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ABSTRACT
Triple negative (TNBCs) and the closely related Basal-like (BLBCs) breast cancers 

are a loosely defined collection of cancers with poor clinical outcomes. Both show 
strong similarities with BRCA1-mutant breast cancers and BRCA1 dysfunction, or 
‘BRCAness’, is observed in a large proportion of sporadic BLBCs. BRCA1 expression 
and function has been shown in vitro to modulate responses to radiation and 
chemotherapy. Exploitation of this knowledge in the treatment of BRCA1-mutant 
patients has had varying degrees of success. This reflects the significant problem of 
accurately detecting those patients with BRCA1 dysfunction. Moreover, not all BRCA1 
mutations/loss of function result in the same histology/pathology or indeed have 
similar effects in modulating therapeutic responses. Given the poor clinical outcomes 
and lack of targeted therapy for these subtypes, a better understanding of the biology 
underlying these diseases is required in order to develop novel therapeutic strategies. 

We have discovered a consistent NFκB hyperactivity associated with BRCA1 
dysfunction as a consequence of increased Reactive Oxygen Species (ROS). This 
biology is found in a subset of BRCA1-mutant and triple negative breast cancer cases 
and confers good outcome. The increased NFκB signalling results in an anti-tumour 
microenvironment which may allow CD8+ cytotoxic T cells to suppress tumour 
progression. However, tumours lacking this NFκB-driven biology have a more tumour-
promoting environment and so are associated with poorer prognosis. Tumour-derived 
gene expression data and cell line models imply that these tumours may benefit from 
alternative treatment strategies such as reprogramming the microenvironment and 
targeting the IGF and AR signalling pathways.

INTRODUCTION

Breast cancer is a heterogeneous disease comprising 
of multiple tumour types that require different treatment 
approaches and have varied patient outcomes. Patient 
stratification, based on expression of the estrogen (ERα) 
or Her2/neu/ERBB2 (Her2) receptors, has allowed for 
the use of targeted therapies such as Tamoxifen and 
Trastuzamab, respectively. Breast cancers that do not 
express these receptors are termed “triple negative breast 
cancers” (TNBCs) and have the poorest clinical outcome, 
reflecting the fact that they lack targeted therapies. 
All TNBCs are currently treated with DNA-damaging 

chemotherapy regimes such as FEC (5-FU, Epirubucin 
and Cyclophosphamide). They are a poorly defined 
subgroup with a large degree of heterogeneity suggesting 
that optimal treatment may only be attained by use of 
different treatment regimens. Gene expression microarray 
analyses of tumours has allowed breast cancers to be 
re-classified. These include the ERα and Her2 positive 
subgroups in addition to a Basal-like (BLBC) subgroup 
which is associated with the poorest clinical outcomes [1]. 
There is a high degree of overlap between the TNBC and 
BLBC subgroups with up to 70% of TNBCs displaying 
BLBC gene profiles as well as 77% of BLBCs classified 
as TNBC [2]. 
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Hereditary breast cancers arising from mutation of 
the tumour suppressor gene, BRCA1, closely resemble 
sporadic TNBC/BLBCs while BRCA1 expression is 
downregulated in up to 30% of sporadic BLBCs [3]. 
BRCA1 function can therefore be abrogated both by 
mutation and downregulation of expression (‘BRCAness’) 
leading to tumourigenesis [4]. BRCA1 expression and 
function has been shown in vitro to modulate responses 
to radiation and chemotherapy[5, 6]. Exploitation of this 
knowledge in the treatment of BRCA1-mutant patients 
has had varying degrees of success [7, 8]. This reflects 
the significant problem of accurately detecting those 
patients with BRCA1 dysfunction. Moreover, not all 
BRCA1 mutations/loss of function result in the same 
histology/pathology or indeed have similar effects in 
modulating therapeutic responses [9, 10]. Therefore, an 
increased understanding of how discrete modes of BRCA1 
dysfunction modulate disease biology and therapeutic 
responses is required. 

BRCA1 tumours often display high numbers 
of infiltrating lymphocytes both intratumoural and in 
the surrounding stroma [11]. Moderate to extensive 
lymphocytic infiltrate (LI) is also observed in about 
half of all TNBC cases [12] and this is associated with 
good clinical outcome [12-14]. Indeed, a number of gene 
signatures based on activation of immune signalling 
have been developed in TNBCs, which predict for good 
outcome to current standard of care chemotherapy [15-
19]. Furthermore, it has been shown that BRCA1 mutant 
tumours tend to overexpress immune response genes [17, 
20]. Whilst these studies suggest a role for the immune 
system in modulating TNBC responses, they do not 
elucidate the biology underlying the up-regulation of the 
immune response genes and the functional significance of 
the genes themselves in tumourigenesis. 

The NFκB pathway primarily mediates the cellular 
response to external stimuli and plays a crucial role in 
regulating the immune response. Activation of the NFκB 
pathway underpins many aspects of cancer including 
survival, invasion and metastasis. BRCA1 has been 
shown to interact with p65 and acts as a transcriptional co-
activator in response stimuli [21] and NFκB acts a critical 
mediator of BRCA1-induced chemoresistance [22]. 
However, in this study, we demonstrate that in the absence 
of functional BRCA1, basal NFκB activity is increased 
and NFκB target genes are increased in TNBC cell lines. 
A BRCA1 deficient, NFκB driven immune signal has 
been identified and this predicts good clinical outcome in 
TNBCs. This is underpinned by a favourable “M1-type” 
macrophage tumour microenvironment promoting active 
cytotoxic CD8+ infiltrate. 

RESULTS

Using a NFκB luciferase reporter assay, higher 
NFκB activity is observed in BRCA1 mutant HCC1937 

(Figure 1A(i)) and BRCA1 low MDA-MB-468 (Figure 
1A(ii)) cells compared to their isogenic matched BRCA1 
reconstituted controls. Conversely, shRNA mediated 
BRCA1 knockdown in the 184A1 normal breast cell 
line results in increased NFκB activity ((Figure 1A(iii)). 
Increased expression of known NFκB target genes 
was also observed in the absence of functional BRCA1 
expression (Figure 1B(i-iii)). SiRNA against the p65 
subunit of NFκB was used to demonstrate the increased 
expression in the absence of functional BRCA1 is 
dependent on the increased NFκB activity using CXCL1 
as an exemplar NFkB-dependent gene (Figure 1B(iv)). 

In order to delineate how loss of BRCA1 function 
results in increased basal NFκB activity, we used a series 
of inhibitors to pathways known to be regulated in a 
BRCA1-dependent fashion that can impact on NFκB 
activity such as Notch [23], DNA Damage Response 
(ATM and Parp inhibitors) [24, 25] and Reactive Oxygen 
Species (ROS) [26] (Figure 2A). Inhibition of ROS using 
NAC consistently resulted in a loss of increased NFκB 
activity observed in the absence of functional BRCA1. 
Consistent with this observation, ROS levels were 
significantly higher in cells lacking functional BRCA1 
compared to their BRCA1 proficient controls (Figure 2B). 

We next wanted to determine whether this observed 
biology was also present in breast cancer tumours. In order 
to achieve this, we created a cell line derived gene list 
of target genes specifically upregulated by NFκB in the 
absence of functional BRCA1. Microarray analysis was 
carried out on BRCA1 mutant and reconstituted cells 
(HCC EV and BR) cells with and without siRNA targeted 
against the p65 subunit of NFκB (Supp Figure 2A). This 
list was refined to the smallest gene list with the most 
robust and significant fold changes (Supp Figure 2B). This 
gene list was then used to interrogate a TNBC microarray 
data set enriched for BRCA1 mutations [27] in order to 
identify a molecular subgroup of breast cancers enriched 
for this biology and labelled as BRCA1-/NFκB+ (“NFκB 
on”) and all other tumours labelled as non-BRCA1-/
NFκB+ (“NFκB off”). Unsupervised clustering was used 
to take into account that not all BRCA1 mutations result 
in the same dysfunction [10] and that not all BRCA1 
wildtype tumours possess functional BRCA1 [4] (Supp 
Figure 2B(ii)). In order to develop a tumour derived 
classifier gene signature to identify the BRCA1-/NFκB+ 
subgroup, an ElasticNet computational analysis was 
applied (Supp Figure 2B(iii) and Supp Table 1) and further 
refined based on most statistically significant fold changes 
(Supp Figure 2B(iv) and Supp Table 2) comprising of 
42 genes most of which (39/42) are upregulated in the 
“NFκB on” subgroup. While this only contained one of 
our original cell line defined BRCA1/ NFκB target genes 
(CXCL10) this is not overly surprising as this is a tumour 
derived classifier. However, most of the cell line derived 
BRCA1/ NFκB genes were present in the differential gene 
list (DEG). Unfortunately, no clinical follow-up data was 
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available for this cohort. Therefore, in order to determine 
the clinical significance of this “NFκB on” subgroup, 
the ElasticNet derived gene signature was applied to 4 
additional TNBC datasets with available clinical follow up 
[18, 27-29]. Semi-supervised clustering, using the 42 gene 
signature, was used to identify the “NFκB on” and “NFκB 
off” subgroups (Supp. Figure 3) and relapse free survival 
analysed (Figure 3). As shown in the Kaplan Meier curves, 
the “NFκB on” subgroup has significantly better relapse 
free survival. Cox Proportional Hazard analysis (Table 1) 
shows the “NFκB on” subgroups were 2.5 - 5 times less 
likely to relapse. Similar results were also observed for 
overall survival where data was available (Supp Figure 
4). Multivariate analysis on the in-house TNBC cohort 

showed that the NFκB signature was independent of age, 
tumour size, chemotherapy regime and lymphovascular 
invasion (LVI) status but not lymph node involvement 
(Supp Table 3). Consistent with our in-vitro data, the 
“NFκB on” subgroup also expressed higher levels of genes 
associated with high ROS levels compared to the “NFκB 
off” subgroup (Supp Figure 5).

Given that the majority of the genes within the 
ElasticNet derived genelist are involved in immune 
response and the previously discussed high levels of 
immune cell infiltrate observed in BRCA1-mutant 
and TNBC, the next obvious step was to investigate 
whether the tumour microenvironment of these tumours 
was different for the “NFκB on” vs “NFκB off” tumour 

Figure 1: A. NFκB Luciferase Activity Assay of (i) HCC1937 (BRCA1 mutant) cells stably transfected with either empty vector (HCC 
EV) or full length BRCA1 (HCC BR), (ii) MDA468 (BRCA1 low) cells stably transfected with either empty vector (MDA EV) or full 
length BRCA1 (MDA BR), or (iii) 184A1 (normal breast) cells stably transfected with empty vector (EV) or BRCA1 shRNA (BRsh2). 
Cells were transfected with either NFkB reporter construct (NFκB) or the empty vector control (pGL3). Renilla was used to normalise 
for transfection efficiency. Values are expressed as relative luciferase units (RLU) normalised to pGL3 and Renilla. B. Real time PCR of 
NFκB target genes in (i) HCC EV and BR, (ii) MDA EV and BR and (iii) 184A1 EV and SH2 cells. β-tubulin was used as a housekeeper. 
Expression was then normalised to HCC EV, MDA EV and 184A1 SH2 respecively (iv) Real time PCR analysis of CXCL1 mRNA in HCC 
EV and BR, MDA EV and BR and 184A1 EV and SH2 cells transiently transfected with either scrambled control (scr) or p65 specific 
(p65si) siRNA for 72hrs. β-tubulin was used as a housekeeper. 
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Figure 2: A. NFκB Luciferase Activity Assay of i) HCC EV and BR, (ii) MDA EV and BR and (iii) 184A1 EV and SH2 cells pre-treated 
for one hour with vehicle control (Ctrl), 250nM Gamma Secretase Inhibitor (GSI), 3.3μM ATM inhibitor (ATMi), 10 μM NAC or 10μM 
Parp inhibitor (Pi). Cells were then transfected with either NFkB reporter construct (NFκB) or the empty vector control (pGL3) with 
the relevant treatment. Renilla was used to normalise for transfection efficiency. Values are expressed as relative luciferase units (RLU) 
normalised to pGL3 and Renilla. B. Flow cytometry based analysis of Reactive Oxygen Species (ROS) using Carboxy-H2DCFDA in (i) 
HCC EV and BR cells treated with or without 10μM N-acetyl-L-cysteine (NAC), (ii) MDA EV and BR and (iii) 184A1 EV and SH2 cells. 

Figure 3: Kaplan Meier Curves of (i) the in- house Triple negative dataset and publically available (ii) GSE58812, (iii) GSE21653 and 
(iii) GSE2034 datasets stratified using the identified BRCA1-/NFκB+ (NFkB on) and non-BRCA1-/NFκB+ (NFkB off) groups. Log-rank 
p-values are shown.
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Figure 4: A. Box and Whisker plots of microarray derived M2/M1 Gene Expression Signature scores in (i) in house BRCA1 mutant 
dataset, (ii) in house TNBC dataset and publically available (iii) GSE58812, (iv) GSE21653 and (v) GSE2034 datasets. B. Box and Whisker 
plots of microarray derived CD68/CD8 expression ratios in (i) in house BRCA1 mutant dataset, (ii) in house TNBC dataset and publically 
available (iii) GSE58812, (iv) GSE21653 and (v) GSE2034 datasets.
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sub groups. Therefore, a TMA matched to the in-house 
triple negative breast cancer cohort was utilised. Anti-
CD8, -CD4 and -FOXP3 antibodies were used to assess 
cytotoxic, helper and regulatory T-cells, respectively. 
A separate score was given for T-cells located in the 
stroma vs those within the tumour nest (intratumour). 
No significant differences in stromal CD4, CD8 or 
both stromal and intratumoural FOXP3 were observed. 
However, there was a significant correlation of CD8 
and CD4 positive T cells within the tumour nest and 

the “NFκB on” subgroup (Table 2 and Supp Figure 6). 
Numerous studies have shown that the polarisation state of 
the tumour-associated macrophages can strongly influence 
a tumour-promoting or -destroying microenvironment [30, 
31]. Simply, M1-like macrophages promote a TH1 response 
and tumour destruction while the M2-like macrophages 
promote a TH2, CD8+ suppressive, tumour promoting 
response. Given the fact that a number of the genes up-
regulated in the “NFκB on” subgroup are associated with 
interferon [32](Supp Figure 7) and the TH1 response (e.g. 

Table 2: p-values of Chi-Squared and/or Fisher’s exact tests of IHC-based correlations between “NFkB on” or “NFkB 
off” subgroups and immune markers

Chi Squared Test Fisher’s Exact Test
N = 53 p-value

CD8 Intratumour 0.0133 0.0101
Stroma 0.1124 -

CD4 Intratumour 0.0237 0.0817
Stroma 0.4129 -

FOXP3 Intratumour 0.5061 -
Stroma 0.4587 -

CD68 Intratumour 0.2120 -
Stroma 0.3290 -

CD68:CD8 - 0.0612
CD14 0.0428
CD163 0.0495

Table 1: Univariate Cox Proportional Hazard Ratio analysis of survival in the in-house TNBC and the publically 
available GSE58812, GSE21653 and GSE2034 data sets
Relapse Free Survival Cox PH - Univariate

HR %95 CI p-value
Inhouse 
TNBC

N(n) 60 
(19)

BRCA1/
NFkB off 37 (15) 1

on 23 (4) 0.3559 0.118-
1.073 0.0666

GSE58812 N(n) 
107(31)

BRCA1/
NFkB off 90 (31) 1

on 17 (0) 0.2886* 0.1179-
0.7065 0.0065

GSE21653 N(n) 85 
(27)

BRCA1/
NFkB off 62 (25) 1

on 23 (2) 0.1956 0.04632-
0.8263 0.0264

GSE2034 N(n) 77 
(27)

BRCA1/
NFkB off 42 (19) 1

on 35 (8) 0.4412 0.1929-
1.009 0.0525

* Cox PH HR not possible as no events in NFkB on, Mantel-Haenszel HR shown
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CXCL9, CXCL10), we postulated that the “NFκB on” 
subgroup may be associated with an M1-like macrophage 
environment. In order to test our hypothesis, we applied 

the M2/M1 gene expression signature (GES) developed 
by Jézéquel et al [18]. A highly significant correlation 
(p ≤ 0.0001) was observed between a low M2/M1 score 

Figure 5: A. (i) NFκB Luciferase Activity Assay of 2 “NFκB-on” cell lines (HCC1937, HCC1395) and 2 “NFκB-off” cell lines (MDA231, 
MDA453). Cells were transfected with either NFkB reporter construct (NFκB) or the empty vector control (pGL3). Renilla was used to 
normalise for transfection efficiency. Values are expressed as relative luciferase units (RLU) normalised to pGL3 and Renilla. (ii) Flow 
cytometry based analysis of Reactive Oxygen Species (ROS) using Carboxy-H2DCFDA in the same cell lines as (i). B. Real time PCR 
analysis of M1 and M2 macrophage markers in THP-1 cells co-cultured with media from “NFkB on” (HCC1937, HCC1395) and “NFkB 
off” (MDA231, MDA453) cells for 24 hours. β-tubulin was used as a housekeeper. C. Dose response curve of “NFkB on” (HCC1937, 
HCC1395) and “NFkB off“(MDA231, MDA453) treated with (i) IGF2 inhibitor or (ii) Bicalutamide. Cells were treated with the indicated 
range of concentration of drug for 72hrs before cell viability was assessed by MTT. Cell survival was normalised to vehicle control (100%).
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(implying M1-like phenotype) and the “NFκB on” 
subgroup (Figure 4A). Alternatively, the CD68:CD8 ratio 
can also be analysed through microarray analysis and this 
has been shown to predict survival and chemotherapeutic 
response in breast cancer [33]. A high CD68:CD8 ratio 
implies a macrophage population suppressing the CD8 
cytotoxic T-cells (e.g. M2-like) while a low score implies 
CD8+ T-cells mediated tumour suppression (e.g. M1-like). 
A significant correlation with a low CD68:CD8 ratio and 
the “NFκB on” subgroup was observed (Figure 4B). In 
order to validate the microarray-based gene expression 
data, the macrophage populations present in the TNBC 
TMA were assessed by IHC using the pan-macrophage 
marker, CD68. Consistent with the mRNA data, a higher 
CD68:CD8 ratio was observed in the “NFκB off” group 
compared to the “NFκB on” subgroup (Table 2 and Supp 
Figure 6). To assess M1/M2 polarisation, the CD14 and 
CD163 were also assessed by IHC [34, 35]. In keeping 
with the microarray-based data, higher CD14 staining 
was associated with “NFκB on” while higher CD163 was 
associated with the “NFκB off” subgroup (Table 2 and 
Supp Figure 6).

The results to date imply that the “NFκB on” 
subgroup respond well to the standard of care (SoC) DNA 
damaging chemotherapy used to treat TNBC (FEC +/- 
D). Therefore novel therapeutic strategies are required 
to improve outcome in the “NFκB off” subgroup. While 
isogenic cells lines are a crucial research tool to elucidate 
downstream events from modulation of a single genetic 
event, they can never fully recapitulate the changes that 
would be seen in vivo with selective pressure from the 
tumour microenvironment. Given the integral role of 
immune signalling in this study, we therefore wanted 
to identify representative cell lines that may more 
closely mimic the downstream consequences of loss of 
BRCA1 function and subsequent deregulation of basal 
NFκB in vivo. Using TNBC cell lines from within two 
publically available cell line datasets [36, 37] and semi-
supervised clustering using the ElasticNet derived gene 
list, representative “NFκB on” (HCC1937 and HCC1395) 
and “NFκB off” (MDA231 and MDA453) cell lines were 
identified (Supp Figure 8). Interestingly, not all BRCA1 
mutant cell lines were defined as “NFκB on”. This is in 
keeping with the assumption that not all BRCA1 mutations 
result in the same dysfunction [10] and our own data 
showing that not all BRCA1 mutant tumours are classified 
as “NFκB on” (Supp Figure 2). NFκB activity was shown 
to be higher in the “NFκB on” vs the “NFκB off” cell lines 
by luciferase activity assay (Figure 5A (i)) and consistent 
with the results in Figure 2, higher ROS levels were 
observed in the “NFκB on” compared to the “NFκB off” 
cell lines (Figure 5A (ii)). In order to demonstrate that the 
NFκB driven gene expression could regulate macrophage 
polarisation, tumour microenvironment and ultimately 
outcome in breast cancer cases, differentiated THP-1 
cells were incubated with media from the four cell lines 

and then markers of M1 and M2 polarisation assessed by 
qPCR [38]. mRNA levels of the M1-associated markers 
(TNF-α, IL-1β and IL-8) were all significantly higher in 
the “NFκB on” compared to the “NFκB off” cell lines 
whilst the converse was seen with the M2-associated 
markers Dectin1 and DC-SIGN (Figure 5B). This implies 
that reprogramming of the microenvironment towards a 
more M1-like anti-tumour phenotype could be beneficial 
in the “NFκB off” subgroup. Furthermore, analysis of the 
ElasticNet derived genelist identified two “druggable” 
pathways up-regulated in the “NFκB off” compared to 
the “NFκB on” tumours namely the Androgen and IGF 
pathways. Microarray-based mRNA expression levels 
confirmed higher expression of IRS1, IGF2, IGF1R and 
AR in “NFκB off” compared to the “NFκB on” tumours 
in all five datasets (Supp Figure 9). In order to assess the 
therapeutic implication of this, inhibitors against IGF2 and 
androgen receptor were tested in the four representative 
cell lines. “NFκB off” cell lines were significantly more 
sensitive to inhibition of these pathways than the “NFκB 
on” cell lines (Figure 5C). 

DISCUSSION

In this study, we have shown that the absence of 
functional BRCA1, basal NFκB activity is increased 
due to increased ROS in vitro. This biology is found in 
a subset of BRCA1 mutant and TNBC cases and confers 
good outcome. The increased NFκB signalling results 
in an anti-tumour microenvironment which may allow 
CD8+ cytotoxic T cells to suppress tumour progression. 
However, tumours lacking this NFκB-driven biology 
have a more tumour-promoting environment and so 
are associated with poorer prognosis when treated with 
chemotherapy. Tumour-derived gene expression data and 
cell line models imply that these tumours may benefit from 
alternative treatment strategies such as reprogramming 
the microenvironment and targeting the IGF and AR 
signalling pathways.

This work highlights the fact that BRCA1-mutant 
and TNBCs are a heterogeneous groups of cancers that are 
not benefitting from the current “one size fits all” standard 
of care chemotherapy. This is further exemplified by use 
of PARP inhibitors to exploit the DNA repair defect of 
BRCA1 and BRCA2 mutant breast cancers. Despite good 
response rates in early clinical trials, no survival benefit 
has been demonstrated in BRCA1 mutant or TNBCs [8]. 
Therefore, biomarkers and potential therapeutic strategies 
must be developed around discreet biology downstream 
of specific modes of BRCA1-dysfunction. Indeed, a study 
by Fernandez-Ramies et al demonstrated that the immune 
response signature associated with ER-negative BRCA1 
mutant tumours was modified by the type of BRCA1 
mutation. BRCA1 mutant tumours harbouring truncating 
mutations (that probably led to a complete absence of 
protein through nonsense-mediated decay (NMD)) had 
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a lower magnitude of expression of the immune genes 
compared to those harbouring missense mutations 
(resulting in an aberrant but still present BRCA1 protein) 
and this was underpinned by differing expression levels of 
the NFκB transcription factors [20]. Consistent with this, 
the majority of the tumours associated with that “NFκB 
on” subgroup harbour C-terminal mutations, which tend 
to avoid NMD and are expressed at relatively normal 
levels [39]. Furthermore, these mutations are commonly 
associated with loss of transcription regulation by BRCA1 
[40] which is in keeping with our observations and known 
BRCA1-dependent regulation of NFκB function [21].

Our current study highlights the known variation in 
outcome of patients with TNBC where some patients do 
very poorly, relapse and die within the first 3 years while 
patients who do not recur within this period tend to have 
a much better prognosis [41]. Our data would suggest 
that the “NFκB on” subgroup respond well to the current 
standard of care DNA damaging chemotherapy (FEC 
+/-D) due in part to their favourable microenvironment. 
We would suggest however, that these patients probably 
would not benefit from the addition of docetaxel to their 
regime regardless of lymph-node involvement, given 
that tumours with dysfunctional BRCA1 are less likely 
to respond to anti-microtubule agents [42]. Counter-
intuitively, it is interesting to note higher gene expression 
of the PD1 ligand, PD-L1 (CD274) in this subgroup. 
This implies that these tumours may also benefit from an 
immune checkpoint blockade strategy. This emphasises 
the complexity of dialogue between the tumour cell and 
the cells within the microenvironment such as T-cells 
and macrophages [31]. We suggest that the NFκB-driven 
signal from within the tumour cells promotes a M1/TH1 
microenvironment that then produce their own signals 
to enhance and maintain this and influence responses 
to chemotherapy and overall outcome. Therefore, the 
“NFκB off” subgroup may benefit from a more taxane-
based chemotherapeutic regime (FEC-D rather than 
FEC as first line treatment) or targeted therapies (alone 
or in combination) to re-program the microenvironment 
towards a more M1-like anti-tumour scenario. A 
number of these drugs have been developed (e.g. the 
CD-20 targeting agent, Rituximab) and show promise 
in in vivo models and in patients [30]. Furthermore, 
reprogramming of macrophages may be a more favourable 
approach compared to eradication, as they may be 
required for interaction with other components of the 
microenvironment [43]. In addition, our data suggests 
that use of therapies targeting the IGF and AR signalling 
pathway may also benefit this subgroup. These pathways 
have already been identified as tractable drug targets 
within TNBC with clinical trial results showing promise 
[44]. We believe that this NFκB-driven biology may allow 
stratification to predict who is likely to respond from such 
therapies.

In summary, we have identified a BRCA1-deficient, 

NFκB-driven biology that predicts good outcome in 
TNBC due to the promotion of a favourable tumour 
microenvironment where immune targeting of the 
tumours is more efficient. Knowledge of this can be used 
to improve poorer outcome patients through macrophage 
reprogramming or use of specific targeted therapies.

MATERIALS AND METHODS

Cell lines

All cell lines were purchased from ATCC and 
maintained as directed except for the 184A1 cells which 
were a kind gift from Dr Martha Stampfer (University of 
California) and maintained as previously described [45]. 
Cell lines were characterised by isoenzyme/cytochrome 
c oxidase I (COI) assay and short tandem repeat (STR) 
analysis by the cell bank. Full details of the HCC-EV/
BR and MDA468-EV/BR cell lines are provided in [46]. 
184A1-EV and -BRsh2 cells were generated by stable 
lentivirus transfection of the 184A1 cells with pll3.7-EV 
or BRsh2 respectively (a kind gift from Prof. Wicha). 
Infected cells were selected in the presence of 1μg/μl 
puromycin. For drug treatments, cells were treated with 
the relevant concentration of IGF2 inhibitor (Sigma, 
UK) or Bicalutamide (Sigma, UK) for 72hrs before cell 
viability was assessed by MTT (Sigma, UK).

Short interfering RNA (siRNA)

Transfections were done using RNAiMax reagent 
(Invitrogen, UK), as outlined in the manufacturer’s 
instructions. siRNA oligonucleotide were obtained from 
Eurofins and used at a final concentration of 10nM. 

Western blot analysis

Protein lysates were extracted in EDTA Lysis 
Buffer (ELB) (0.25M NaCl, 0.1% IEPGAL, 0.25M 
Hepes, 5mM EDTA, 0.5mM DTT), separated on a SDS 
PAGE gel, transferred to a PVDF membrane followed by 
immunoblotting. Antibodies are previously described in 
[23]

RNA extraction, reverse transcription and real 
time quantitative PCR (RqPCR)

RNA was extracted using RNA STAT60 Total 
RNA extraction Reagent (Tel-Test Inc, USA), reverse 
transcribed using the Transcriptor First Strand cDNA 
Synthesis kit (Roche, UK) and RqPCR analysis performed 
on the LC96 (Roche, UK) using Sybr Green (Roche, UK) 
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according to the manufacturer’s instructions. Primers used 
are listed in Supplementary Data and [38].

Luciferase assays

NFκB-pGL3 has been previously described [47]. 
Cells were co-transfected with the relevant Luciferase 
constructs and Renilla using GeneJuice (Novagen, 
Germany) according to the manufacturer’s instructions. 
After 24hrs, cells were lysed with Passive Lysis Buffer 
(Promega, UK) and Luciferase and Renilla activity 
assessed by luminescence using D-Luciferin and 
Coelenterazine as substrates, respectively. For treatments 
with Gamma Secretase Inhibitor (Calbiochem, Germany), 
ATM inhibitor (KU60019 Tocris Biosciences, UK), NAC 
(Sigma, UK) and Parp Inhibitor (Olaparib, Selleckchem, 
UK), cells were pre-treated for 1hr prior to transfections 
with luciferase constructs and maintained in drug for the 
length of the experiment. 

Reactive oxygen species detection

Cells were incubated with 5μM CM-H2DCF-
DA (Invitrogen, UK) for 30 minutes followed by flow 
cytometry. TeBOOH was included as a positive control in 
all experiments.

Tissue microarrays (TMAs)

The breast cancer TMAs used in this study were 
constructed from Formalin-fixed paraffin-embedded 
primary tumour blocks by the Northern Ireland Biobank 
and have been previously described [48]. Each tumour 
sample was represented by three independent cores. 
TNBC cases from within this cohort were identified 
from associated clinical and pathological information. 
Repeat IHC for ER, PR and HER2 on the TMA sections 
confirmed the TNBC status of this case cohort. Full 
details of antibodies used are listed in Supplementary 
Data. All antibodies were scored independently by two 
histopathologists blinded to patient clinicopathological 
and outcome data. Immune markers were scored on 
a 0-3 scoring system with representative images in 
Supplementary Figure 10.

Microarrays

Microarray analyses were performed as previously 
described on the Almac Breast DSA [49]. NFκB target 
genes were determined by identifying BRCA1 and p65 
regulated genes independently (using the R package 
“limma”) and then overlapping the gene lists. TNBC 
samples were identified (if required) from within the 
public datasets [18, 27-29] using the associated clinical 

information. BRCA2 mutant samples were excluded from 
discovery dataset [27].

ElasticNet

The ElasticNet regularization procedure was 
performed using the R package “glmnet” [50]. The optimal 
lambda was chosen based on a 10-fold cross-validation. 
The ElasticNet regularization is a convex combination of 
the ridge and the lasso penalty with a weighting parameter 
“alpha” (0.3 was used). Bootstrapping (x100) followed by 
a hypergeometric test to identify non-random features was 
used for feature selection.

Survival analysis

All Kaplan Meier Curves and Hazard Ratio 
Calculations were carried out using the R package 
“Survival”.

Statistical analysis

All relevant data was analyzed by two-tailed 
Students t-test. All data was deemed significant with a 
p-value of at least < 0.05. All p-values are included in 
Supplementary Data.
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