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ABSTRACT
Uncontrolled Th17 cell activity is associated with cancer and autoimmune and 

inflammatory diseases. To validate the potential relevance of mouse models of 
targeting the Th17 pathway in human diseases we used RNA sequencing to compare 
the expression of coding and non-coding transcripts during the priming of Th17 cell 
differentiation in both human and mouse. In addition to already known targets, 
several transcripts not previously linked to Th17 cell polarization were found in both 
species. Moreover, a considerable number of human-specific long non-coding RNAs 
were identified that responded to cytokines stimulating Th17 cell differentiation. We 
integrated our transcriptomics data with known disease-associated polymorphisms 
and show that conserved regulation pinpoints genes that are relevant to Th17 
cell-mediated human diseases and that can be modelled in mouse. Substantial 
differences observed in non-coding transcriptomes between the two species as 
well as increased overlap between Th17 cell-specific gene expression and disease-
associated polymorphisms underline the need of parallel analysis of human and mouse 
models. Comprehensive analysis of genes regulated during Th17 cell priming and their 
classification to conserved and non-conserved between human and mouse facilitates 
translational research, pointing out which candidate targets identified in human are 
worth studying by using in vivo mouse models.

INTRODUCTION

Th17 cells are a IL17 secreting subset of CD4+ cells 
and deficiency of their function leads to susceptibility to 
extracellular bacterial and fungal infections [1]. Moreover, 
Th17 cells contribute to pathogenesis of inflammatory 
and autoimmune diseases such as asthma, rheumatoid 
arthritis, psoriasis and multiple sclerosis [2]. Th17 cells 
play also a context-dependent role in cancer biology and 
can either contribute to immunosurveillance or promote 

malignant growth [3]. The naïve CD4+ T cell pool 
capable of developing into Th17 cells upon appropriate 
signals is maintained by thymic output and peripheral 
proliferation [4]. Thus, one alternative for therapeutic 
intervention is targeted modification of the differentiation 
process requiring knowledge of factors needed for Th17 
cell polarization. In this study, we aimed at identifying 
novel factors regulating human Th17 cell polarization as 
well as shared and species-specific Th17 cell signatures 
between human and mouse by exploiting time series RNA 
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sequencing (RNA-seq) data.
The coding transcriptome is complemented with 

a variety of structurally and functionally different 
non-coding RNA species [5]. Long non-coding RNAs 
(lncRNA) have been reported to have a higher tissue and 
species-specific expression pattern than protein-coding 
genes. In fact, a substantial proportion of lncRNAs 
identified by ENCODE project were shown to be primate-
specific [6]. The studies have mainly concentrated on the 
analysis of a subgroup of lncRNAs called long intergenic 
RNAs (lincRNA) [7]. A lincRNome analysis of mouse 
T cell development and differentiation revealed also a 
group of Th17 cell-specific lincRNAs [8]. In human, 
peripheral blood Th subtypes and in vitro polarized Th 
cells, including Th17 cells, are reported to express lineage-
defining lncRNAs [9, 10, 11, 12]. In our recent study we 
found that lncRNAs mapping to loci shared between 
various immune-mediated diseases were significantly 
enriched in immune cell types compared to lncRNAs 
from the whole genome [10]. In this study, the lncRNAs 
differentially regulated during human Th17 cell priming 
were identified for the first time. 

Systems biology approaches have been exploited to 
characterize transcriptional regulation during Th17 cell 
differentiation in mouse [13, 14]. However, comparison of 
the Th17 cell differentiation process in model organisms 
and in human is missing. In this study, the top 20% of 
the differentially expressed genes were ranked and the 
results between human and mouse compared. Using these 
strongly regulated genes, altogether 307 genes were found 
to be regulated similarly in both human and mouse Th17 
cell priming at least at one time point. The expression 
profiles and levels of Th17 cell-specific coding transcripts 
were analysed to reveal the level of conservation in the 
gene expression patterns. The data was also used to 
predict the key transcriptional regulators and co-ordinately 
controlled Ensembl genes. Finally, the genes identified 
to belong to the Th17 cell-specific transcriptome were 
overlaid with the single nucleotide polymorphisms (SNP) 
known to be associated with human diseases. Our results 
indicated that identification of similarly regulated genes 
between human and mouse pinpoints signaling pathways 
predisposing to diseases, which can be studied with 
mouse models. In addition, species-specific differences, 
which could be due to both biological and technical 
reasons, dominate especially among the long non-coding 
transcripts. 

RESULTS

Gene expression in human Th17 cell induction

We exploited RNA-seq to investigate global 
gene expression profiles during the early Th17 cell 

differentiation in human, using CD4+ cells isolated 
from umbilical cord blood (Figure 1A). We found 2001 
Ensembl genes (here after called as genes), differentially 
expressed specifically in the Th17 cell polarization 
condition compared to undifferentiated Th0 samples at 
least at one time point (Table S1). Out of these genes, 
74% were not found to be differentially expressed in 
our previous microarray study on human Th17 cell 
differentiation [15], and 80% of these novel hits have not 
been reported to be differentially expressed in RNA-seq 
studies investigating Th17 cell priming in mouse [13, 14]. 
A considerable number of the genes which were found to 
be differentially regulated during Th17 cell differentiation 
for the first time in this study had a substantial expression 
level and magnitude of differential expression between 
Th17 and Th0 control cells (Figure 1B). These genes also 
represented several functional classes (Figure 1C). 

Altogether 11% of the Th17 cell subtype-specific 
genes reported by Ranzani et al. 2015 [11] by investigating 
Th17 cells isolated from peripheral blood were also 
found to be differentially regulated in our data at some 
stage during Th17 cell priming (Table S1). The overlap 
between the gene expression profiles of Th17 cells isolated 
from peripheral blood [11] and our data increased toward 
the latest analysis timepoints as expected, being highest 
7.5% at 72 hours. The genes present in both datasets were 
mainly Th17 cell marker genes such as IL17, CCL20, 
CCR6 and IL23R indicating that kinetic analysis of in vitro 
differentiation of Th cells is essential for identification of 
novel priming factors needed for Th17 cell polarization.

Human Th17 cell lncRNAome

In the analysis of non-coding component of the 
transcriptome, we found 7368 lncRNAs to be expressed in 
human cord blood CD4+ cells before activation (Table S2). 
In general, activation resulted in dramatic downregulation 
of lncRNAs as altogether only 2857 lncRNAs were found 
to be expressed in human CD4+ cells after activation 
(Table S2). Out of the lncRNAs expressed after activation, 
431 showed differential expression in Th17 cells (Figure 
2A). The average expression level of lncRNAs did not 
change in response to activation, or did not differ between 
all lncRNAs which were expressed after activation and 
the ones which responded to Th17 cell polarization 
(Figure S1). The majority of lncRNAs were antisense 
transcripts or lincRNAs both representing around 40% 
of the differentially regulated lncRNAs identified (Figure 
2B). Antisense transcripts and sense-intronic RNAs were 
statistically significantly (p < 0.005) overrepresented, 
and lincRNAs underrepresented (p < 0.005) among the 
differentially expressed lncRNAs in our data (Figure 2B). 

Comparison of our lncRNA data with the Th17 
cell denoting lncRNA profiles acquired through Th17 
cell polarization among peripheral blood PBMC pool 
[12] or via isolation of Th17 cells based on their cell 
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Figure 1: Transcriptional changes during the first 72 hours of Th17 cell differentiation. A. Schematic overview of the 
approach used in the study. CD4+ cells were cultured under Th17 cell polarization condition. Three biological replicates of the time-series 
were collected for RNA-seq. B. Heatmap of the selected human genes associated with Th17 cell polarization for the first time in this 
study. The visualized genes were differentially regulated between Th17 and Th0 conditions at least in two timepoints, and their expression 
level was more than 10 RPKM in some of the sampling timepoints. The genes were ranked based on their average absolute log2 FC over 
the timepoints. Top 50 genes were visualized in the heatmap, where genes were clustered using hierarchical clustering. C. Functional 
annotation (www.ingenuity.com) of the human genes not previously reported to be differentially regulated during Th17 cell polarization. 
The differentially expressed genes were considered as unreported if they were not indicated to be regulated during Th17 cell polarization 
in the previous high-throughput studies [13, 14, 15]. 
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surface epitopes [11] revealed that the lncRNA expression 
profiles are highly specific to experimental set up. There 
was no overlap between peripheral blood Th17 cell-
specific lncRNAs profiles acquired with ex vivo [11] and 
in vitro differentiation [12] approaches. Similarly, when 
the list of differentially regulated lncRNAs in our study 

was compared with the lncRNAs specific for peripheral 
blood isolated Th17 cells [11] no overlap was found. 
However, when our lncRNA data was overlaid with the 
data gathered from PBMC pool stimulated with Th17 cell 
polarizing cytokines [12] altogether five lncRNAs were 
found to be similarly upregulated, namely RP11-98D18.3, 

Figure 2: Differentially expressed lncRNAs during human Th17 cell priming. A. Heatmap of the differentially expressed 
lncRNAs between cells polarized toward Th17 phenotype and unpolarized control cells (FDR <0.05, |log2 FC| >1 cut offs and RPKM 
>0.5). The lncRNAs were clustered using hierarchical clustering with Euclidean distance. B. Classification of the differentially expressed 
lncRNAs. 
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AL450992.2, RP11-509E16.1, LINC00877 and LUCAT1. 
Interestingly, lncRNAs RP11-430C7.4, CHRM3-AS2, 
CHRM3-AS2, AC007278.3, AC008063.2, LINC00861 and 
CTC-378H22.2 reported to be overexpressed specifically 
in Th1 cells, and Th2 cell lincRNAs RP3-395M20.8 and 
RP11-234B24.4 [12] were downregulated in our Th17 cell 
data.

The Gene ontology (GO) enrichment analysis of 
the nearest coding genes and the differentially expressed 
genes having the highest positive or negative expression 
correlation with the identified Th17 cell differentiation 
denoting lncRNAs was used to predict the functional 
role of these non-coding transcripts. The differentially 
regulated lncRNAs were neighbors of the genes 
involved in e.g. T cell activation and proliferation or 
cytokine production (Table S3). Among the genes with 
the highest inverse correlation with the differentially 
expressed lncRNAs enrichment was also found for genes 
belonging to GO-classes associated with regulation of cell 
proliferation (Table S3). 

Regulation of Th17 cell signatures in human and 
mouse

The kinetic expression profiling was replicated with 
naïve CD4+ cells isolated from spleens and lymph nodes 
of C57BL/6 mice to further highlight the genes which 
characterize initiation of human Th17 cell development 
(Figure 1A). In mouse, altogether 4052 genes were 
found to be differentially expressed in Th17 cells 
compared to Th0 cells (Table S1). The genes with FDR 
<0.05 between Th17 and Th0 cells were ranked based 
on their fold change and the top 20% of the ranked up-
regulated and down-regulated genes at each time point 
were used in the interspecies comparison. Altogether, we 
identified 307 human and mouse orthologous gene pairs 
that were similarly regulated in both species at least at 
one time point (Figure 3A, Figure S2A, Table S4). The 
most strongly regulated, i.e. the top 20% of the genes, 
included 44% and 54% genes not linked to Th17 cell 
differentiation in previous mouse and human profiling 
studies, respectively [13, 14, 15]. On the functional 
level, cytokine genes and genes related to regulation of 
transcription (transcription factors and ligand-dependent 
nuclear receptors) were significantly enriched among 
the top 20% of human and mouse genes (Table S5). The 
same phenomenon was observed at the signalling network 
level as Gene Set Enrichment Analysis revealed several 
cytokine or chemokine pathways, and pathways involved 
in regulation of transcription to be enriched in both species 
(Figure S2B, Table S6).

To identify the genes which share their whole 
expression profile the differentially expressed human 
and mouse genes were clustered together. Altogether 53 
gene pairs e.g. IL17A, CCR4 and FOSL were recognized 

to respond similarly to Th17 cell induction with this 
method (Table S7). A possible time difference in Th17 
cell expression profiles among the shared differentially 
expressed genes in human and mouse was taken into 
account using a time shift parameter extension to the 
LIGAP method [16] (see Supplementary Information) 
revealing similar behaviour in 126 gene pairs (Figure 
3B, Figure S3, Table S7). Comparison of the expression 
level of the differentially expressed genes declared that in 
general the expression levels of Th17 cell-specific genes 
are positively correlated (range> 0.59-0.76) between 
the species (Figure S3, Table S7). This indicates that 
cooperative and synergistic functions could be conserved 
between human and mouse. However, it should be noted 
that over 50% of the top Th17 polarization denoting genes 
observed in human and mouse did not have comparable 
overall expression pattern based on LIGAP and clustering 
analyses (Figure 3A, Figure 3B).

To further correlate the transcriptional circuitry 
in human and mouse, we compared our data with the 
reported BATF, IRF4, STAT3, MAF, and RORC chromatin 
binding patterns at 48 hours after initiation of mouse 
Th17 cell differentiation [13]. Enrichment for STAT3, 
MAF, BATF, IRF4 and composite IRF4+BATF binding 
motifs [13] in promoter-proximal chromatin binding 
sites, and statistically significant overlap of predicted 
target genes between the species was found (Figure 3C, 
Figure S4, Table S8). Thus, our data is consistent with 
the previous report indicating that these factors form 
the core of Th17 cell-defining transcriptional regulation 
[13], here shown to apply to both mouse and human. In 
addition, we searched for differentially regulated genes 
which shared chromosomal location and thus could be 
under regional co-regulation. In human 21 clusters and 29 
in mouse contained genes, which were statistically (p < 
0.05) localized closer to each other than could be expected 
by chance (Figure 3D, Table S9). Conserved clustering 
suggests that these genes are under evolutionary pressure 
to preserve coordinated regulation. For example, adjacent 
location of the genes coding for cytokine receptors IL23R 
and IL12RB2, has been suggested to enable switching 
between Th17 and Th1 cell promoting receptor expression 
pattern via competitive usage of transcriptional regulatory 
sites [17]. 

As orthologous relationships among lncRNAs 
are not comprehensively known, we used an alternative 
approach to compare human and mouse lncRNomes. By 
converting the human lncRNA coordinates into mouse 
coordinates [18] we identified only 25 lncRNA pairs 
similarly regulated in a Th17 cell-specific manner in 
human and mouse (Table S2). Moreover, a sequence level 
comparison revealed that less than 40% of the lncRNAs 
expressed in human cells during Th17 cell priming had at 
least 50% sequence similarity even in the mouse genome 
(Figure S5). 
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Figure 3: Shared Th17 cell-specific transcriptome in human and mouse. Genes with FDR <0.05 were ranked based on their 
fold change between Th17 and Th0 conditions. The top 20% of the ranked up-regulated and down-regulated genes were included in the 
analysis. A. Comparison of the regulation of the orthologous genes. The similarly regulated genes had conserved regulation at least at one 
time point during the analyzed time frame (UP/DOWN = up- / down-regulated genes in Th17 cells). B. Comparison of the clustering and 
the time shift analysis results. Clustering analysis was used to select the orthologs which shared their expression profile in both species as 
judged by their presence in the same cluster when clustering was performed over standardized time profiles averaged at each time point 
across replicates. Orthologous gene pairs with similar time-shifted profiles in their Th17 cell expression were determined with an extended 
LIGAP method [16]. C. The number of genes predicted to be bound by STAT3, MAF, IRF4, BATF or IRF4 and BATF together based on 
the comparison of our data with the data by Ciofani et al. 2012 [13] with analysis window of +/-250 bp around the transcription start sites 
(TSS). The number of the similarly regulated genes between human and mouse that have the same binding motif is indicated above the 
bars with the statistical significance of the overlap. D. Genes similarly regulated in human and mouse (Table S4) were clustered based on 
their chromosomal location. The clusters of co-localizing genes were identified and the clusters with statistically significant (p < 0.05) co-
localization visualized with the Kerfuffle tool [35] for human and mouse. The green bars protruding inward in the Circos plots indicate the 
identified clusters and the length of the bars represent the numbers of genes in each cluster.
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Overlay of transcriptome to disease-associated 
polymorphisms

The current study significantly improved the 
overlap of transcriptional signatures with SNPs associated 
with Th17 cell-mediated diseases as compared to our 
earlier report applying microarrays (Table 1) [15]. Next, 
we analyzed whether combination of the expression 
profiling data with the SNP information, could be used 
to suggest the importance of Th17 cells in diseases not 
generally considered as Th17 cell-mediated. Based on the 
overlap, we found evidence that Th17 cells might play a 
role in diseases such as celiac disease, hypertension and 
Parkinson’s disease (Figure 4, Table S10). When disease-
associated polymorphisms were superimposed to the 
differentially expressed lncRNAs, we found a significant 
enrichment of non-coding transcripts harboring SNPs 
associated e.g. with celiac disease, schizophrenia, systemic 
lupus erythematosus and Crohn’s disease suggesting that 
lncRNAs might be involved in etiology of these disease 
(Table 2).

When the enrichment of disease-associated SNPs 
(Table S10) was compared among the top 20% genes 
which were regulated during human Th17 cell priming 

(Table S4) or the fraction of the top 20% genes which 
were regulated similarly between human and mouse 
(Table S4) the statistical power of the analysis remained 
significant (Figure 4). Instead, when the top 20% of the 
genes regulated in mouse (Table S4) was used in the 
analysis the overlap between the regulated genes and the 
disease-associated SNPs was in many cases insignificant 
and substantially lower than among the similarly regulated 
genes (Figure 4). In conclusion, identification of similarly 
regulated genes between human and mouse pinpoints 
signaling pathways predisposing to Th17 cell-mediated 
diseases and which can be studied with mouse models. 

DISCUSSION

Th17 cells secreting IL17 are crucial for controlling 
extracellular bacterial and fungal infections, and their 
presence in small intestine is essential for barrier 
protection preserving intestinal homeostasis [19]. Wide 
variety of cell types are responsive for IL17 [20], and thus 
differentiation and actions of Th17 cells need to be tightly 
regulated. Improper Th17 cell activity has been associated 
with several autoimmune diseases and development of 
cancer [3, 19]. 

We report a considerable number of novel Th17 cell 

Table 1: Enrichment of the SNPs associated with selected Th17 cell-mediated diseases among the 
differentially expressed genes in the Th17 cell transcriptomics studies.

Arraya RNA-seqb

Trait FDR No. of genes FDR No. of genes
Arthritis, Rheumatoid 5.80E-02 30 2.02E-14 64
Asthma 1.60E-01 36 1.39E-07 69
Dermatitis, Atopic 2-87E-01 4 9.48E-04 10
Inflammatory Bowel Diseases 3.05E-01 12 4.77E-03 21
Multiple Sclerosis 5.36E-01 22 2.06E-05 49
Psoriasis 6.03E-02 24 1.06E-08 42

The indicated diseases are Th17-cell mediated based on Tesmer et al. 2008 [49]
aTuomela et al. Blood 2012 [12], bThe current study

Table 2: The traits showing the strongest enrichment of differentially regulated lncRNAs 
in our Th17 cell polarization data. 
Trait FDR No. of lncRNAs
Celiac Disease 1.18E-03 9
Schizophrenia 4.69E-03 16
Azoospermia 4.69E-03 3
Alopecia Areata 4.69E-03 4
Lupus Erythematosus, Systemic 4.69E-03 13
Crohn Disease 5.49E-03 10
Diabetes Mellitus, Type 1 5.61E-03 10
Follicle Stimulating Hormone 1.12E-02 4
Mucocutaneous Lymph Node Syndrome 1.75E-02 4
Personality 2.93E-02 3
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polarization stimulus responding coding genes, and for the 
first time the expression of lncRNAs during the initiation 
of human Th17 cell differentiation starting from cord 
blood CD4+ cells. Inclusion of the coding genes newly 
reported to be regulated during Th17 cell priming in this 
study considerably improved the overlap between the 
genes and the SNPs associated with Th17 cell-mediated 
diseases. We also found a significant overlap between the 
differentially expressed lncRNAs and SNPs associated 
with disorders such as rheumatoid arthritis, multiple 
sclerosis and psoriasis suggesting an involvement of non-
coding transcripts in the Th17 cell-mediated pathogenesis 
of these diseases. In addition, our data suggest that activity 
of Th17 cells plays a role in a wider variety of diseases 
than currently recognized.

In order to distinguish the genes which are suitable 
for validation of their therapeutic potential with mouse 
models and the ones which require alternative approaches 
in preclinical studies we compared expression profiles 
of human and mouse cells polarized toward Th17 cell 
phenotype. Transcriptional signature containing three 
hundred strongly regulated genes similarly responding to 
the induction of Th17 cell differentiation in human and 
mouse was identified. ENCODE consortium reported 

that the cis-regulatory regions of the genes active in 
the immune system have especially gone through 
diversification since the common ancestor of human and 
mouse. However, trans-regulation of the genome was 
found to be more similar between the species than cis-
regulation suggesting plasticity in the mechanisms of gene 
expression regulation [21]. Our finding of the importance 
of the conserved Th17 gene expression signature in 
highlighting candidate genes based on the overlap with 
the disease-associated polymorphisms is in line with this 
observation. The lincRNA profiles of Th cell subtypes 
have been reported to be more distinct than the mRNA 
profiles indicating that selective expression of lncRNAs is 
crucial for the phenotype specification [8, 11]. In human, 
lncRNAs represent 24% of the whole transcriptome, 
whereas only 10% in mouse, [22] suggesting that non-
coding RNAs might play particularly important role 
in human. Based on the current knowledge most of the 
differentially regulated lncRNAs identified in our human 
samples did not have a counterpart in mouse. However, 
new tools for predicting conservation for example 
exploiting modelling of RNA secondary structure are 
needed. 

Figure 4: Disease-associated single nucleotide polymorphisms are localized close to the identified Th17 cell-specific 
genes. The enrichment of the known lead SNPs associated with diseases among the orthologous genes differentially regulated in Th17 
cells are presented in the figure for the shared Th17 cell-specific genes between human and mouse (common), and the human and mouse 
top 20% coding transcripts. The figure summarizes the data for 15 diseases with the highest enrichment of SNPs. Only the traits with at 
least two associated genes were taken into account for calculation of enrichment. Significance of an enrichment of SNPs associated with a 
trait was calculated using hypergeometric distribution.
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Mouse models are valuable tools in characterization 
of signalling pathways and in biomedical research, and 
most of the studies on Th17 cells have used mouse as a 
model organism. However, immunological differences 
between human and mouse are known to exist [23, 24, 
25] and translation of findings done with model organisms 
to human therapeutics has been challenging [26, 27]. 
Collectively our SNP analysis and the coding and non-
coding transcriptome results highlighted the importance 
of investigating human Th17 cell priming and function to 
complement the studies with model organisms to improve 
translation of lab inventions into clinical benefits.

MATERIALS AND METHODS

Human CD4+ T-cell isolation and Th17 cell 
culture

Human mononuclear cells were isolated from 
the umbilical cord blood of healthy neonates (Turku 
University Central Hospital, Turku, Finland) using Ficoll-
Paque isolation (Ficoll-Paque PLUS; GE Healthcare). 
CD4+ cells were further purified (Dynal CD4 Positive 
Isolation Kit; Invitrogen) and after the isolation cells from 
several individuals were pooled. Cells were activated with 
plate-bound αCD3 (750 ng/24-well culture plate well; 
Immunotech) and soluble αCD28 (1 μg/mL; Immunotech) 
in a density of 0.5 × 106 cells/mL of X-vivo 20 serum-
free medium (Lonza). The media was supplemented 
with 2 mM L-glutamine (Sigma-Aldrich), and 50 U/mL 
penicillin and 50 μg/mL streptomycin (Sigma-Aldrich). 
Cells were polarized toward Th17 direction with IL6 (20 
ng/mL; Roche), IL1β (10 ng/mL) and TGFβ (10 ng/mL) 
in the presence of neutralizing anti-IFNγ (1 μg/mL) and 
anti-IL4 (1 μg/mL). Cells activated without differentiating 
cytokines but with only neutralizing antibodies were also 
cultured as controls (Th0). All cytokines and neutralizing 
antibodies were from R&D Systems unless otherwise 
stated.

Mouse in vitro CD4+ T cell differentiation

C57BL/6, mice were bred in the NIMR animal 
facility under specified pathogen free conditions. Naïve 
CD4 T cells (CD4+CD25-CD44lo) were isolated from 
C57BL/6 mice and the cells were sort-purified (average 
purity 99.9.%) with MoFlo flow cytometer (Beckman 
Coulter) and cultured in IMDM (Sigma-Aldrich) 
supplemented with 5% FCS, 2x10-3 M L-glutamine, 
100 U/ml penicillin, 100 µg/ml streptomycin and 5x10-

5 M β-mercaptoethanol (all Sigma) in the presence of 
plate-bound αCD3 (0.5 µg/ml; 2C11) and plate-bound 
αCD28 (5 µg/ml; 37.51; both from Large Scale Facility, 
Medical Research Council National Institute for Medical 

Research). Th17 differentiation was induced by culturing 
the cells in the presence of TGFβ (1 ng/ml), IL6 (20 ng/
ml), and IL1β (10 ng/ml) (R&D Systems). Part of the cells 
was cultured without any polarizing cytokines, in “Th0” 
conditions. 

RNA-seq sample preparation and preprocessing 

Three biological replicates of samples were 
collected at 0, 0.5, 1, 2, 4, 6, 12, 24, 48, and 72 hours time 
points. RNA was isolated (RNeasy Mini Kit, QIAGEN) 
and DNase treated (RNase-Free Dnase Set; QIAGEN). 
RNA-seq with 50 nt read length was performed at Illumina 
sequencing service provider with HiSeq 2000 instrument 
using TruSeq chemistry and the raw data was basecalled 
with CASAVA1.8. Five of the samples were paired end, 
with read length 75nt. Those reads were truncated to 
50nt and only one of the paired ends was used. Sequence 
reads were mapped using Tophat (version 1.3.2) with 
default parameters to the GRCh37 human reference 
genome, Ensembl human transcriptome (release 63) and 
GENCODE lncRNA (release 18) annotations for human, 
and to the NCBIM37 mouse reference genome, Ensembl 
mouse transcriptome (release 63) and NONCODE 
(version 3.0) lncRNA annotations for mouse. Expression 
levels were estimated for Ensembl genes using Python 
script rpkmforgenes with parameters -readcount -no3utr 
-rmnameoverlap -bamu [28]. 3’ untranslated regions 
were ignored and regions where several transcripts with 
different gene identifiers overlap were removed. Genes 
with RPKM values <3 in at least two replicates at all time 
points were filtered out from the downstream analysis. 

Differential expression

Bioconductor package edgeR [29] was used to 
define differential expression between Th17 and Th0 
conditions. Differential expression calling for human 
samples was performed for each time point taking into 
account the paired experimental design. For mouse 
samples there was no paired design between Th0 and 
Th17 replicates. The dispersion was estimated as gene-
wise dispersion. The differentially expressed genes were 
identified with FDR <0.05 and |log2 FC| >1 cut offs. Using 
a false discovery rate (FDR) <0.05 and filtering out genes 
with |log2 FC| <0.3 the differentially expressed genes 
were ranked based of their log2 FC. Twenty percent of 
the up and down regulated genes at each time point with 
the largest |log2 FC| were selected for further analysis in 
each species. For the comparisons all the time points were 
merged. Genes were mapped one-to-one between human 
and mouse using Ensembl Biomart database.
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Clustering

Differentially regulated genes in both human and 
mouse were clustered together using k-means clustering 
with k = 30. If orthologous genes were in the same 
cluster they were considered to have the similar kind of 
expression profile. Clustering was done for the average 
standardized log-transformed RPKM-values. Heatmaps 
of the expression values and fold changes of the similarly 
regulated human and mouse genes were clustered using 
hierarchical clustering with Euclidean distances and 
Ward’s minimum variance method.

LIGAP

Gaussian process regression has been used before 
e.g. for calling differentially expressed genes between 
two or more treatments in the time course microarray 
data [16, 30]. We apply and extend a recently proposed 
LIGAP method [16] which uses non-parametric Gaussian 
process regression to compare the kinetics of gene 
expression during early polarization of Th17 cells between 
orthologous human and mouse genes. We compare two 
models: Th17 cell profiles of an orthologous gene behave 
in the same way in mouse and human, or they behave in 
a different way. In the first model Th17 cell data of both 
species is described by a single latent non-parametric 
function. In the second model, we fit two independent 
models with two Gaussian processes, one for mouse Th17 
cell profile and one for human. Expression values are log-
transformed and standardized. 

We set a Gaussian process prior for the expression 
values

where m(x) is the mean function and K=k(x, x') 
is the neural network covariance function k(x, x’)= 

 where 
vectors x ̃ and   are augmented by unit value, l is the 
length scale and  quantifies the amount of signal 
variance. 

We set the mean function m(x) to 0. The predictions 
by a Gaussian process are made in the following way

,
where Y is the vector of gene expression 

values at time points X,  x* are the new time 
points where we want to predict expression y* and 

 
.  K=k(X, X) and   is the noise variance 

which follows a Gaussian distribution with zero mean.
In our model we have four hyper parameters: length 

scale l, signal variance , variance of white Gaussian 
noise  and the time shift Δt, which tells how much the 
mouse Th17 cell profile is delayed or ahead compared to 

human Th17 cell profile [31]. The time shift parameter is 
added to mouse time points in a shared model. The time 
shift parameter is restricted between -24 and 24 hours. The 
hyper parameters of neural network covariance function 
are optimized by maximizing the marginal likelihood 
using a conjugate gradient method. To prefer smooth 
functions, the prior on the length scale is set to l~Γ(6,30).
The prior probability of signal variance is ~Γ(10,10). 
The prior of the noise variance is also Gamma distributed. 
Parameters of the distribution are estimated in the same 
manner as in Cooke et al. 2011 but now the mode for the 
noise variance is thought to be the average of the variances 
of replicates and the lower bound is a small number ε and 
the upper bound is one because of the standardization of 
expression values. The two alternative models, shared and 
independent, can be compared using Bayes factor [16,30].

The union symbol means that in the shared model 
data is treated as being generated from a single model. 
The Bayes factor score over 10 shows evidence for the 
shared model, in which case the orthologous genes were 
considered as having the same expression profile.

LncRNA analysis

Human lncRNAs were obtained from Gencode 
release 18 (http://www.gencodegenes.org) database and 
mouse lncRNAs from NONCODE v3 (http://noncode.
org). Expression values of lncRNAs were calculated using 
Python package HTSeq [32], where overlapping reads 
with protein-coding genes were excluded. LncRNAs with 
RPKM values <0.5 in at least two replicates at all time 
points were filtered out from the downstream analysis 
[33]. Differential expression calling was done using 
Bioconductor package edgeR [29], as described above. 
To define orthologous lncRNAs between human and 
mouse, human lncRNA coordinates were converted to 
mouse coordinates using the liftOver tool of the UCSC 
Genome Browser [18]. The minimal overlap between the 
converted coordinates and the known mouse lncRNAs was 
set to 100 nucleotides. The differentially expressed protein 
coding genes having the highest and the lowest correlation 
with the differentially expressed lncRNAs were calculated 
using Pearson correlation. Enrichment analysis of the 
nearest genes and the correlated genes was performed 
using GeneTrail tool [34].

Transcription factor motif detection

Identification of transcription factor binding motifs 
was done with Homer software (http://biowhat.ucsd.
edu/homer/ngs/index.html). The binding sites of five 
transcription factors; BATF, IRF4, STAT3, MAF, and 
RORC at 48 hours after priming of mouse Th17 cells 
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[13] were used to find the binding motifs at promoter 
areas of orthologous human and mouse genes and at 
promoter areas of similarly regulated orthologous human 
and mouse genes. All the promoter areas of orthologous 
genes were used as a background. The identification of 
binding motifs was performed separately for mouse and 
human promoter regions using only the genes that had a 
ChIP-seq detected binding site of one of the transcription 
factors in its promoter area in mouse Th17 cells [13]. 
Motifs were searched from four different regions relative 
to the TSS; [-250,250], [-500, 500], [-750, 750], [-1000, 
1000]. The binding sites of BATF and IRF4 were divided 
into three subcategories; BATF only, IRF4 only and 
BATF+IRF4 only. Composite motif of BATF+IRF4 could 
not be recovered when analysing only the binding sites 
at promoters. De novo search was performed for the 500 
most significant binding sites of BATF and IRF4 and then 
the composite motif found was used to scan the promoter 
areas of the similarly regulated genes. The significance 
of overlap between similarly regulated genes between 
the two species that had the same binding motif was 
determined using hypergeometric distribution.

Co-localization analysis

Co-localization analysis was carried out separately 
for similarly regulated human and mouse genes using 
Kerfuffle gene co-localization analysis tool [35] with 
parameters d <=3 and lowest p-value =1e-2. The p-value 
for each cluster was determined by randomly distributing 
the genes across the genome and by calculating the 
distances between the genes. The distances between the 
real positions and random positions were compared and 
the p-value is the frequency that randomly permutated 
cluster counts exceeds the number of the real clusters.

SNP analysis

Disease-associated lead SNPs were obtained from 
NCBI database (http://www.ncbi.nlm.nih.gov/projects/
gapplusprev/sgap_plus.htm). SNPs which were associated 
to a certain disease with p-value <1e-5 were included in 
the analysis. Genes linked to a SNP were determined with 
a +/-100 kb window. Analysis was done for the different 
gene sets; shared Th17 specific genes between human and 
mouse, and human and mouse top 20 % genes. Among 
top 20% regulated mouse genes, only orthologous genes 
were considered and SNPs were linked to mouse genes via 
the orthologous human genes. Diseases with less than two 
associated genes were excluded in the enrichment analysis. 
Significance of an enrichment of a trait was calculated 
using hypergeometric distribution. For the common genes 
and the mouse genes all orthologous genes were used as 
a reference set. For human genes the reference set was all 
the human genes. 

Gene set enrichment analysis

Time point-specific expression data (RPKM values) 
was ranked using signal-to-noise ratio metric followed by 
analysis of enrichment of pathways in the ranked list [36]. 
Gene sets were pathways from REACTOME database 
(http://www.reactome.org). The FDR cut off for the 
included pathways was 0.05.

Functional enrichment analysis

Functional classes for human and mouse genes were 
obtained from IPA (http://www.ingenuity.com/, September 
2013) for genes annotated as “cytokine”, “G-protein 
coupled receptor”, “growth factor”, “ion channel”, 
“kinase”, “ligand-dependent nuclear receptor”, “mature 
microRNA”, “microRNA”, “peptidase”, “phosphatase”, 
“transcription regulator”, “translation regulator”, 
“transmembrane receptor”, or “transporter”. Significance 
of an enrichment of a functional class among the top 
20% differentially regulated genes in both species was 
calculated using hypergeometric distribution, where the 
reference set of genes was all the human or mouse genes.
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