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ABSTRACT
Cancer remains a major killer worldwide. Traditional methods of cancer 

treatment are expensive and have some deleterious side effects on normal cells. 
Fortunately, the discovery of anticancer peptides (ACPs) has paved a new way for 
cancer treatment. With the explosive growth of peptide sequences generated in the 
post genomic age, it is highly desired to develop computational methods for rapidly 
and effectively identifying ACPs, so as to speed up their application in treating cancer. 
Here we report a sequence-based predictor called iACP developed by the approach of 
optimizing the g-gap dipeptide components. It was demonstrated by rigorous cross-
validations that the new predictor remarkably outperformed the existing predictors 
for the same purpose in both overall accuracy and stability. For the convenience of 
most experimental scientists, a publicly accessible web-server for iACP has been 
established at http://lin.uestc.edu.cn/server/iACP, by which users can easily obtain 
their desired results.

INTRODUCTION

Millions of people have been killed by cancer 
globally every year [1]. Although cancer can be treated 
with the combination of radiation therapy, targeted therapy 
and chemotherapy, these physical or chemical methods 
are expensive and have some deleterious side effects on 
normal cells [2, 3]. It has also been demonstrated that 
cancer cells begin to exhibit resistance towards current 
anticancer drugs [4]. Therefore, it is urgent to develop 
novel anticancer agents. 

Because anticancer peptides (ACPs) do not impair 
the normal body physiological functions, they open 
promising perspective for the cancer treatment [5, 6]. The 
discovery of ACPs has provided an alternative approach 
to treat cancer. Despite some potential drawbacks during 
their development process, such as low in vivo stability 
and high costs for production [5], ACPs have some 

unique and exceptional advantages. This is because ACPs 
are naturally occurring biologics, and hence are safer 
than synthetic drugs, as well as have a greater efficacy, 
selectivity and specificity. In addition to the advantage 
of peptide drugs having no toxicity in-vivo under the 
normal physiological condition [7–9], ACPs are small 
peptides and usually contain 5 to 30 amino acids. Also, 
since ACPs are cationic in nature [10], they can interact 
with the anionic cell membrane components of cancer 
cells and then selectively kill cancer cells [10, 11]. Over 
the last decade, many peptide-based strategies against 
various tumor types have been pre-clinically used [12, 13], 
indicating that ACPs may become promising candidates 
for cancer treatments. In view of the fact that the clinical 
trials of ACPs are still under development, studies on 
ACPs action mechanisms are crucial for cancer treatment. 
Therefore, it is important for both basic research and 
drug development to discriminate ACPs from natural and 
artificially designed peptides.
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Unfortunately, experimental identification and 
development of novel ACPs is extremely cost-ineffective 
and time-consuming. Besides, only few of them have been 
successfully translated into clinics [14]. Therefore, it is 
necessary to resort to computational methods. Actually, 
using amino acid composition and binary profiles as the 
input of support vector machine (SVM), Tyagi et al. [15] 
proposed a model to identify ACPs. Shortly afterwards, 
Hajisharifi et al. [16], using Chou’s pseudo amino acid 
composition and the local alignment kernel based method, 
also proposed a model to do the same. Both methods 
yielded quite encouraging results and have indeed played an 
important role in stimulating the development of this area. 

In considering the importance of ACPs to human 
beings’ health, the present study was initiated to further 
enhance the identification quality by proposing a new 
and more powerful predictor for the same purpose. 
Furthermore, to maximize the convenience for most 
experimental scientists, we have provided a user-friendly 
web-server and a step-by-step guide by which users can 
easily obtain their desired results without the need to go 
through the mathematical equations, which, however, are 
useful for those who want to use the current mathematical 
approach to develop other predictors in computational 
biology. 

As demonstrated in a series of recent publications 
[17–29], to establish a really useful sequence-based 
statistical predictor for a biological system and also to 
make the presentation logically more clear and easier to 
follow, according to Chou’s 5-step guidelines [30] we 
should make the following five procedures crystal clear: 
(1) benchmark dataset; (2) sample representation; (3) 
operation engine; (4) cross validation; (5) web-server. 
Below, let us elaborate how to deal with the five steps  
one-by one. To match the Journal’s style, however, they 
are not exactly following the above order.

RESULTS AND DISCUSSION

A new and more powerful sequence-based method, 
called iACP, was developed for predicting anti-cancer 
peptides.

Comparison with other existing methods

The jackknife success rates achieved by iACP on 
the benchmark dataset (see Supporting Information S1) 
are given in Table 1, where for facilitating comparison, the 
rates reported by Hajisharifi et al. [16] are also listed. As 
we can see from Table 1, iACP outperformed the method 
by Hajisharifi et al.’s method in both Acc and MCC, 
indicating that the current predictor is not only able to 
achieve higher overall success rate, but also more stable. 

It should be noted that the rates reported by 
Hajisharifi et al. [16] were obtained by the 5-fold cross-
validation rather than the rigorous jackknife rest and hence 

would lack objectiveness [30]. For the current case, the 
benchmark dataset contains 138 ACPs and 206 non-ACPs. 
According to the Eqs.28 and 29 in the review article [30], 
the number of possible combinations for conducting the 
5-cross-validation would be more than 1074. Therefore, the 
rates reported by Hajisharifi et al. [16] were derived from 
an extremely small fraction of the possible combinations, 
and hence could not avoid arbitrariness. If the iACP 
predictor was also tested by the 5-fold cross-validation 
on the same benchmark dataset, however, we obtained 
Acc = 94.77% and MCC = 0.893, which are also remarkably 
higher than the corresponding rates by Hajisharifi et al.

To further verify the power of the current predictor, 
a comparison was also made between iACP and Tyagi 
et al.’s method AntiCP [15] on a same independent 
dataset (see Eq.2 and Supporting Information S2). As 
mentioned in the “Benchmark Dataset” section, none of 
the independent data occurs in the dataset used to train the 
current predictor iACP. Accordingly, there is no memory 
advantage [31] whatsoever to iACP. The results thus 
obtained are given in Table 2, from which we can observe 
the following. The overall accuracy Acc and Matthews 
correlation coefficient MCC obtained by iACP are 92.67% 
and 0.88, respectively. They are remarkably higher than 
the corresponding rates obtained by the AntiCP method 
[15], which are 50.00% and 0.00 for its module 1 and 
66.33% and 0.36 for its module 2, respectively. The 
detailed predictive results thus obtained are given in 
Supporting Information S3. The above results indicate that 
the proposed predictor iACP is indeed quite promising or 
at least can play a complimentary role to the existing state-
of-the art methods in this area [15, 16].

A heat map analysis 

Why could the current model achieve so high 
success rates? To address this problem, let us perform an 
intuitive graphical analysis. Using graphical approaches to 
study biological problems can provide very useful insights 
for in-depth analyzing complicated relations in these 
systems, as demonstrated by a series of previous studies 
on various important biological topics, including enzyme-
catalyzed reactions [32–38], protein folding kinetics 
and folding rates [39–42], inhibition of HIV-1 reverse 
transcriptase [43–46], inhibition kinetics of processive 
nucleic acid polymerases and nucleases [47], derivation 
of steady-state reaction system [48], studying drug 
metabolism systems [49], analyzing codon usage [50–52], 
base frequencies in the anti-sense strands [53], and protein 
sequence evolution [54], as well as using  wenxiang graphs 
[55] to analyze protein-protein interactions [56, 57]. In 
this study, the heat map [58] was used to conduct the 
analysis as given in Figure 1, where the row and column 
of the heat map represent the first and second amino 
acid residues of the 1-gap dipeptides, respectively. Each 
element in the heat map represents one of the 400 1-gap 
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dipeptides and is colorized according to its F-score  
(cf. the “Feature Selection” section later). The features in 
blue boxes are positively correlated with ACP, while those 
in red boxes are positively correlated with non-ACP. It was 
observed that the absolute values of F-scores for most of 
the 1-gap dipeptides are near 0 (in green box), indicating 
that these features are irrelevant to the anticancer peptide 
predictions. While the residues Cys (C), Glu (E), Phe (F), 
Gly (G), Ile (I) and Lys (K) are abundant in ACP compared 
to non-ACP. 

Different from normal cell membranes, cancer 
cell membranes carry a net negative charge [59, 60]. It 
has been demonstrated that the membrane interaction 
and insertion of membrane-active peptides could be 
due to their conformation [61], which can be associated 
to a particular order of amino acids. In other words, the 
1-gap dipeptides compositions may be associated with the 
anticancer properties of ACPs, and hence may also be used 
to account for the ability of killing cancer cells.

Web-server guide

For the convenience of most experimental 
scientists, a publicly accessible web-server for iACP has 
been established. Furthermore, to maximize the user’s 

convenience, a step-by-step guide on how to use the web-
server is given bellow.

Step 1. Open the web server at http://lin.uestc.edu.
cn/server/iACP and you will see the top page of iACP 
on your computer screen, as shown in Figure 2. Click on 
the Read Me button to see a brief introduction about the 
predictor and the caveat when using it. 

Step 2. Either type or copy/paste the query peptide 
sequences into the input box at the center of Figure 2. 
The input sequence should be in the FASTA format. A 
sequence in FASTA format consists of a single initial line 
beginning with a greater-than symbol (“>”) in the first 
column, followed by lines of sequence data. The sequence 
ends if another line starting with a “>” appears; this 
indicates the start of another sequence. Example sequences 
in FASTA format can be seen by clicking on the Example 
button right above the input box.

Step 3. Click on the Submit button to see the 
predicted result. For example, if you use the query 
sequences in the Example window as the input, you will 
see the following shown on the screen: the outcome for the 
1st query example is “Anticancer peptide”; the outcome 
for the 2nd query sample is “non-Anticancer peptide”. All 
these results are fully consistent with the experimental 
observations.

Table 1: A comparison of the current method iACP with hajisharifi et al.’s method [16] on the same 
benchmark dataset (Online Supporting Information S1)

Prediction method Validation method Snc (%) Spc (%) Accc (%) MCCc

iACPa
Jackknife test 89.86 98.54 95.06 0.897

5-fold cross-validation 88.40 99.02 94.77 0.893
Hajisharifi et al.b 5-fold cross-validation 89.70 85.18 92.68 0.784

a Proposed in this paper.
b See ref. [16].
c See the section of “A set of four metrics”.

Table 2: A comparison of the current method with the one by Tyagi et al. [15] on the same independent 
dataset given in Supporting Information S2, which contains 150 anticancer peptides and 150  
non-anticancer peptides, and none of the peptides there occurs in the Supporting Information S1 
used to train iACP

Prediction method Snc (%) Spc (%) Accc (%) MCCc

iACP a 93.33 92.00 92.67 0.85

Tyagi et al.b
Module 1 100 0 50 0
Module 2 89.33 45.33 66.33 0.36

a Proposed in this paper.
b Available at http://crdd.osdd.net/raghava/anticp/multi_pep.php.
c See the footnote c of Table 1.
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Figure 1: A heat map or chromaticity diagram for the F values of the 400 1-gap dipeptides. The blue boxes indicate that 
the features are enriched in anticancer peptide, while the red boxes indicate that the features are enriched in non-anticancer peptide. See the 
text for more explanation.

Figure 2: A semi-screenshot to show the top page of the iACP web-server. Its website address is at http://lin.uestc.edu.cn/server/iACP.
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Step 4. Click on the Data button to download the 
benchmark dataset or independent dataset used in this 
study to train and test the iACP predictor.

Step 5. Click on the Citation button to find the 
relevant papers documenting the detailed development 
and algorithm of iACP.

MATERIALS AND METHODS

Benchmark dataset

The benchmark dataset  used in this study can be 
formulated as

  = + −� � �∪  (1)

where the positive and negative subsets,  +  and −  , 
contain respectively anticancer and non-anticancer 
peptides, while the symbol ∪  represents the union in the 
set theory. As elucidated by a comprehensive review [31], 
there is no need to separate the benchmark dataset into a 
training dataset and a testing dataset if the predictor to be 
developed will be tested by the jackknife test or 
subsampling (K-fold) cross-validation test since the 
outcome thus obtained is actually from a combination of 
many different independent dataset tests. In order to have 
a high quality benchmark dataset, the samples in the 
positive subset were taken from Hajisharifi et al. [16] that 
contain 138 anticancer peptides, which had been derived 
from the antimicrobial peptide database [62] as well as the 
existing literatures. The samples in the negative subset, 
however, were constructed as follows. In view of the fact 
that the peptides with anticancer activity are generally 
secretory [63], the non-anticancer peptides can be selected 

from the non-secretory proteins deposited in Universal 
Protein Resource. To avoid redundancy and reduce the 
homology bias, peptides with more than 90% sequence 
similarity were removed by using the CD-HIT program 
[64]. After such a screening procedure, we finally obtained 
206 non-anticancer peptides for the negative subset. The 
138 anticancer peptides and 206 non-anticancer peptides 
are given in Supporting Information S1. 

The statistical distribution of the length for the 138 
anticancer peptides is given in Figure 3, from which we 
can see that most ( ~ 80% ) of them are with the length less 
than 30 amino acids. 

As clearly pointed out in the beginning of this 
section, the independent dataset is not absolutely needed 
for validating a predictor via the jackknife or K-fold cross-
validation, but as a demonstration to show how to use the 
proposed predictor, it may be of help [65] to also construct 
an independent dataset Ind  as formulated by 

Ind Ind Ind   + −= ∪    (2)

where the samples in Ind
+  and Ind

−  were fetched from 
the dataset used by Tyagi et al. [15] and the recent 
CancerPPD database [66] according to the following 
criteria: (1) none of the anticancer peptides in Ind

+  occurs 
in + ; (2) none of the non-anticancer peptides in Ind

−  
occurs in − ; (3) neither the included peptides in Ind  
contains illegal single-letter amino acid codes such as “B”, 
“U”, “X”, and “Z”, nor the peptides in Ind  has ≥ 90% 
pairwise sequence identity to any other in the benchmark 
dataset of Eq.1. By strictly following the aforementioned 

Figure 3: The length distribution of the 138 anticancer peptides in Supporting Information S1.
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procedures, we finally obtained an independent dataset 
Ind , in which the positive subset Ind

+  contains 150 
anticancer peptides, and the negative subset Ind

−  contains 
150 non-anticancer peptides. See Supporting Information 
S2 for the detailed information. Actually, all the datasets 
used in this study can also be directly downloaded from 
the website at http://lin.uestc.edu.cn/server/iACP/data.

Pseudo amino acid composition with G-Gap 
dipeptide mode

Given a peptide, how can we translate it into 
a mathematical expression for statistical analysis? 
Obviously, the most straightforward way to formulate a 
peptide sample P with L residues is to use the sequential 
model as typically given by

1 2 3 4 1 R R R R R RL LP −= ⋅⋅⋅  (3)

where R1 represents the 1st residue in the peptide, R2 the 
2nd residue, and so forth. With the sequential model to 
represent a peptide, not only all its constituent amino 
acids but also their sequence order or pattern can be 
precisely defined. Various existing sequence-similarity-
search-based tools such as BLAST [67, 68] can be 
utilized to identify whether a query peptide belongs to 
anticancer or not. Although quite straightforward and 
simple, this kind of intuitive approach failed to work 
when a query peptide sample did not have significant 
sequence similarity to any of the character-known 
peptides [31].

To cope with this problem, investigators could not 
help but resort to the discrete or vector model. Another 
reason for them to shift their efforts from the intuitive 
sequential model to various vector models is that 
statistical samples formulated based on a vector model 
can be directly handled by all the existing machine-
learning algorithms, such as the optimization approach 
[69], correlation coefficient method [70], correlation 
angle approach [71], neural network [72], covariance 
discriminant (CD) [73, 74], SLLE algorithm [75], 
nearest neighbor (NN) [76]; OET-KNN [77], K-nearest 
neighbor (KNN) [78, 79]; random forest [80], fuzzy 
K-nearest neighbor [78], conditional random field [81], 
ML-KNN algorithm [82], and support vector machine 
(SVM) [83]. 

The simplest vector used to represent a peptide 
sample is its amino acid composition (AAC), as given below

          1 2 20f f f =  
T

R �  (4)

where fi (i = 1, 2, ⋯, 20) is the normalized occurrence 
frequency of the i-th type of native amino acid in the peptide 
chain, and T the transpose operator. The AAC model was 
used by many in predicting various attributes of proteins  
(see, e.g., [69, 84–87]). As we can see from Eq.4, however, 
if using AAC to represent a peptide sample, all its 

sequence order information would be completely lost, and 
hence the prediction quality will be substantially limited.

How can we formulate a peptide with a vector that 
can effectively reflect its sequence pattern information 
or capture its key features closely correlated with the 
predicted target? One of the feasible ways to address such 
a dilemma is to adopt the approach of pseudo amino acid 
composition [88, 89] or Chou’s PseAAC [90–92]. Ever 
since the concept of PseAAC was proposed in 2001 [88], 
it has been penetrating into nearly all the fields of protein 
attribute predictions (see, e.g., [93–107]) and a long list of 
papers cited in the References section of [92, 108] as well 
as a recent review [109]). It has also been used in some 
disciplines of drug development and biomedicine [110] as 
well as drug-target area [111, 112]. 

According to [30], the general PseAAC is 
formulated by

                1 2 u = Ψ Ψ Ψ ΨΩ 
T

P � �  (5)

where the component uΨ  ( )1, 2, ,  u = Ω�  and the dimension 
Ù  will depend on how to extract the features from the 
peptide sequences concerned. In the current study, we are 
to use the following approach to define the components in 
Eq.5.

The proximate dipeptide composition has been 
widely used in computational proteomics [113–115]. 
However, the intrinsic properties of protein sequences 
are usually reflected by the higher tier correlation 
[88] of the constituent residues due to the long-range 
interaction. Accordingly, instead of the proximate 
dipeptide composition, we consider the g-gap dipeptide 
composition, which has been demonstrated quite 
promising for identifying protein attributes [116, 117]. 

For the peptide P as defined in Eq.3, its g-gap 
dipeptide composition can be generally expressed as 

400
1 2P                   g g g

u ud d d d =  
T

� �

proximate dipeptide composition   when 0             
 one gap dipeptide composition,       when 1              
two gap  dipeptide composition,      when 2             
three gap dipeptide composit

g
g
g

=
− =

= − =
− ion,     when 3            

four gap dipeptide composition,      when 4
            

       

g
g







 =

− =

 � �

 (6)

where g
ud  denotes the occurrence frequency of the u-th 

g-gap dipeptide in the peptide as given by

400

1

  ( 0, 1, 2, 3,  4, ) 
( 1)

g g
g u u
u

g
uu

n n
d g

L gn
=

= = =
− −∑

�  (7)

where g
un  denotes the number of the u-th g-gap 

dipeptide. Since the sequences of anticancer peptides are 
not long (see Figure 3), the range for g we need to consider 
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in the current study is up to 4: the case for g = 0 is none 
but the dipeptide composition formed by the nearest 
residues as considered in [118, 119]; g = 1 that formed by 
the 2nd nearest residues as considered in [120]; g = 2 that 
formed by the 3rd nearest residues; and so forth. Thus, 
each of the components in the general PseAAC of Eq.5 
can be uniquely defined as

    ( 1, 2, , ;   0,1 , 2, 3, or 4)
400

g
u ud u g

Ψ = = Ω =
Ω =

�  (8)

SVM (support vector machine) classifier

The SVM classification algorithm has been widely 
used in the realm of bioinformatics (see, e.g., [21, 24, 28, 
29, 83, 121–124]). The basic idea of SVM is to construct 
a separating hyper-plane to maximize the margin between 
the positive dataset and negative dataset. For a brief 
formulation of SVM and how it works, see the papers 
[125, 126]; for more details about SVM, see a monograph 
[127].

The software of SVM used in the current study was 
downloaded from the LIBSVM 2.84 package [128] at 
http://www.csie.ntu.edu.tw/~cjlin/libsvm. Because of its 
effectiveness and speed in nonlinear classification process, 
the radial basis kernel function (RBF) was selected to 
perform the prediction. In the SVM operation engine, the 
regularization parameter C and the kernel width parameter  
γ can be determined via an optimization procedure using 
the grid search approach. In this study, their optimal values 
were found to be C = 2 and γ = 0.125, respectively.

Performance evaluation

The following two things are important for 
evaluating the quality of a statistical predictor: (1) what 
kind of cross-validation method should be adopted to test 
it; (2) what kind of metrics should be used to measure its 
accuracy. 

Jackknife cross-validation

Three cross-validation test methods are often 
adopted in literature to test a statistical predictor: 
independent dataset test, sub-sampling (or K-fold cross-
validation) test, and jackknife test [129]. Among the 
three, however, the jackknife test is deemed the least 
arbitrary and most objective because it can always yield 
a unique outcome for a given benchmark dataset as 
demonstrated by the equations 28–32 in a review paper 
[30]. Accordingly, the jackknife test has been increasingly 
used and widely recognized by investigators to examine 
various predictors (see, e.g., [96, 103, 104, 130–134]).  
In view of this, the jackknife test was also adopted here to 
examine the proposed model.

A set of four metrics 

To provide a more intuitive and easier-to-understand 
method to measure the prediction quality, the following 
set of four metrics based on the formulation used by 
Chou [135] in studying signal peptide prediction was 
adopted. According to Chou’s formulation, the sensitivity, 
specificity, overall accuracy, and Matthews correlation 
coefficient can be expressed as [17, 23, 122, 136–139].

Sn 1  0 Sn 1

Sp 1 0 Sp 1

Acc  1 0 Acc 1 

1
MCC  1 MCC 1

1 1

N
N
N
N
N N
N N

N N
N N

N N N N
N N

+
−
+

−
+
−

+ −
− +
+ −

+ −
− +
+ −

− + + −
+ − − +

+ −


= − ≤ ≤




= − ≤ ≤

 + = Λ = − ≤ ≤ +

 
− +    = − ≤ ≤    − − + +       

 (9)

where N +  is the total number of the anticancer pep tides 
investigated while N +

−  the number of anticancer 
peptides incorrectly predicted as the non-anticancer 
peptides; N −  the total number of the non-anticancer 
peptides investigated while N +

−  the number of the non-
anticancer peptides incorrectly predicted as the anticancer 
peptides. According to Eq.9 we can easily see the 
following. When 0N + =−  meaning none of the anticancer 
peptides was mispredicted to be a non-anticancer peptide, 
we have the sensitivity Sn = 1; while N N+ +=−  meaning 
that all the anticancer peptides were mispredicted to be the 
non-anticancer peptides, we have the sensitivity Sn = 0. 
Likewise, when 0N − =+  meaning none of the non-
anticancer peptides was mispredicted, we have the 
specificity Sp = 1; while N N− −=+  meaning all the 
non-anticancer peptides were incorrectly predicted as 
anticancer peptides, we have the specificity Sp = 0. When 

0N N+ −= =− +  meaning that none of the anticancer peptides 
in the positive dataset +  and none of the non-anticancer 
peptides in the negative dataset −  was incorrectly 
predicted, we have the overall accuracy Acc = 1; while 
N N+ +=− and N N− −=+  meaning that all the anticancer 
peptides in the positive dataset and all the non-anticancer 
peptides in the negative dataset were mispredicted, we 
have the overall accuracy Acc = 0. The Matthews 
correlation coefficient MCC is usually used for measuring 
the quality of binary (two-class) classifications. When 

0N N+ −= =− +  meaning that none of the anticancer peptides 
in the positive dataset and none of the non-anticancer 
peptides in the negative dataset was mispredicted, we have 
MCC = 1; when / 2N N+ +=−  and / 2N N− −=+  we have 
MCC = 0 meaning no better than random prediction; when 
N N+ +=− and N N− −=+  we have MCC = −1 meaning total 
disagreement between prediction and observation. As we 
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can see from the above discussion, it is much more 
intuitive and easier-to-understand when using Eq.9 to 
examine a predictor for its four metrics, particularly for its 
Mathew’s correlation coefficient. Note that, of the four 
metrics in Eq.9, the most important are the Acc and MCC: 
the former reflects the overall accuracy of a predictor; 
while the latter, its stability in practical applications. The 
metrics Sn and Sp are used to measure a predictor from 
two different angles, and they are actually constrained with 
each other [140]. Accordingly, it is meaningless to use only 
one of the two for comparing the quality of two predictors. 
In other words, a meaningful comparison in this regard 
should count the rates of both Sn and Sp, or even better the 
rate of their combination that is none but MCC.

It should be pointed out, however, the set of 
equations defined in Eq.9 is valid only for the single-label 
systems. For the multi-label systems whose emergence has 
become more frequent in system biology [65, 141, 142] 
and system medicine [143], a completely different set of 
metrics is needed as elucidated in [82].

Feature selection

Inclusion of redundant and noisy information would 
lead to poor predicted results. To improve the prediction 
quality, the ANOVA (analysis of variance) procedure was 
performed to select the optimal features among the g-gap 
dipeptide compositions (see Eq.6). ANOVA has been 
used for feature selection in computational proteomics 
[117]. The principle of ANOVA is to measure the feature 
variances by calculating the ratio (F-value) of features 
between groups and within groups [144]. The F-value of 
the ξ-th g-gap dipeptide in benchmark dataset is defined by

( ) ( ) ( )2
2

B W
S / SF ξ = ξ ξ  (10)

where ( )2
BS ξ  and ( )2

WS ξ  denote the sample variance between 
groups (also called Means Square Between or MSB) and 
sample variance within groups (also called Mean Square 
Within or MSW), respectively. They can be calculated 
according to the following equations
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where 1Bdf K= −  and Wdf M K= −  are degrees of freedom 
for MSB and MSW, respectively; K and M represent the 
number of groups (for the current case K = 2) and total 
number of samples (for the current case M = 344), 
respectively;  ( , )gf i jξ  denotes the frequency of the thξ −  

g-gap dipeptide of the j-th sample in the i-th group; im  
denotes the number of samples in the i-th group (for the 
current case m1=138, m2= 206).

The value of ( )F ξ  in Eq.10 reveals the correlation 
between the thξ −  feature and the group variables: the 
larger the feature ( )F ξ  is, the more relevant it is to the 
target concerned. The features thus ranked according their 
values from high to low reflect the order of their 
importance.

Based on the aforementioned order, we used the 
Incremental Feature Selection (IFS) to determine the 
optimal number of features. The IFS approach has been 
used to predict protein domain [145] and antimicrobial 
peptides [146], as well as identify colorectal cancer 
related genes [147] and classify hepatocellular cirrhosis 
and carcinoma [148]. 

During the IFS procedure, features in the ranked 
feature set were added one by one from high to low. A 
new feature set was composed when one feature had been 
added. By adding these features sequentially according to 
their descending order, 400 feature sets will be obtained. 
The τ-th feature set can be formulated as

{ }1 2         (1 400) S f f fτ τ τ= ≤ ≤�  (13)

For each of the 400 feature-sets, an SVM-based 
model was constructed and examined using the 5-fold 
cross-validation test on the benchmark dataset. By 
doing so, we can obtain an IFS curve in a 2D Cartesian 
coordinate system with index τ as its X-coordinate and the 
accuracy rate as its Y-coordinate. The optimal feature set 
is expressed as

{ }1 2         S f f fΘ Θ= �  (14)

with which the IFS curve reaches its peak. And such a set 
of features will be used for further study.

Optimal g-gap dipeptide set

As we can see from the Eq.6, the current approach 
involves five different kinds of dipeptide composition, 
each containing 400 dipeptide components or 
corresponding to a 400-D (dimension) vector. Using the 
feature selection method (see the “Feature Selection” 
section), the IFS curve was plotted for each of the 
five different types of dipeptide composition (Figure 
4). It can be seen from the figure that when g = 1 and 
Θ = 126, the IFS reaches the peak Acc = 94.77%. 
Accordingly, the optimal g-gap dipeptide set in this 
study should be S126 (see Eq.14) derived from one-gap 
dipeptide composition (see Eq.6). The 126 optimal one-
gap dipeptides and their F-values (see Eq.10) are listed in 
Supporting Information S4.

For verifying the advantage of the optimized 
one-gap dipeptide composition, it is also necessary 
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to investigate the performance of other parameters. 
Therefore, the amino acid composition and dipeptide 
composition-based SVM models were developed, 
respectively. Their jackknife test results in identifying 
anticancer peptides by using the same benchmark dataset 
(see Supporting Information S1) are given in Table 
3, from which we can see that the performance of the 
optimized one-gap dipeptide composition is superior to 
its counterparts. 

The predictor established by going through the 
above procedures is called iACP, where “i” stands for 
“identify”, and “ACP” for “anticancer peptide”.

CONCLUSIONS

The iACP web-server presented here is for 
identifying whether a peptide belongs to anticancer or  
non-anticancer purely based on its sequence information 
alone. The predicted results obtained by iACP via the 
jackknife test, 5-fold cross-validation test, and independent 
dataset test have indicated that the new predictor is 
indeed quite promising, or at the very least, able to play a 
complimentary role to the existing state-of-the art methods 
in this area [15, 16]. Owing to its high success rates and 
user-friendliness, it is anticipated that iACP will become 
a very useful high throughput tool, being widely used in 
drug development as well as biomedicine research.

Table 3: A comparison of the current model (iACP) with the other two models via the jackknife 
tests on the same benchmark dataset (Supporting Information S1)

Parameters Sna (%) Spa (%) Acca (%) MCCa

One-gap dipeptide composition 89.86 98.54 95.06 0.897

Amino acid composition 85.51 94.66 90.99 0.812

Dipeptide composition 72.46 93.69 85.14 0.669

a See the footnote c of Table 1.

Figure 4: A plot to show the IFS procedure. When the top 126 1-gap dipeptides were used to perform prediction, the overall 
accuracy reached its peak of 94.77%. See the text for more explanation.
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