culture, reagents, and plasmids

Human breast cancer cell lines MCF-7 and ZR-
75-1 were obtained from ATCC. The PTX-resistant cell
lines MCF-7/PTX and ZR-75-1/PTX were established by
pulse selection with PTX. MCF-7 and MCF-7/PTX cells
were cultured in MEM supplemented with 10% FBS,
insulin (0.2 U/ml), 100 U/ml penicillin and 100 U/ml
streptomycin, whereas ZR-75-1 and ZR-75-1/PTX cells
were cultured in DMEM containing 10% FBS, 100 U/ml
penicillin and 100 U/ml streptomycin. To determine the
effect of estrogen (E2) on DNMTs expression, the cells
were cultured in phenol red-free medium for 24 h before
the application of E2 treatment. Thereafter, the cells were
cultured in the absence or in the presence of E2 at various
concentrations, and then were used for subsequent real-
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time PCR, Western blot, or MTT analysis. The vehicle
control for E2 was an equal volume of ethanol. Estrogen
was purchased from Sigma (St Louis, MO).

The ERa expression vector, DNMT1 expression
vector, ERa-shRNA vector, DNMT1-shRNA vector, and
DNMT1 promoter luciferase reporter vector were described
in our previously work [29]. DNMT3a and DNMT3b
promoter luciferase reporter vectors were cloned into pGL3-
basic vector. DNMT3a and DNMT3b promoter sequences
were amplified by PCR. The primers for DNMT3a were
5’-Kpnl-GCCGGTACCATGCGCCATGACACCCAGC-3’
(forward), 5°-Xhol-CCGCTCGAGCTACCTGGCGCTGCT
TC-3’ (reverse). The primers for DNMT3b were 5’-Kpnl-
CGGGGTACCTCCAACAACAATATGCCCC-3’ (forward),
5’-HindlII-CCCAAGCTTCGATCGCCGAGCTAGGTTT-3’
(reverse). DNMT3Db expression vector containing DNMT3b
full length coding sequence was constructed based on
pcDNA3.0. DNMT3b-specific shRNA sequences were
synthesized and inserted into the pRNAT-HI.1/neo
vector. The DNMT3b-shRNA targeting sequence was: 5°-
AGGTAGGAAAGTACGTCGC -3°.

Clinical samples and IHC staining

78  paraffin-embedded ERa-positive  breast
cancer specimens were obtained from Suzhou Hospital
Affiliated to Nanjing Medical University. The clinical
data of the patients were collected including their gender,
age, pathological subtype, lymph node metastasis, etc.
This study was approved by the ethics committees of
Nanjing Medical University. The tumor samples were
immunostained with ERa (abcam), DNMT1 (abcam)
and DNMT3b (abcam) antibodies. The IHC procedure
and scoring of protein expression were performed as
previously described [44]. Immunohistochemical signals
were scored by three independent investigators in a
double-blind way.

ChIP assay

Chromatin immunoprecipitation (ChIP) assays
were performed using the ChIP assay kit as described in
the manufacturer (Millipore). Briefly, 1x107 cells were
fixed in 1% formaldehyde at 37°C for 10 min. The cross-
linking was stopped by 1/20V of 2.5 M glycine. Then cells
were lysed and sonicated into 200-1000 bp fragments
and incubated with ERo antibody (Millipore) and IgG
(Millipore) overnight at 4°C. Reversal of cross-linking was
carried out at 65°C for 5 h, followed by DNA isolation.
The input genomic DNA and the immunoprecipitated
DNA was then amplified by PCR. The PCR products were
subjected to gel electrophoresis, stained with ethidium
bromide, and analyzed on a Molecular Imager Gel Doc
XR System (Bio-Rad).

For quantitative analysis of ChIP products, real-
time PCR was carried out to determine fold enrichment

relative to input DNA. Primers for detection of the
estrogen responsive element (ERE) region in the DNMT1
and DNMT3b promoters were listed in Supplementary
Table S1. Ct values were calculated using the formula:
ACt:Ctsamp]c-Ctinput’ and AACt:Athxpcrimcm sample ‘negative

wnro- 1he fold increase of ERa binding was then calculated
using the 244 method.

DNA extraction and quantitative methylation-
sensitive PCR (qMSP)

Total DNA was extracted using a Multisource
Genomic DNA Miniprep Kit (Axygen) according to
the manufacturer’s protocol. A 1 pug amount of genomic
DNA from each sample was modified with sodium
bisulfite using the CpGenomeTM DNA Modification Kit
(Chemicon). B-actin was used to normalize DNA inputs;
a region of B-actin devoid of any CpG dinucleotide
was amplified. The primer sequences were listed in
Supplementary Table S1.

Luciferase reporter assay

Cells were seeded in 12-well plates and co-
transfected with a series of plasmids on the following
day, including firefly reporter constructs containing target
gene promoters, Renilla expressing plasmid, and ERa
expression plasmid or control plasmid. Firefly luciferase
activity, normalized to Renilla luciferase activity, was
measured 48 h after the initiation of transfection by the
Dual Luciferase Assay System (Promega).

Survival curves

Cells were seeded at a density of 8000 cells per well
in 96-well plates. On the following day, cells were treated
with graded concentrations of paclitaxel (PTX), epirubicin
(EPI), or vincristine (VCR). At the end of the culture, cell
viability was measured using the MTT assay as previously
described [29]. All measurements were done in triplicate.

RNA extraction and quantitative real-time PCR
assay

Total RNA was extracted using Trizol reagent
(Invitrogen) according to the manufacturer’s protocol. To
prepare cDNA, 1 pg of total RNA was reverse-transcribed
according to Roche manufacturer’s instructions.
Quantitative real-time PCR was carried out on the Light
Cycler System using the double-strand DNA binding
dye SYBR Green for the detection of PCR products.
The following thermal cycling conditions were used:
denaturation, 95°C for 10 min, followed by 40 cycles of
denaturation at 95°C for 15 s, annealing at 60°C for 15 s,
and extension at 72°C for 15 s. The primer sequences were
listed in Supplementary Table S1.
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Western blot assay

Total cellular protein extracts were obtained and
were separated on 10% SDS-polyacrylamide gel and
transferred to PVDF membranes (Bio-Rad). After blocking
in 5% skimmed milk for 1 h, membranes were incubated
with a primary antibody overnight at 4°C. Membranes
were washed with 3 times for 10 min in Tris-Buffered
Saline with Tween-20 (TBST) and incubated with a HRP-
conjugated secondary antibody (R&D) for 1 h at room
temperature. After washing 3 times for 10 min in TBST,
the membranes were developed with an ECL detection
system. Quantification was performed using Quantity One
(Bio-Rad). Antibodies against DNMT1 were purchased
from Cell Signaling Technology, anti-DNMT3a was
purchased from Santa Cruz, anti-DNMT3b was obtained
from Abcam, and anti-ERa was from Santa Cruz; anti-f3-
actin was obtained from Sigma-Aldrich.

Statistical analysis

All experiments were repeated three times. The
results are presented as the mean = SD. Data were
analyzed using Student’s t test to determine the level of
significance between control and treatment groups. The
1 test was used to determine the correlation between ERa
and DNMTs in the breast cancer tissues. P < 0.05 was
considered to be statistically significant.
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