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AbstrAct
Alzheimer’s disease (AD) is a common aging-related neurodegenerative illness. 

Recently, many studies have tried to identify AD- or aging-related DNA methylation 
(DNAm) biomarkers from peripheral whole blood (PWB). However, the origin of PWB 
biomarkers is still controversial. In this study, by analyzing 2565 DNAm profiles 
for PWB and brain tissue, we showed that aging-related DNAm CpGs (Age-CpGs) 
and AD-related DNAm CpGs (AD-CpGs) observable in PWB both mainly reflected 
DNAm alterations intrinsic in leukocyte subtypes rather than methylation differences 
introduced by the increased ratio of myeloid to lymphoid cells during aging or AD 
progression. The PWB Age-CpGs and AD-CpGs significantly overlapped 107 sites 
(P-value = 2.61×10-12) and 97 had significantly concordant methylation alterations 
in AD and aging (P-value < 2.2×10-16), which were significantly enriched in nervous 
system development, neuron differentiation and neurogenesis. More than 60.8% of 
these 97 concordant sites were found to be significantly correlated with age in normal 
peripheral CD4+ T cells and CD14+ monocytes as well as in four brain regions, and 44 
sites were also significantly differentially methylated in different regions of AD brain 
tissue. Taken together, the PWB DNAm alterations related to both aging and AD could 
be exploited for identification of AD biomarkers.

IntroductIon

Alzheimer’s disease (AD) is the most common 
form of neurodegenerative illness. One important risk 
factor for its occurrence is aging [1, 2]. DNA methylation 
(DNAm) as an important epigenetic mechanism is closely 
associated with aging and AD progression [3]. For 
example, it has been reported that the decreased promoter 
methylation of BACE and PS1 genes during aging in brain 
tissue could lead to the development of sporadic AD [4]. 
Therefore, the investigation of aging- and AD-related 
DNAm alterations and analysis of their relationship will 
help reveal the underlying pathogenesis of AD and provide 
clues for AD biomarker identification.

As peripheral whole blood (PWB) sampling 

is non-invasive and easy to handle, researchers have 
considered PWB as a promising surrogate for tissue to 
investigate disease associated molecular biomarkers [5-
7]. Many DNAm alterations have been identified from 
PWB of elderly people and of people with aging-related 
neurodegenerative illnesses [5, 8-10]. Notably, as DNA 
in PWB is derived from a mixture of various leukocyte 
subtypes (mainly grouped into myeloid and lymphoid 
cells) with distinct DNA methylation patterns, both the 
proportion changes and intrinsic DNAm pattern alterations 
of leukocyte subtypes could influence the DNAm signals 
observed in PWB [11]. To clarify where these aberrant 
DNAm signals originate will help us understand the 
underlying mechanism of disease. Until now, however, 
there are no conclusions on the origin of aging-related 
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DNAm alterations observed in PWB: some researchers 
believe that aging-related PWB DNAm alterations 
influenced by leukocyte cell proportion changes are 
limited [9], while other researchers consider that most 
of the aging-related PWB DNAm alterations could be 
explained by the varied cell compositions [12]. Actually, 
the shifts of cell proportions and altered DNAm alterations 
intrinsic in peripheral leukocytes have both been observed 
in PWB samples of elderly people, as well as in PWB of 
patients with AD [12-14]. Nevertheless, to the best of our 
knowledge, no study has focused on analysis of the origin 
of PWB DNAm alterations observed in patients with AD. 
On the other hand, many aging-related co-methylation 
modules identified from PWB, which mainly enriched 
in neuron differentiation and development, cell fate 
commitment and embryonic morphogenesis associated 
functional categories, have also been identified from brain 
tissue of elderly people [15]. However, the relationship 
between AD-related DNAm alterations observed in 
PWB and the DNAm alterations observed in brain tissue 
is still unclear, the specification of which will provide 
perspectives on disease pathogenesis and biomarker 
identification.

In this study, using multiple PWB DNAm profile 
data sets, we revealed that both aging-related DNAm 
CpGs (Age-CpGs) and AD-related DNAm CpGs (AD-
CpGs) observable in PWB mainly reflect intrinsic 
DNAm alterations of leukocytes. Then, after removing 
those DNAm alterations which were likely affected by 
proportion shifts of leukocyte subtypes, we showed that 
Age-CpGs and AD-CpGs in PWB significantly overlapped 
with concordant alterations. These overlapped sites 
were observed to be significantly correlated with age in 
peripheral CD4+ T cells and CD14+ monocytes as well as 
in four regions of normal brain tissue and differentially 
methylated in brain tissues between AD and normal 
controls, suggesting that they could serve as candidate 
biomarkers in PWB for AD identification.

results

Genome-wide identification of Age-CpGs from 
PWb

PWB DNAm profiles used to identify Age-CpGs 
were determined from 647 normal individuals aged 
between 16 and 101 years from six data sets (Set 1 to 6, 
detailed information was described in Table 1). Using 
linear regression model with a false discovery rate (FDR) 
< 0.05, we identified 1270, 1490, 127, 267, 134 and 
325 Age-CpGs from Set 1 to 6, respectively. Pairwise 
comparison of the six lists showed that the Age-CpGs 
identified from every two PWB data sets significantly 
overlapped (P-value < 2.2×10-16, hypergeometric test), 

and all overlapped Age-CpGs had significantly concordant 
positive or negative correlations with age (all P-values < 
2.2×10-16, binomial test, Table 2). These results suggested 
that the Age-CpGs detected from the six PWB data sets 
were significantly reproducible. We integrated the six lists 
of PWB Age-CpGs into a list of 1807 Age-CpGs, hereafter 
referred to as PWB Age-CpGs, according to the criteria 
described in the Methods section.

PWB Age-CpGs mainly reflect Age-CpGs of 
leukocyte subtypes

To evaluate the origin of PWB Age-CpGs, we 
examined the contribution of the proportion changes 
and intrinsic DNAm alterations of leukocyte subtypes to 
PWB signals during aging, respectively. By employing 
the deconvolution algorithm [16], we estimated the 
proportions of each leukocyte subtype in PWB of healthy 
people sampled in Set 1 to 4. As leukocytes in PWB can 
be classified into two classes, the lymphoid and myeloid 
cells, and the inter-class differences of DNAm levels are 
larger than the intra-class differences [11], we evaluated 
the associations of proportions of myeloid and lymphoid 
cells with age using Spearman’s rank correlation test, 
respectively. The results showed that, in all four data sets, 
the proportions of myeloid cells in PWB were significantly 
positively correlated with age (r = 0.14 ~ 0.20, all P-values 
< 0.05), while the proportions of lymphoid cells in PWB 
were significantly negatively correlated with age (r = -0.15 
~ -0.22, all P-values < 0.05).

Given that the ratio of myeloid cell proportion 
to lymphoid cell proportion in PWB increases during 
aging, if a PWB Age-CpG is mainly determined by the 
leukocyte cell proportion shifts, the correlation state 
(positive or negative correlation) between its DNAm level 
and age should depend on its relative DNAm level in 
myeloid cells compared to lymphoid cells [17]. Thus, if 
an Age-CpG was observed to be positively (or negatively) 
correlated with age in PWB and hypermethylated (or 
hypomethylated) in myeloid cells compared to lymphoid 
cells, we considered this PWB Age-CpG was concordant 
with the cell population shifts. In the following analysis, 
we used the concordance rate, defined as the percentage 
of concordant Age-CpGs among all PWB Age-CpGs, to 
evaluate the extent that the cell population shifts could 
contribute to the PWB Age-CpGs (see Methods).

We identified differentially methylated CpG sites 
between myeloid and lymphoid cells from the DNA 
methylation profiles of purified PWB leukocyte subtypes 
(Set 7 described in Table 1) by using t-test. Totally, with 
an FDR < 0.05, 6817 CpGs, denoted as ML-CpGs, were 
found to be significantly differentially methylated between 
the two groups of leukocytes. Compared the PWB Age-
CpGs with ML-CpGs, we found that 71.6% (1294) of 
the 1807 PWB Age-CpGs were included in the ML-
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Table 1:  DNA methylation data sets analyzed in this study.

Data 
set

Sample 
numa Tissueb Description Gender 

(M:F)
Age 
(mean, 
yrs)

Platform
Geo 
accession 
num

Ref

Set 1 173
(20) PWB healthy Dutch cohorts 88:85 16~59 

(29.8) 27K GSE41037 [15]

Set 2 92
(13) PWB healthy Dutch cohorts 38:54 16~65 

(38.8) 27K GSE41037 [15]

Set 3 84
(12) PWB healthy Dutch cohorts 52:32 34~88 

(63.4) 27K GSE41037 [15]

Set 4 233
(41) PWB healthy United Kingdom women 0:233 52~78 

(68.9) 27K GSE19711 [25]

Set 5 74
(16) PWB healthy Caucasian cohorts 29:45 47~101 

(73.8) 450K GSE40279 [26]

Set 6 71
(13) PWB healthy Caucasian cohorts 48:23 28~86 

(58.2) 450K GSE40279 [26]

Set 7 46
(0)

leukocyte 
subtype healthy cohorts --- --- 450K GSE39981 [27]

Set 8 187
(27) CD4+ T cell MESA

cohorts --- 45-79 
(58.1) 450K GSE56581 [13]

Set 9 1011
(91)

CD14+

monocyte
MESA
cohorts --- 45~79 

(58.1) 450K GSE56046 [13]

Set 10 121
(15) cerebellum healthy Caucasian cohorts 76:30 16-96 

(46.2) 27K GSE15745 [28]

Set 11 133
(20)

frontal 
cortex healthy Caucasian cohorts 77:36 16-101

(47.3) 27K GSE15745 [28]

Set 12 125
(17) pons healthy Caucasian cohorts 77:31 15-101 

(47.0) 27K GSE15745 [28]

Set 13 127
(21)

temporal 
cortex healthy Caucasian cohorts 69:37 15-101

(49.0) 27K GSE15745 [28]

AD:control

Set 14 48:9 PWB MRC London Brainbank cohorts 17:40 70-96 
(83.2) 450K GSE59685 [5]

Set 15 58:21 entorhinal 
cortex MRC London Brainbank cohorts 31:48 65-96 

(83.1) 450K GSE59685 [5]

Set 16 60:24 frontal 
cortex MRC London Brainbank cohorts 33:55 65-96 

(83.1) 450K GSE59685 [5]

Set 17 61:26
superior 
temporal 
gyrus

MRC London Brainbank cohorts 34:53 65-96 
(82.9) 450K GSE59685 [5]

Set 18 60:23 cerebellum MRC London Brainbank cohorts 34:49 65-96 
(82.7) 450K GSE59685 [5]

aThe number inside the parentheses indicates the number of removed samples and the number outside the parentheses 
indicates the number of samples analyzed in this study; bPWB: peripheral whole blood; c27K: Illumina Infinium Human 
Methylation27 BeadChip; 450K: Illumina Infinium HumanMethylated450k BeadChip.

Table 2:  Comparison of Age-CpGs respectively identified from six data sets.
Data set Set 1(1270) Set 2(1490) Set 3(127) Set 4(267) Set 5(134) Set 6(325)
Set 1 (1270)a --- 747*(100%) 85*(100%) 174*(100%) 64*(100%) 153*(100%)
Set 2 (1490) 747*(100%)b --- 97*(100%) 191*(100%) 76*(100%) 181*(100%)
Set 3(127) 85*(100%) 97*(100%) --- 45*(100%) 40*(100%) 65*(100%)
Set 4(267) 174*(100%) 191*(100%) 45*(100%) --- 28*(100%) 71*(100%)
Set 5(134) 64*(100%) 76*(100%) 40*(100%) 28*(100%) --- 72*(100%)
Set 6(325) 153*(100%) 181*(100%) 60*(100%) 71*(100%) 72*(100%) ---

aThe number inside the parentheses indicates the number of Age-CpGs identified from the data set indicated outside the 
parentheses; bThe number outside the parentheses indicates the number of overlapping Age-CpGs and the percentage inside 
the parentheses indicates the proportion of concordant overlapping Age-CpGs identified from the data sets indicated in the 
corresponding row and column, respectively; * represent the FDR adjusted P-value < 0.05.
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CpGs, but the concordance rate was only 26% (P-value 
> 0.99, binomial test), indicating that about 74% of the 
overlapped Age-CpGs were unlikely to be determined by 
the proportion shifts of myeloid and lymphoid cells and 
may reflect the intrinsic DNAm alterations in leukocytes. 
However, we found that the concordance rate increased 
as the DNAm level differences between myeloid and 
lymphoid cells increased. As shown in Figure 1, when 
the mean DNAm level difference was larger than 0.35, 
the concordance rate of overlapped PWB Age-CpG 
was 91.3% (P-value < 1.36×10-7, binomial test). This 
result indicated that only part of PWB Age-CpGs were 
introduced by proportion shifts of leukocyte subtypes.

To examine the contribution of intrinsic DNAm 
alterations of leukocyte subtypes to PWB alterations 
observed during aging, DNAm profiles for CD4+ T 
cells (Set 8 described in Table 1) and CD14+ monocytes 
(Set 9 described in Table 1) were collected from the 
Multi-Ethnic study of Atherosclerosis (MESA, [13]). 
Using linear regression model, with an FDR < 0.05, we 
identified 809 and 3326 Age-CpGs for peripheral CD4+ 
T cells and CD14+ monocytes, respectively. We found 

that 386 of the 809 Age-CpGs observed in CD4+ T cells 
were included in the PWB Age-CpGs and 99.74% (385) 
of them had concordant positive or negative correlations 
with age in CD4+ T cells and PWB, which was unlikely 
to happen by chance (P-value < 2.2×10-16, binomial test). 
Similarly, 1046 of the 3326 Age-CpGs identified from 
CD14+ monocytes were included in the PWB Age-CpGs 
and 99.24% (1038) of them had significantly concordant 
positive or negative correlations with age in CD14+ 
monocytes and PWB (P-value < 2.2×10-16, binomial test).

These results indicated that the Age-CpGs observed 
in PWB may mainly reflect intrinsic Age-CpGs of 
leukocyte subtypes and partly reflect CpGs with large 
DNAm differences between myeloid and lymphoid cells 
easily affected by their proportion changes. 

AD-CpGs identified from PWB

PWB DNAm profiles used to identify AD-CpGs 
were determined from 57 individuals including 48 AD 
patients and 9 normal controls (Set 14 described in Table 

Figure 1: The number of Age-CpGs and the concordance rate of Age-CpGs under different mean methylation level 
differences between myeloid and lymphoid cells. The mean difference of methylation levels between myeloid cells and lymphoid 
cells is plotted against the number of Age-CpGs (grey bars; left axis scale) or the concordance rate of Age-CpGs with ML-CpGs (dashed 
line; right axis scale). Age-CpGs are the age-related DNAm CpG sites in peripheral whole blood.
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1) collected from MRC London Neurodegenerative 
Disease Brain Bank [5]. Using the RankProd method 
[18] with an FDR < 0.05, we identified 805 significantly 
differentially methylated CpGs between AD patients and 
normal controls, denoted as PWB AD-CpGs. Similarly, as 
the ratio of the myeloid cell proportion to the lymphoid 
cell proportion tends to increase in AD PWB [14], if a 
PWB AD-CpG was observed to be hypermethylated (or 
hypomethylated) in AD PWB compared to normal controls 
and correspondingly observed to be hypermethylated 
(or hypomethylated) in myeloid cells compared to 
lymphoid cells, we considered this PWB AD-CpG was 
concordant with the cell population shifts. We also used 
the concordance rate to evaluate the extent that the cell 
population shifts could contribute to the PWB AD-CpGs. 
Compared the AD-CpGs with ML-CpGs, we found that 
347 of the 805 AD-CpGs overlapped with the ML-CpGs 
and the concordance rate was 41.2%, indicating that more 
than a half of the PWB AD-CpGs were not determined 
by the cell proportion shifts. Notably, AD-CpGs with 
large DNAm level differences between myeloid and 
lymphoid cells also tended to be easily affected by the 

cell proportion changes. As shown in Figure 2, when the 
mean DNAm level difference was larger than 0.2, the 
concordance rate of the overlapped PWB AD-CpGs was 
100%. According to these results, we considered that the 
AD-CpGs observed in PWB could reflect the CpGs with 
large DNAm difference between myeloid and lymphoid 
cells easily affected by leukocyte proportion changes 
during AD progression and may also mainly reflect 
intrinsic AD-CpGs of leukocyte subtypes.

Common Age-CpGs and AD-CpGs in PWB

To evaluate the relationship between Age-CpGs 
and AD-CpGs observed in PWB, we first respectively 
removed those CpGs likely affected by the proportion 
changes of myeloid and lymphoid cells during aging and 
in AD progression. Finally, we obtained 1469 Age-CpGs 
and 662 AD-CpGs, respectively. We found that these 
two lists overlapped 107 sites, which was significantly 
more than what could be observed by random chance 
(P-value < 2.61×10-12, hypergeometric test). Among these 
107 overlapped CpGs, 90.6% (97) were observed to be 

Figure 2: The number of AD-CpGs and the concordance rate of AD-CpGs under different mean methylation level 
differences between myeloid and lymphoid cells. The mean difference of methylation levels between myeloid cells and lymphoid 
cells is plotted against the number of AD-CpGs (grey bars; left axis scale) or the concordance rate of AD-CpGs with ML-CpGs (dashed 
line; right axis scale). AD-CpGs are the Alzheimer’s disease related DNAm CpG sites in peripheral whole blood.
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positively (or negatively) correlated with age in PWB and 
concordantly hypermethylated (or hypomethylated) in AD 
PWB samples compared to normal controls, significantly 
higher than what could be expected by chance (P-value < 
2.61×10-12, binomial test). Furthermore, we also found that 
59 of these 97 sites tended to be significantly positively (or 
negatively) correlated with age in both CD4+ T cells and 
CD14+ monocytes (Table S1), suggesting that the common 
Age-CpGs and AD-CpGs in PWB could have common 
alterations in these two types of leukocytes.

Functional enrichment analysis showed that genes 
mapping by these 97 CpGs were enriched in nervous 
associated biological progresses, including nervous system 
development, neuron differentiation and neurogenesis 
(Fisher’s exact test, FDR < 0.05) (Table S2). This result 
suggested that aging-related DNAm alterations in these 
CpGs may play roles in promoting the progression of AD. 
In the following analysis, we denoted these 97 CpGs as 
PWB AD-Age-CpGs.

PWB AD-Age-CpGs in brain tissue

To evaluate whether the PWB AD-Age-CpGs could 
be associated with aging in brain tissue, DNAm profiles 
for cerebellum, frontal cortex, pons and temporal cortex 
were obtained from 150 neurologically normal Caucasian 
subjects with no clinical history of neurological or 
cerebrovascular diseases as described in Set 10 to 13 in 
Table 1. Using linear regression model, with an FDR < 
0.05, we identified 3490, 5455, 7206 and 8973 Age-CpGs 
from these four brain regions, respectively. Among the 97 
AD-Age-CpGs, 60, 63 and 77 CpGs overlapped with Age-
CpGs identified from frontal cortex, pons and temporal 
cortex (P-value < 2.2×10-16, hypergeometric test, Table 
S1), respectively, and more than 98.4% of them showed 
concordant positive or negative correlations with age 
in PWB and brain tissue. Although only 11 Age-CpGs 
observed in cerebellum overlapped with the 97 AD-Age-
CpGs, 10 of them had concordant positive or negative 
correlations with age, which could not be observed by 
chance (P-value = 5.9×10-3, binomial test).

To further evaluate whether the PWB AD-Age-CpGs 
could be associated with AD in brain tissue, we collected 
four data sets of DNAm profiles of brain tissues of AD 
patients and normal controls sampled from cerebellum, 
entorhinal cortex, prefrontal cortex and superior temporal 
gyrus respectively (Set 15 to 18 described in Table 1), 
which were obtained from 117 individuals archived in 
the MRC London Neurodegenerative Disease Brain 
Bank. Using the RankProd method, with an FDR < 
0.05, we found that 44 of the PWB AD-Age-CpGs were 
significantly differentially methylated in at least one of 
the four brain regions of AD compared to normal controls 
(9, 22, 22 and 22 AD-Age-CpGs for the four brain tissues 
respectively, Table S3).

These results indicated that common DNAm 

alterations observed in PWB Age-CpGs and AD-CpGs 
might not alter in a tissue-specific manner.

dIscussIon

Controversy in origin of PWB DNAm signals 
in patients with aging-related diseases arises from the 
observed increased ratio of myeloid to lymphoid cell 
proportions during disease progression [11]. Our analysis 
revealed that Age-CpGs observed in PWB mainly reflect 
intrinsic DNAm alterations of leukocytes and partly 
reflect those CpGs with large DNAm level differences 
between the myeloid cells and lymphoid cells. Although 
we were unable to further analyze the AD-CpGs in PWB 
leukocyte subtypes due to the lack of DNAm profiling data 
for leukocyte subtypes of AD patients, we believe that 
AD-CpGs observed in PWB also mainly reflect intrinsic 
DNAm alterations of leukocytes as the concordance rate 
between AD-CpGs and CpGs differentially methylated in 
myeloid cells compared to lymphoid cells was as low as 
41.2%. Therefore, we suggested an improved approach to 
identify DNAm biomarkers for Alzheimer’s disease and 
aging in PWB by focusing on those CpG sites with no or 
small DNAm level differences between myeloid cells and 
lymphoid cells.

Age-CpGs and AD-CpGs in PWB have shown 
significant overlaps with consistent changes: positively 
correlated with age and hypermethylated in AD or 
negatively correlated with age and hypomethylated in AD. 
Among the overlapped CpGs, we found many genes have 
been reported to be AD-associated genes. For example, by 
inhibiting the ADAM10 metalloprotease, Sfrp1 has been 
considered to play an important role in pathological events 
of Alzheimer’s disease [19]. DPYS, IGF1R, NRG1 and 
GRB14 are collected in AlzGene database ([20], http://
www.alzgene.org/) which provides a comprehensive 
field synopsis of genetic association studies performed 
in Alzheimer’s disease. In our analysis, these five genes 
have been found hypermetylated during aging in PWB 
as well as in brain tissue. This phenomenon provides a 
new evidence that aging could be an important causal 
mechanism leading to AD progression.

Common DNAm alteration patterns have been 
found in PWB and brain tissue in this study by examining 
the DNAm changes of PWB Age-CpGs and AD-
CpGs in normal brain tissues of elderly people and AD 
patients. Recently, such common DNAm alternations 
have become the focus of some aging-related DNAm 
alteration investigations involving PWB and solid tissue. 
In a previous study, researchers have reported 749 aging-
related CpGs identified from PWB, which could also be 
identified in multiple solid tissue samples including human 
embryonic stem cells. They believe that these Age-CpGs 
could come from stem cells [21]. Among these 749 CpGs, 
42 were included in the PWB AD-Age-CpGs. We also 
found that some of them were differentially methylated in 
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different regions of brain tissue of AD patients and tended 
to significantly correlate with age in both CD4+ T cells 
and CD14+ monocytes. Therefore, we inferred that the 
common aging- and AD-related alterations observed in 
PWB may originate from stem cells [19, 20], which need 
further investigation and validation.

Though we have observed common DNAm 
alterations in PWB of elderly people and AD patients, 
we note that some specific DNAm patterns may exist in 
AD blood. Among the peripheral leukocytes, monocytes 
have been reported to be more proximal to the pathogenic 
cell type [22]. Therefore, we compared the AD-CpGs 
observed in PWB with the Age-CpGs observed in CD14+ 
monocytes. We found that, only 66.7% of the overlapped 
sites between PWB AD-CpGs and CD14+ monocyte Age-
CpGs had consistent changes: positively (or negatively) 
correlated with age and correspondingly hypermethylated 
(or hypomethylated) in AD PWB samples. In contrast, 
the consistent rate for CD4+ T cell Age-CpGs and PWB 
AD-CpGs was 92.7%. This hinted us that specific DNAm 
alterations could exist during AD especially in monocytes 
[23], which may serve as genetic risk factors for AD and 
need further study.

mAterIAls And methods

DNA methylation data

All data sets analyzed in this study were downloaded 
from the Gene Expression Omnibus (GEO) repository 
[24] (http://www.ncbi.nlm.nih.gov/geo/; Table 1). 
Set 1 to 6 were used for the detection and reproducibility 
evaluation of Age-CpGs in PWB. Set 1 to 3 were extracted 
from the same data series (GSE41037) form GEO 
repository [15], which were grouped according to the 
‘dataset’ column of the sample characteristics described in 
the series matrix file, including 193, 105, 96 healthy Dutch 
PWB samples, respectively. Set 4 included 274 healthy 
PWB samples from the ovarian cancer data set reported by 
Teschendorff [25]. Set 5 and 6 included samples in plate 
1 and plate 2 of GSE40279 from GEO repository [26]. 
As samples in GSE40279 were measured on 11 plates, 
samples in each plate should be analyzed separately in 
order to avoid the plate effect. Thus, only samples in plate 
1 and 2 with the largest sample sizes were analyzed in this 
study.

Set 7 included DNA methylation profiles for purified 
leukocyte subtypes [27], including monocytes (n = 5), 
granulocytes (n = 4), neutrophils (n = 4), B cells (n = 5), 
NK cells (Pan NKR cells, CD16+ NK cells, CD16- NK 
cells, CD8+ NK cells and CD8- NK cells, n = 12) and 
T cells (CD4+ T cells, CD8+ T cells, NKT cells, Pan T 
cells and Tregs, n = 16). This set was used to identify 
differentially methylated CpG sites between myeloid 

cells and lymphoid cells and used to serve as reference 
to estimate the proportion of leukocyte subtypes in PWB 
with deconvolution analysis.

Set 8 and Set 9 were used for the detection of Age-
CpGs in peripheral CD4+ T cells and CD14+ monocytes, 
respectively. The samples included in these two sets were 
gathered from the Multi-Ethnic study of Atherosclerosis 
(MESA) which was designed to investigate the prevalence, 
correlates, and progression of subclinical cardiovascular 
disease [13]. Set 8 and Set 9 include 214 and 1202 
samples, respectively.

Set 10 to 13 were used for the detection of Age-
CpGs in brain tissue. The samples in these four sets 
were consisted of tissue samples of cerebellum, frontal 
cortex, pons and temporal cortex obtained from 150 
neurologically normal Caucasian subjects with no clinical 
history of neurological or cerebrovascular diseases, 
respectively [28].

Set 14 to 18 were used to identify AD-CpGs from 
PWB and brain tissue. These DNAm profiles were 
determined from 117 normal individuals archived in MRC 
London Neurodegenerative Disease Brain Bank [5]. The 
PWB samples of AD patients and normal control (Set 14) 
were obtained from 57 individuals. The brain tissues of 
AD patients in Set 15 to 18 included entorhinal cortex, 
superior temporal gyrus, prefrontal cortex, and cerebellum, 
respectively.

Pre-processing DNA methylation data

All of the data sets described in Table 1 were 
generated using either the Illumina Infinium Human 
Methylation27k or Methylated450k BeadChip (San 
Diego, CA, USA). The former platform measures 27, 578 
CpG sites within the proximal promoter regions of the 
transcription start sites of 14, 475 genes, among which 25, 
978 sites are also measured on the HumanMethylated450k 
BeadChip. We focused on analysed the 24, 992 CpG sites 
commonly measured by the two platforms after removing 
1, 486 CpG sites located in X or Y chromosome.

The methylation level of each CpG site was 

calculated by 100
)0,max(

++
=

UM
Mβ  [29], where M and U represent 

the methylated and unmethylated signal intensity of this 

site reported by BeadChip, respectively. Thus, β  value 
ranges from 0 (completely unmethylated) to 1 (completely 
methylated).

To control the quality of each data set, if the missing 
value rate of a sample was larger than 10%, then this 
sample was removed; otherwise, the missing value was 
replaced using the k-Nearest neighbour algorithm (k = 
1). For data sets used to identify Age-CpGs (Set 1 to 13), 
outlier profiles were removed according to a procedure 
similar to that described in [30]. Briefly, for a data set, 
we calculated the inter array correlation between samples 
across all probes using Pearson correlation, then computed 
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the average of the inter array correlation with other 
samples calculated for each sample, and finally removed 
the samples that lie more than two standard deviations 
from the mean of the average correlations. This procedure 
was repeated three times. The numbers of removed 
samples are described in Table 2.

The original platform annotation file was 
downloaded from GEO (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc = GPL8490) for 
Illumina Infinium Human Methylation27 BeadChip and 
the “Gene_ID” column in this file was used to map each 
Illumina CpG probe ID to gene ID. Totally, the 24, 992 
CpG sites analyzed in this study were mapped to 13, 554 
genes. 

Identification of Age-CpGs

To evaluate the associations between age and DNA 
methylation levels of CpG sites, we fit separate linear 
regression models with age as a predictor of β value 
for CpG sites [13]. The covariates were based on the 
phenotypic traits described in sample characteristic(s) 
provided by GEO for each data set. For example, the 
characteristics of samples in Set 8 and Set 9 included 
sex and race/ethnicity, study site, and residual sample 
contamination with non-targeted cells. They were used as 
covariates in linear regression models to find Age-CpGs in 
CD4+ T cells and CD14+ monocytes, respectively. P-values 
were adjusted for multiple testing with the Benjamini-
Hochberg procedure to control the FDR at a given level. 
If a CpG site had significant (FDR adjusted P-value < 
0.05) positive or negative correlation with age, then it was 
referred to as an Age-CpG.

To obtain a reliable list of Age-CpGs for PWB, we 
integrated the Age-CpGs identified from different PWB 
data sets (Set 1- Set 6) according to the following criteria: 
significant in at least one data set with an FDR adjusted 
P-value < 0.05 and tentatively significant in at least 
another data set with an FDR unadjusted P-value < 0.05, 
after deleting those CpG sites having inconsistent positive 
or negative correlations with age in any two data sets.

Identification of AD-CpG sites

To identify AD-CpGs in AD patients compared to 
normal controls in Set 14 to 18, we employed RankProd 
method to detect biologically relevant changes [18]. 
P-values were adjusted for multiple testing using the 
Benjamini-Hochberg procedure to control the FDR at 
0.05.

Estimation of the proportions of myeloid and 
lymphoid cells in PWB

Based on the DNAm profiles for purified leukocyte 
subtypes in Set 7, we quantified the proportion of each 
leukocyte subtype in each of the PWB sample of Set 1 to 
4 by a process of deconvolution proposed by Houseman 
[16]. Here we did not perform the deconvolution process 
for Set 5 and 6 as they were produced by the 450K 
platform, different from the platform (27K) of Set 7 (Table 
1). The 500 CpG loci with the most varied methylation 
levels among these leukocyte subtypes were used as 
marker loci. If B represents the DNAm profile of a PWB 
sample, X represents the proportions of leukocyte subtypes 
and A represents the DNAm profiles for leukocyte 
subtypes, then

AX≈B
The deconvolution is to find the solution of 

the convolution equation, which will give the cell-
type proportions. The proportion of myeloid cells is 
the accumulated proportion of each cell type coming 
from myeloid progenitor including monocytes and 
granulocytes. Similarly, the proportion of lymphoid cells 
is the accumulated proportion of each cell type coming 
from lymphoid progenitor including B cells, NK cells and 
T cells. The detailed algorithm is described in [16].

Comparison of two lists of CpG sites

For two CpG site lists, if they shared k sites, among 
which s were considered as concordant sites, then the 
concordance rate was calculated as s/k. The concordant 
sites were determined as described below:

(1) When comparing two lists of Age-CpGs, a site 
was considered as a concordant site if it showed the same 
positive or negative correlations with age in the two lists.

(2) When comparing a list of Age-CpGs to a list of 
differentially methylated CpG sites between myeloid and 
lymphoid cells, a site was considered as a concordant site 
if it was positively (or negatively) correlated with age 
and correspondingly differentially hypermethylated (or 
hypomethylated) in myeloid cells compared to lymphoid 
cells.

(3) When comparing a list of AD-CpGs to a 
list of differentially methylated CpG sites between 
myeloid and lymphoid cells, a site was considered as a 
concordant site if it showed the same hypermethylation or 
hypomethylation in the two lists.

(4) When comparing a list of AD-CpGs to a list of 
Age-CpGs, a site was considered as a concordant site if 
it was differentially hypermethylated (or hypomethylated) 
between AD patients and normal controls and 
correspondingly positively (or negatively) correlated with 
age.
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The probability of observing a concordance rate of 
s/k by chance was evaluated by the cumulative binomial 
distribution model as follows:

,
where Pe is the probability of one site having the 

concordant relationship between the two lists of sites by 
chance (here , pe = 0.5). 

Gene ontology enrichment analysis

Based on the Gene Ontology (GO) database [31], 
we performed the functional enrichment analysis for the 
common CpG sites between Age-CpGs and AD-CpGs. 
The common CpG sites were first mapped to genes. Then, 
significant GO terms were determined by evaluating 
whether the ratio of common CpG sites observed in each 
GO term is significantly larger than that in the background, 
respectively. The common CpG sites between Age-
CpGs and AD-CpGs was considered to be significantly 
associated with a GO term if the Fisher’s exact P-value 
< 0.05.

Abbreviations

AD, Alzheimer’s disease; PWB, peripheral 
whole blood; DNAm, DNA methylation; Age-CpGs, 
aging related DNAm CpGs ; AD-CpGs; Alzheimer’s 
disease related DNAm CpGs ; ML-CpGs, differentially 
methylated CpGs between myeloid cells and lymphoid 
cells.
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