
Oncotarget20140www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 15

Survival kinase genes present prognostic significance in 
glioblastoma

Robin T. Varghese1, Yanping Liang1, Ting Guan2, Christopher T. Franck1,2, Deborah 
F. Kelly1,3,4,6, Zhi Sheng1,4,5,6

1Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
2 Laboratory for Interdisciplinary Statistical Analysis, Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA
3Department of Biological Sciences, College of Sciences at Virginia Tech, Blacksburg, VA 24061, USA
4Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
5 Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 
Blacksburg, VA 24061, USA

6Faculty of Health Science, Virginia Tech, Blacksburg, VA 24061, USA

Correspondence to: Zhi Sheng, e-mail: zhisheng@vtc.vt.edu

Keywords: survival kinase genes, glioblastoma, tumor recurrence, prognosis, PIK3CB

Received: December 22, 2015 Accepted: February 14, 2016 Published: March 04, 2016

ABSTRACT

Cancer biomarkers with a strong predictive power for diagnosis/prognosis 
and a potential to be therapeutic targets have not yet been fully established. Here 
we employed a loss-of-function screen in glioblastoma (GBM), an infiltrative brain 
tumor with a dismal prognosis, and identified 20 survival kinase genes (SKGs). 
Survival analyses using The Cancer Genome Atlas (TCGA) datasets revealed that 
the expression of CDCP1, CDKL5, CSNK1E, IRAK3, LATS2, PRKAA1, STK3, TBRG4, 
and ULK4 stratified GBM prognosis with or without temozolomide (TMZ) treatment 
as a covariate. For the first time, we found that GBM patients with a high level of 
NEK9 and PIK3CB had a greater chance of having recurrent tumors. The expression 
of CDCP1, IGF2R, IRAK3, LATS2, PIK3CB, ULK4, or VRK1 in primary GBM tumors 
was associated with recurrence-related prognosis. Notably, the level of PIK3CB in 
recurrent tumors was much higher than that in newly diagnosed ones. Congruent 
with these results, genes in the PI3K/AKT pathway showed a significantly strong 
correlation with recurrence rate, further highlighting the pivotal role of PIK3CB in the 
disease progression. Importantly, 17 SKGs together presented a novel GBM prognostic 
signature. SKGs identified herein are associated with recurrence rate and present 
prognostic significance in GBM, thereby becoming attractive therapeutic targets. 

INTRODUCTION

Glioblastoma (GBM) is the most common and 
deadly subtype of malignant brain tumors [1]. Although 
the incidence of GBM is low (0.59–3.69 per 100,000 
persons worldwide), its clinical outcome has been 
extremely poor despite aggressive upfront treatments 
including maximum safe surgical removal of the tumor, 
ionized irradiation, and chemotherapeutic treatment using 
temozolomide (TMZ) [2]. The five-year overall survival 
(OS) of GBM is approximately 4.7% in the United States 

[2] and even below this rate in Europe [3]. The median 
survival of GBM patients receiving aforementioned 
concurrent therapies is only 14.6 months [4]. These 
grim facts therefore demonstrate an urgent need of new 
and effective treatments as well as powerful prognostic 
markers to assist these treatments for this deadly disease. 

Prognosis markers are important for GBM 
treatments such as chemotherapy temozolomide (TMZ). 
For example, promoter methylation status of the O6-
methylguanine-DNA methyltransferase (MGMT)––an 
enzyme that repairs TMZ-induced DNA damage––predicts 



Oncotarget20141www.impactjournals.com/oncotarget

the response of GBM patients to this drug [2, 5, 6]. In 
several clinical trials, MGMT methylation was confirmed 
as an important prognosis marker associated with 
improved OS of newly diagnosed GBM patients receiving 
TMZ [6–12]. However, given the limited therapeutic 
efficacy of TMZ, the importance of MGMT as a standard 
prognostic marker for GBM is compromised. There are 
microRNAs and some other genes such as epidermal 
growth factor receptor (EGFR) or CD133 that show a 
close correlation with GBM prognosis [13–17]. However, 
targeting them has not yet been very successful. Recent 
advances in large-scale genome DNA sequencing have 
significantly contributed to the identification of new 
biomarkers for GBM [18, 19]. For instance, genetic 
mutations in isocitrate dehydrogenase 1 or 2 (IDH1/2) 
genes have shown a strong association with better 
outcome in a subgroup of GBM [20, 21]. An inhibitor of 
IDH1 significantly retards GBM growth through inducing 
differentiation [22]. However, this genetic approach 
often lacks functional information of candidate genes 
thereby requiring a further extensive and time-consuming 
investigation. 

Loss-of-function screening using a library of short 
hairpin RNAs (shRNAs) [23–29] provides a useful 
platform that allows a search of candidate genes for 
cancer therapeutic development based on their functions/
activities. Yet this approach has not been used to identify 
genes that can serve as both therapeutic targets and 
prognostic markers. In this report, we employed a loss-of-
function screen using a library of shRNAs against human 
kinases and identified 20 kinases critical for the survival 
of human U87MG GBM cells. Further analyses revealed 
candidate kinases, whose expression correlated with the 
prognosis of newly diagnosed and/or recurrent GBM. In 
addition, we for the first time have revealed kinase genes 
with a strong association with recurrence rate. 

RESULTS

A loss-of-function screen identifies new kinases 
essential for the survival of human U87MG 
GBM cells

To identify genes with a potential to be new 
biomarkers and therapeutic targets, we focused on kinase 
genes that often govern cancer cell survival. To identify 
these kinases, we employed a loss-of-function screen 
(outlined in Figure 1A) that utilizes a library of shRNAs 
targeting 781 human kinase genes. We divided the human 
U87MG GBM cells transduced with viruses harboring 
the above library of shRNAs into two parts: one part 
was collected immediately as passage 0 (P0); the other 
part continued a 7-day culture and was saved as passage 
7 (P7). The genomic DNA was then isolated and DNA 
libraries containing PCR-amplified shRNA sequences 

were prepared. By using Solexa deep sequencing, we 
profiled shRNAs. In principle, an shRNA that causes 
a drastic growth inhibition would be depleted from the 
cell population and has a decreased sequencing read 
number at P7. We found that 63 shRNAs had 2-fold 
less of the sequencing read number at P7 compared to 
P0 (Figure 1B). We further validated these candidates as 
follows. 49 individual candidate shRNAs decreased the 
viability of U87MG cells to ≤ 60%, compared to those 
with the control non-silencing (NS) shRNA (Figure 1C). 
23 out of 49 shRNAs caused a ≥ 2-fold reduction of 
mRNAs of their target genes (Figure 1D). As there 
were multiple shRNAs against CSNK1E or MELK, 23 
shRNAs targeted 20 kinase genes that are important for 
the survival of U87MG cells. Full names of 20 candidate 
kinase genes were listed in Table 1. We termed these 20 
candidates as survival kinase genes (SKGs). Among these 
SKGs, MELK has been previously reported as a survival 
gene in GBM [30]. 

SKGs are enriched in GBM

We then tested the hypothesis that SKGs are enriched 
in GBM due to their essentiality in GBM survival. We 
queried online gene expression databases such as BioGPS 
[31], Oncomine (ThermoFisher Scientific), and The 
Human Protein Atlas [32]. We found that mRNA levels 
of 8 SKGs (IGF2R, MAP4K3, MELK, NEK9, PFKP, 
STK3, TBRG4, and VRK1) were at least 1.5-fold higher 
in U87MG cells than those in astrocytes based on BioGPS 
(Figure 2A, grey bars). We also analyzed two GBM 
datasets (Bredel Brain #2 and TCGA brain) in Oncomine. 
17 SKGs (except IQCD, PIK3CB, and PRPSAP1) showed 
statistically higher levels (P < 0.05) of their mRNAs in 
GBM tissues when compared to normal brain tissues 
(Figure 2B, grey bars). Furthermore, we compared the 
protein levels of SKGs between glioma and normal brain. 
There were more than 8% of cases with a higher protein 
level of 12 SKGs (CDCP1, CDKL5, CSNK1E, IGF2R, 
IQCD, MAP4K3, MELK, NEK9, STK3, TBRG4, ULK4, 
and VRK1) in glioma (Figure 2C, grey bars). Together, 
these results demonstrate that SKGs are enriched in GBM.

Expression of SKGs correlates with the OS of 
GBM patients

The above results prompted us to evaluate the 
potential of SKGs as GBM prognostic markers. We 
retrieved the gene expression data of initial/primary 
GBM tumors and the corresponding patient information 
associated with these tumors from TCGA [33] (http://
cancergenome.nih.gov/). The MGMT mRNA level (used 
as a positive control) showed an inverse correlation with 
the OS of GBM (Figure 3A), congruent with previous 
reports [6, 8]. We then analyzed 20 SKGs using the 
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Kaplan Meier (KM) survival analysis. We found that 
the expression of CDCP1, CDKL5, LATS2, PRKAA1, 
STK3, and ULK4 was adversely associated with the OS 
of GBM and their Log-Rank P values were less than 0.05 
or 0.01 (Figure 3B–3G). Other SKGs showed no statistical 
significance (Figure 3H and Supplementary Figure S1). 
There was no expression data pertaining to CDK11B in 
this cohort of GBM patients (Figure 3H). Patients with 
low levels of the above 6 SKGs lived 1.2 to 3.7 months 
longer than those with high levels of SKGs (Figure 3I). 
In contrast, patients with less MGMT lived three month 
longer. Hence, CDCP1, CDKL5, LATS2, PRKAA1, 
STK3, and ULK4 present prognostic significance in the 
OS of GBM. 

We next utilized a Cox proportional hazard model 
to test whether TMZ treatment or age could be used as a 
covariate with SKGs to better measure GBM prognosis. 
TMZ and age have been associated with GBM clinical 
outcomes [4, 34]. The hazard ratios (HRs, which define 
the death risk) of SKGs with prognostic significance were 
equivalent to or higher than that of MGMT, whereas SKGs 
with no prognostic significance had a lower HRs (Table 2, 
Cox Univariate and highlighted in grey), verifying the 

results of KM survival analysis (Figure 3B–3H). When 
TMZ––but not age––was used as a covariate, HRs of 
prognostic SKGs (except CDKL5) increased (Table 2, 
comparing Cox Univarate with Cox Multivariate with 
TMZ). Intriguingly, IRAK3 and TBRG4 showed a 
significant inverse correlation (P < 0.05) with the OS of 
GBM only when TMZ was used as a covariate (Table 2, 
highlighted in grey), whereas the expression of CSNK1E 
was positively associated with GBM prognosis (Table 2, 
highlighted in grey). Thus, the Cox multivariate analysis 
with TMZ reveals three more SKGs with prognostic 
significance. However, the analysis of Cox multivariate 
with age revealed that only CDCP1 and CDKL5 showed 
statistical significance (Table 2, Cox multivariate with 
age). These results suggest that SKGs and TMZ (but not 
age) together show a better prognostic correlation.

Expression of SKGs correlates with the incidence 
rate and prognosis of recurrent GBMs

Nearly 90% of GBM patients experience tumor 
recurrence two years after treatments [35]. Often patients 
with a recurrent tumor can not undergo a second major 

Figure 1: A loss-of-function screen identifies SKGs in U87MG cells. (A) A diagram illustrating the loss-of-function screen. In 
principle, a short hairpin (sh) RNA of a potential SKG that is depleted overtime is under-represented in P7, compared to P0. (B) Candidate 
SKGs with at least 2-fold reduction of shRNA sequence copies in P7 compared to those in P0. (C) Viability assay. 63 individual shRNAs 
of SKGs were introduced into U87MG cells. The cell viability was measured using the MTS cell viability assay. Candidate SKG shRNAs 
were normalized to non-silencing (NS) shRNA. The cutoff line is 60%. (D) Knockdown efficiency. The knockdown of SKGs by their 
shRNAs was assessed using the quantitative RT-PCR. The cut-off line is 2-fold reduction.
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neurosurgery and resist radiation and chemotherapy 
[35]. Thus, identifying recurrence-related SKGs would 
help in the early diagnosis of and perhaps treatment 
for recurrence. To determine the role of SKGs in tumor 
recurrence, we first selected GBM patients with disease 
progression information including post-treatment 
recurrence data. Note that the sample size was small 
(from 17 to 33) due to the limited information regarding 
recurrence (Supplementary Table S1). We first analyzed 
the recurrence rate in GBM patients with a high or 
low level of SKGs. The high levels of 14 SKGs were 
associated with a greater incidence of recurrence 
(Figure 4A and Supplementary Table S1). However, 
only NEK9 (P < 0.01), PFKP (P < 0.05), and PIK3CB 
(P < 0.05) showed a statistically significant difference, 
highlighting their potential in predicting GBM recurrence 
rate. Further KM survival analysis revealed that the 
Log-Rank P values of CDCP1, IGF2R, IRAK3, LATS2, 
PIK3CB, ULK4, and VRK1 were < 0.05 (Figure 4B and 
Supplementary Figure S2), suggesting that the expression 
of these SGKs in the newly diagnosed GBM has a 
statistically significant correlation with the patient survival 
associated with recurrence. Notably, CDCP1, IRAK3, 

LATS2 and ULK4 also presented prognostic significance 
in the OS of GBM (Figure 3 and Table 2). The difference 
in median survival time ranged from 5.2 to 11.6 months 
(Figure 4B), in stark contrast to the maximum 3.7 months 
of GBMs’ OS (Figure 3I). These results demonstrate a 
pivotal role of SKGs in GBM recurrence. As an exception, 
the low level of VRK1 was associated with a shorter life 
span of GBM recurrence (Figure 4B). By contrast, MGMT 
and PTEN failed to show a significant correlation with 
either recurrence rate (Figure 4A and Supplementary 
Table S1) or recurrence-associated survival (Figure 4B 
and Supplementary Figure S2). Taken together, we have 
revealed new biomarkers for the prognosis of GBM 
patients with recurrent tumors.

PI3K/AKT pathway is associated with the 
incidence rate and prognosis of GBM recurrence

Among SKGs associated with GBM recurrence, 
one intriguing gene is PIK3CB, a candidate SKG that 
showed a strong correlation with both recurrence rate 
and prognosis (Figure 4A and 4B). Consistent with these 
results, the mRNA levels of PIK3CB were significantly 

Table 1: Survival kinase genes
Gene Symbol Gene full name

CDCP1 CUB Domain Containing Protein 1

CDK11B Cyclin-Dependent Kinase 11B

CDKL5 Cyclin-Dependent Kinase-Like 5

CSNK1E Casein Kinase 1, Epsilon

IGF2R Insulin-Like Growth Factor 2 Receptor

IQCD IQ Motif Containing D

IRAK3 Interleukin-1 Receptor-Associated Kinase 3

LATS2 Large Tumor Suppressor Kinase 2

MAP4K3 Mitogen-Activated Protein Kinase Kinase Kinase Kinase 3

MELK Maternal Embryonic Leucine Zipper Kinase

NEK9 NIMA-Related Kinase 9

PFKP Phosphofructokinase, Platelet

PIK3CB Phosphatidylinositol-4, 5-Bisphosphate 3-Kinase, Catalytic Subunit Beta

PRKAA1 Protein Kinase, AMP-Activated, Alpha 1 Catalytic Subunit

PRPSAP1 Phosphoribosyl Pyrophosphate Synthetase-Associated Protein 1

ROR2 Receptor Tyrosine Kinase-Like Orphan Receptor 2

STK3 Serine/Threonine Kinase 3

TBRG4 Transforming Growth Factor Beta Regulator 4

ULK4 Unc-51 Like Kinase 4

VRK1 Vaccinia Related Kinase 1
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higher (P = 0.019) in recurrent tumors than those in 
newly diagnosed GBM tumors (Figure 4C). PIK3CB is a 
catalytic subunit of PI3K complex [36]. The PI3K/AKT 
pathway has been implicated in GBM recurrence and its 
inhibitors have been used to treat recurrent tumors [37, 38]. 
We then analyzed multiple kinases in or downstream 
of this pathway. GBM patients expressing high levels of 
kinases in the PI3K/AKT pathway had a greater chance of 
recurrence (Figure 4D, panel mRNAs). Among these genes, 
PIK3R1, AKT1, and AKT3 showed a statistical significance 
(P < 0.05). We also analyzed the protein levels of these 
kinases using the TCGA Reverse Phase Protein Array 
dataset. The high protein level was associated with a greater 
chance of tumor recurrence (Figure 4D, panel Proteins). 
Notably, the PI3K regulatory subunit PI3K p85 and an 
MTOR target p70S6K showed a statistical significance 
(P < 0.05). Collectively, our results demonstrate that the 
PI3K/AKT signaling is involved in the disease progression, 
highlighting the importance of PIK3CB as a predictor of 
recurrence rate and/or a prognosis marker associated with 
recurrence.

A group of SKGs presents a novel prognostic 
signature for GBM

To further verify the role of SKGs in GBM 
prognosis, we analyzed the prognostic potential of multiple 
SKGs as a group. We employed an online program 
Glioblastoma Bio Discovery Portal (GBM-BioDP) that 
exploits different computer algorithms to cluster genes 
together based on their expression profile in the TCGA 
GBM datasets [39]. Three SKGs (CDK11B, IQCD, and 
PRKAA1) were not included in this analysis due to the 
lack of information in all datasets. Based on the expression 
profile of the remaining 17 SKGs, GBM patients were 
divided into cluster A and B (Figure 5A). Cluster A 
showed a significantly shorter life span than cluster B 
with a Log-Rank P at 0.016 (Figure 5B). The clustering 
analysis also identified three subgroups (Figure 5A). We 
then analyzed the relationship of SKGs in these subgroups 
with GBM survival by dividing GBM patients into clusters 
(Supplementary Figure S3) followed by KM survival 
analysis (Figure 5C and Supplementary Figure S4). None 
of these subgroups presented a significant correlation with 

Figure 2: SKGs are enriched in GBM. (A) mRNA levels of SKGs in U87MG. Gene expression data was retrieved from the BioGPS 
database. Fold changes of SKG mRNAs in U87MG cells compared to those in astrocytes were shown. The cut-off line was 1.5-fold 
increase. SKGs with a high level of mRNA in U87MG cells were labeled as grey bars. (B) mRNA levels of SKGs in glioblastoma tissues. 
Gene expression data was retrieved from the Oncomine database. The mRNA levels of SKGs in glioblastoma were compared to those 
in normal brain tissues. Results from two studies (Bredel brain #2 and TCGA brain) were shown. *P < 0.05. SKGs with a statistically 
significant increase of mRNA in glioblastoma in either study were labeled as grey bars. (C) Protein levels of SKGs in glioma. Protein 
expression data was retrieved from the Human Protein Atlas database. The percentages of glioma cases with a higher level of SKGs 
compared to the normal brain were shown. SKGs with more protein in glioma were labeled as grey bars. PRPSAP1 and PIK3CB showed 
a negative result in all these analyses.  
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GBM survival. Together, our data strongly suggests that 
a group of 17 SKGs presents a novel signature for GBM 
prognosis.

DISCUSSION

The results presented herein are of importance due 
to their significance in measuring the prognosis of GBM 
and/or tumor recurrence as well as the druggablilty of 
these SKGs. Based on the literature (Supplementary Table 
S2), 10 SKGs has been reported previously as a prognosis 
biomarker for certain types of cancer. However, none of 
SKGs has been used as a prognosis marker for GBM. 
Our finding that SKGs can predict GBM prognosis is 
therefore novel and unprecedented. Interestingly, the low 
rather than high levels of CSNK1E, IGF2R, IRAK3, and 
PRKAA1 relate to poor cancer prognosis (Supplementary 
Table S2), suggesting that kinases often play a divergent 

role in different types of cancer. By contrast, the high 
expression levels of most prognostic SKGs (except 
CSNK1E) show a correlation with the poor prognosis of 
GBM patients (Table 2). Hence, inhibiting these prognostic 
SKGs represents a viable approach to developing new 
therapies for GBM. 

Our study also reveals powerful biomarkers for the 
diagnosis and/or prognosis of tumor recurrence, given the 
fact that no similar markers have been established to date 
except magnetic resonance imaging (MRI) [40]. MRI is a 
costly approach often perplexed with pseudo-progression 
[41]. Measuring the gene expression levels in tumor 
biopsies would provide an effective and less expensive 
way to monitor disease progression. Particularly important 
is that the high levels of NEK9, PFKP, and PIK3CB in 
the newly diagnosed GBM tumors are associated with the 
greater risk of recurrence. Thus, NEK, PFKP, and PIK3CB 
can be used as a predictive marker for GBM recurrence 

Figure 3: Expression of SKGs correlates with GBM prognosis. The Kaplan Meier analysis was performed using the TCGA GBM 
datasets. The survival curves of MGMT (A), CDCP1 (B), CDKL5 (C), LATS2 (D), PRKAA1 (E), STK3 (F), and ULK4 (G) with Log-
Rank P values were shown. The Log-Rank P values of other SKGs that showed no statistical significance were listed in (H). The media 
survival time of prognostic SKGs was shown in (I). 
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rate, highlighting a potentially important approach for an 
early diagnosis.   

The identification of PIK3CB as a marker for 
predicting GBM recurrence rate and prognosis sets up 
stage for future development of diagnostic tools and 
therapies for this disease. In fact, targeting PI3K has 
been an effort in the clinic to treat GBM. However, the 
therapeutic benefits are limited. For instance, a recent 
phase II trial of PX-866 (a pan PI3K inhibitor) failed to 
yield promising therapeutic effects and demonstrated 
no association of PI3KCA with disease progression 
[38]. Based on our findings, it would be imperative to 
further investigate the possibility of targeting PIK3CB 
specifically, rather than the PI3K pathway that has more 
profound impact on cell fate. Interestingly, specific and 

clinically applicable inhibitors of PIK3CB (i.e. AZD8186 
[42] and GSK2636771) are currently available [43], 
presenting a potential opportunity for clinical trials to treat 
newly diagnosed or recurrent GBM.

METHODS

Reagents

The Cell-Titer 96® Aqueous One solution cell 
proliferation assay (MTS) was purchased from Promega. 
The SYBER green mix was purchased from Promega. The 
TRC kinase shRNA gene family library was purchased 
from GE Dharmacon. The Column-free™ plasmid mini- 
prep kit was purchased from Lamda Biotech, Inc. 

Table 2: Survival analysis of SKGs using the cox proportional hazard model

Gene 
Symbol

Cox Univariate Cox Multivariate with TMZ Cox Multivariate with Age

HR 
(H vs 

L)

95% 
CI 

lower

95% 
CI 

upper

Log-
Rank 

p

HR 
(H vs 

L)

95% 
CI 

lower

95% 
CI 

upper

Log-
Rank 

p

HR 
(H 

vs L)

95% 
CI 

lower

95% 
CI 

upper

Log-
Rank 

p

CDCP1 1.382 1.042 1.832 0.025 1.384 1.040 1.842 0.026 1.332 1.006 1.764 0.045

CDK11B No 
Data         

CDKL5 1.467 1.102 1.957 0.009 1.441 1.074 1.935 0.015 1.368 1.027 1.827 0.032

CSNK1E 0.762 0.569 1.017 0.065 0.684 0.507 0.921 0.012 0.954 0.708 1.282 0.755

IGF2R 0.927 0.702 1.224 0.594 0.804 0.598 1.081 0.150 1.025 0.774 1.356 0.865

IQCD 1.152 0.868 1.527 0.326 1.226 0.918 1.637 0.167 1.077 0.810 1.432 0.607

IRAK3 1.255 0.947 1.661 0.113 1.416 1.056 1.898 0.020 1.050 0.790 1.396 0.735

LATS2 1.356 1.016 1.810 0.039 1.411 1.048 1.903 0.023 1.057 0.790 1.417 0.710

MAP4K3 1.127 0.854 1.483 0.397 1.274 0.960 1.686 0.093 1.042 0.789 1.373 0.772

MELK 1.024 0.775 1.354 0.866 1.125 0.843 1.503 0.425 0.989 0.748 1.309 0.941

NEK9 1.166 0.875 1.552 0.293 1.344 0.991 1.821 0.057 1.056 0.792 1.407 0.708

PFKP 0.999 0.749 1.333 0.993 0.854 0.633 1.150 0.298 1.191 0.887 1.600 0.245

PIK3CB 1.119 0.845 1.478 0.431 1.160 0.869 1.543 0.313 0.918 0.690 1.219 0.555

PRKAA1 1.372 1.034 1.822 0.029 1.499 1.120 2.006 0.006 1.227 0.923 1.633 0.159

PRPSAP1 1.185 0.893 1.573 0.239 1.229 0.916 1.648 0.169 1.174 0.884 1.558 0.266

ROR2 1.016 0.766 1.353 0.911 1.078 0.805 1.449 0.616 1.138 0.854 1.522 0.379

STK3 1.393 1.050 1.848 0.022 1.558 1.166 2.078 0.003 1.096 0.817 1.471 0.540

TBRG4 1.245 0.939 1.650 0.128 1.399 1.042 1.880 0.026 1.179 0.889 1.565 0.254

ULK4 1.518 1.139 2.023 0.005 1.550 1.153 2.080 0.004 1.244 0.926 1.671 0.147

VRK1 0.950 0.717 1.260 0.722 1.050 0.785 1.407 0.743 0.976 0.737 1.295 0.864

MGMT 1.390 1.040 1.858 0.026 1.406 1.045 1.893 0.024 1.369 1.023 1.833 0.034

Data was retrieved from TCGA. HR (H vs L): Hazard ratios comparing the group with high (H) levels of SKGs to the one 
with low (L) levels. CI: confidence interval. Log-Rank P values less than 0.05 were highlighted in grey.
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The QIAamp DNA extraction kit was purchased from 
QIAGEN. Puromycin was purchased from Thermo 
Fisher Scientific. Trizol and the SuperScript® III RT were 
purchased from Thermo Fisher Scientific. 

Cell culture

U87MG cells were maintained in Dulbecco’s 
modified Eagle medium (Thermo Fisher Scientific) 
supplemented with 10% fetal bovine serum (FBS) (Atlas 
Biologicals, Inc.), streptomycin (100 μg/ml) and penicillin 
(100 IU/ml) (Thermo Fisher Scientific). Cells were 
cultured in a 37°C incubator with 5% CO2.

shRNA library preparation

4,518 shRNA constructs (against 781 human 
kinases) were maintained as a single clone of bacteria 
in glycerol stock in 96-well plates. To prepare a mix of 
plasmids, each bacterial plate was replicated in another 
96-well culture plate with 1.8 ml of 2 × LB in each well. 
Plates were then incubated at 37°C with vigorous shaking 

for 24 hours. Plasmids were then prepared using a mini-
prep kit adapted for 96-well plate. The concentration of 
each plasmid was determined using a nanodrop (Thermo 
Fisher Scientific). Equal amount of ~450 plasmids was 
mixed together as a single plasmid pool. The entire library 
was then divided into 10 pools.

Lentivirus preparation

The TRC shRNAs are built upon pLKO.1 vector 
that can be used to generate lentivirus. A pool of plasmids 
of the TRC kinase shRNA library was transfected into 
HEK293T cells together with packaging plasmids 
pMD2.g and psPax2. 48 hours later, the culture media that 
contained lentiviruses was collected and divided into small 
aliquots. Aliquots were stored at –80°C freezer. The virus 
titer was then determined using the serial dilution assay.  

Loss-of-function screen for SKGs

U87MG (1 × 106) cells were transduced with 10 
pools of lentiviruses that harbor the TRC kinase shRNAs. 

Figure 4: Expression of SKGs correlates with the incidence rate and prognosis of recurrent GBMs. (A) Recurrence rate. 
GBM recurrence rates in patients with a high level (white bars) or a low level of SKGs (grey bars) were shown. The statistical difference 
between two groups was determined by the Fisher’s exact test. (B) KM survival analysis. The relationship of SKGs with the prognosis of 
GBMs patients with recurrent tumors was analyzed. The KM Log-Rank P values were shown. The Log-Rank P values less than 0.05 were 
highlighted in grey. VRK1 showed an effect on patient survival opposite to that exhibited by other SKGs. Median survival time of high- or 
low-level groups together with the lower or upper 95% CI (confidence interval) was listed.  (C) Expression of PIK3CB in newly diagnosed 
and recurrent GBM tumors. RNA-seq data were retrieved from the TCGA database. The mean values of PIK3CB transcripts were shown. 
(D) GBM recurrence and PI3K/AKT pathway. Kinases involved in or downstream of PI3K/AKT pathway were analyzed. *P < 0.05; 
**P < 0.01. 
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One day after viral infection, half of the infected cells 
(5 × 105) was collected as P0 (initial time point) and 
subjected to genomic DNA isolation described below. 
The other half of infected cells was cultured for another 
7 days in the media containing 0.5 μg/ml puromycin 
and collected as P7 (end time point). Genomic DNA 
of cells at P0 and P7 was isolated using the QIAamp 
DNA extraction kit. shRNAs were then amplified by 
PCR (MF18 (5ʹ-tacgatacaaggctgttagagag-3ʹ)  and MF19 
(5ʹ-cgaaccgcaaggaaccttc-3ʹ)) and sequenced using the 
Solexa deep sequencing. The sequencing read number of 
each shRNA at P0 was divided by that at P7. The shRNAs 
with a 2-fold less of this number were considered as 
candidate SKGs.

Cell viability assay

To validate the primary candidates identified from 
the above screen, U87MG cells were transduced with 
viruses of NS or individual candidate shRNAs. Cells were 
then selected with puromycin (0.5 μg/ml) for a week. Cell 

viability was determined using the MTS assay described 
previously [44, 45].

Quantitative RT-PCR

Quantitative RT-PCR was preformed as described 
previously [44, 45]. U87MG cells transduced with NS 
or candidate shRNAs were subject total RNA extraction 
using Trizol. RNA was quantified using a nanodrop. 
2 μg of total RNA was used to prepare cDNA using the 
SuperScript®III RT. mRNA levels of shRNA-targeting 
kinase genes were quantified using a real-time PCR assay. 

Analysis of gene expression

The expression data of 20 SKGs was retrieved from 
BioGPS, Oncomine, and The Human Protein Atlas. For the 
data from BioGPS, the relative level of each SKG mRNA 
in GBM cell lines was obtained by dividing the arbitrary 
number of SKGs in tumor cell lines with that in astrocytes. 
The fold changes of each SKG in normal brain tissues 

Figure 5: A group of SKGs presents a novel prognostic signature for GBM. (A) GBM patient clustering using the GBM 
Bio Discovery Portal. (B) KM survival analysis. (C) Log-Rank P values of KM survival analysis of different subgroups or combinations 
were listed. 
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or glioblastoma were retrieved from Oncomine. The p 
values determining the difference of SKG levels between 
normal brain and glioblastoma were also retrieved from 
the database. To analyze the protein expression data from 
the Human Protein Atlas, the level of SKG proteins (low, 
medium, high) in normal cerebral cortex was used as the 
reference. Glioma samples with the SKG protein level 
higher than the reference were scored. The enrichment of 
SKG protein in glioma was presented as percentages of 
glioma cases with a higher level of SKG protein.

GBM patient survival analyses

GBM patient survival analyses were performed 
as previously described [31]. In brief, clinical variables 
of glioblastoma patients, such as survival time, vital 
status, disease progression, TMZ treatment, and tumor 
recurrence, were retrieved from the TCGA (The Cancer 
Genome Atlas) Data Portal (https://tcga-data.nci.nih.gov/
tcga/). Gene expression data, including for glioblastoma 
patients (AgilentG4502A071; AgilentG4502A072), was 
downloaded from the Pan-cancer project (syn1461183) 
on Synapse (http://www.synapse.org). GBM patients were 
divided into high level (top 25%) and low level (bottom 
25%) based on the SKG mRNA levels. A Kaplan Meier 
analysis or a Cox proportional hazard model was performed 
using the JMP software (SAS Institute Inc.). Recurrent 
tumor rates were predicted using Contingency Analysis and 
Fisher’s Exact Test was performed using the JMP software.

GBM discovery bio portal

To analyze the expression of SKGs as groups, we 
employed the online program GBM Discovery Bio Portal 
that utilizes the same TCGA GBM datasets described 
above. The algorithms used to cluster GBM patients 
include: [1] The optimal number of clusters (NbClust); 
[2] Expression levels in GBM subgroups; [3] Prognostic 
Index, obtained by computing weighted averages of 
expression values with regression coefficients of a multi-
gene Cox proportional hazards model. The datasets used 
herein include: [1] AgilentG4502A_07 from University of 
North Carolina, [2] HT_HG-U133A from Broad Institute, 
and [3] HuEx-1_0-st-v2 from the Berkeley Lab.   
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