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ABSTRACT
Long non-coding RNAs (lncRNAs) modulate gene expression, and lncRNA 

misregulation is associated with cancer. However, precise functional roles in biological 
and disease processes have been described for only a few lncRNAs. Identification of 
genome-wide lncRNA-mediated transcriptional dysregulations may improve cancer 
treatments. In the present study, we used a computational framework that combined 
lncRNA and gene expression profiles with transcription factor (TF)-target relationships 
to comprehensively identify dysregulatory lncRNA-TF-gene triplets. In glioblastoma 
(GBM), we found that most lncRNAs affect multiple targets and primarily affect TF 
activity in trans. Six different classes of lncRNA-mediated transcriptional dysregulations 
were identified, with most lncRNAs either enhancing or attenuating target gene 
expression. Functional analysis of lncRNAs via their dysregulated targets implicated 
lncRNA modulators in some hallmarks of cancer, providing a new way to predict lncRNA 
function. Finally, we identified several lncRNA-TF-gene triplets (including HOTAIR-
MXI1-CD58/PRKCE and HOTAIR-ATF5-NCAM1) that are associated with glioblastoma 
prognosis. The integration of lncRNA modulators into transcriptional regulatory 
networks will further enhance our understanding of lncRNA functions in cancer.

INTRODUCTION

The eukaryotic genome harbors a large number 
of noncoding RNAs. In addition to well-studied small 
miRNAs [1], a great proportion of the transcriptome 
generates RNA transcripts greater than 200 nucleotides 
in length, which are defined as long non-coding RNAs 
(lncRNAs) [2]. The human genome encodes more than 
15,000 potential lncRNAs according to ENCODE V23 
[3]. lncRNAs interact with various biomolecules, including 
DNA, RNA, and proteins, to regulate gene expression at 
transcriptional, post-transcriptional, and epigenetic levels 
[4], playing important roles in a wide range of biological 
processes [5]. Given that lncRNAs are key regulators of 
gene expression, it is not surprising that they are frequently 
dysregulated during tumorigenesis [6, 7]. However, so 
far, only a few lncRNAs have been functionally linked to 
biological or disease processes [4]. Our knowledge of the 
regulatory roles of lncRNAs is limited.

Gene transcription is strictly regulated, in large part, 
by transcription factor (TF) proteins that bind to genomic cis-
regulatory elements in a sequence-specific fashion. While 
TFs are the primary engines of transcription, the ability of a 
TF to regulate its targets is modulated by a variety of genetic 
and epigenetic mechanisms [8–10]. Global regulatory 
perturbations are also related to tumor growth and cancer 
progression [11, 12]. Increasing experimental evidence 
has shown that lncRNAs are important gene expression 
modulators that mediate transcriptional regulation, and 
lncRNA misregulation is associated with cancer. A recent 
study suggested that the lncRNA MALAT1 regulates E2F1 
transcription factor activity, which is a crucial determinant 
of cell cycle progression and tumorigenesis [13]. In addition, 
depletion of MALAT1 activates P53 and its target genes. 
Furthermore, MALAT1-depleted cells display reduced 
expression of B-MYB, an oncogenic TF involved in the cell 
cycle [14]. Another lncRNA, lincRNA-p21, is also involved 
in cancer. LincRNA-p21, in association with hnRNP-K, 
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represses p53-dependent transcriptional responses or 
suppresses target mRNA translation [15]. Moreover, the 
lncRNA CCAT1-L also plays a role in MYC transcriptional 
regulation, and CCAT1-L overexpression promoted MYC 
transcription and enhanced tumorigenesis [16]. These 
findings suggest that lncRNAs may serve as important 
regulators of TFs in tumorigenesis and thus comprise a new 
RNA-based gene regulation mechanism that complements 
the central dogma [17]. Therefore, studying lncRNA-
mediated changes in TF activity is an important step in 
determining lncRNA functions at a system-wide level.

With the increased availability of large data sets 
derived from high-throughput experiments and computer 
algorithms, investigating complex transcriptional 
misregulations mediated by lncRNAs in complex diseases 
is now possible. High-throughput methods are urgently 
needed to identify lncRNA regulators that affect TF activity 
in cancers. In this study, a computational framework is 
provided to comprehensively identify dysregulated lncRNA-
TF-gene triplets by combining both lncRNA and gene 
expression profiles with TF-target relationships (Figure 1). 
This method was applied to glioblastoma (GBM) datasets to 
identify cancer-relevant lncRNA-TF-gene triplets. Notably, 
lncRNAs primarily affected target gene expression in trans. 
We identified six different classes of transcription regulation 

action for each lncRNA-TF-gene triplet. Functional analysis 
of the targets implicated lncRNAs in the regulation of some 
hallmark cancer genes. Finally, we described examples of 
lncRNA-mediated transcriptional dysregulation in lncRNA-
TF-gene triplets that were associated with GBM prognosis. 
The method is available as an R package. We expect that 
the integration of lncRNAs into transcriptional regulatory 
networks will further enhance our understanding of lncRNA 
functions and provide new insights regarding cancer 
classification, prognosis, and treatment.

RESULTS

Overview of lncRNA modulator identification in 
cancer

Here, we developed a framework called LncMod for 
identifying lncRNA modulators by integrating genome-
wide gene expression profiles and transcription regulation 
data. This process involved several scoring and filtering 
steps, as illustrated in Figure 1 and described further in the 
Materials and Methods. Briefly, paired lncRNA and gene 
expression profiles for specific cancers were obtained, and 
the lncRNAs, TFs, and genes were filtered based on the 
expression variation across samples (‘range constraint’). 

Figure 1: Schematic overview of the identification of lncRNA modulators in cancer. For each candidate lncRNA-TF-T 
triplet, individual lncRNA, TF, and gene were selected based on their variation across samples. The relationship between TF-gene was then 
determined to be altered or not in the presence/absence of a given modulator lncRNA. Finally, the expression of lncRNAs were permutated 
to obtain the significance of each triplet.
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In addition, the expression of the candidate lncRNA 
modulators and TFs were required to be statistically 
independent (‘independence constraint’). The estimator 
then assessed the statistical significance of differences in 
correlation (measured by Pearson Correlation Coefficient, 
PCC) between the TF and a target in two subsets: the top 
and bottom 25% of samples in which the candidate lncRNA 
modulator is most and least expressed. The 25% parameter 
was determined empirically in previous study [18]. Each 
possible lncRNA-TF-gene triplet was independently 
tested using the permutation method. False positives 
were controlled using appropriate statistical thresholds. 
Six possible modes of lncRNA action were identified, 
depending on whether the TF-target correlation increased 
or decreased as a function of lncRNA modulator expression. 
The proposed method used four inputs: the gene expression 
profile dataset for lncRNAs, TFs, and target genes, and 
context-specific TF-gene regulations. For each TF-gene 
regulation, we reported the associated lncRNA modulators 
along with their mode of action.

Inferring misregulatory lncRNA-TF-gene 
triplets in GBM

LncMod interrogated a large paired lncRNA and gene 
expression profile dataset to identify ‘lncRNA modulators’ 
whose expression strongly correlated with changes in the 
transcriptional activity of a TF. The statistical significance 
of changes in TF transcriptional activity (ΔR) can be 
effectively estimated from a large number of samples, 
provided that matched lncRNA and gene expression 
profiles are available for the same samples. We applied 
the proposed method for genome-wide identification of 
lncRNA modulators of TFs, using a previously assembled 
collection of GBM expression profiles from The Cancer 
Genome Atlas (TCGA). LncMod identified 8,401 lncRNA 
modulators participating in ~139,000 lncRNA-mediated 
TF-target interactions at a conservative false discovery rate 
(FDR < 0.01, Figure 2A) in these GBM datasets. All of 
the identified triplets are enumerated in LncMod and are 
available online (http://www.bio-bigdata.com/LncMod/ ). 

This global analysis produced two intriguing 
findings. First, lncRNA degree, defined as the number 
of transcriptional dysregulations it mediated, followed 
a power-law distribution with a slope of −1.284 and 
R2 = 0.993 (Figure S1). The majority of lncRNAs mediated 
a low number of transcriptional dysregulations, while a 
few lncRNAs, termed hubs, mediated a high number of 
transcriptional dysregulations. KEGG enrichment analysis 
revealed that these target genes were enriched in categories 
known to be related to cancer development and progression 
(Figure S2), such as ‘focal adhesion’ (p = 6.0 × 10−12) 
and ‘P53 signalling pathway’ (p = 1.73 × 10−5). An early 
indication of the connection between the structure of a 
cellular network and its functional properties was the 

finding that highly connected proteins or hubs are more 
likely to be encoded by disease genes [1, 19]. This prompted 
us to hypothesize that human disease lncRNAs should also 
tend to mediate more transcriptional dysregulations. For 
example, the lncRNA HOTAIR mediated 513 transcriptional 
dysregulations among 71 TFs and 421 target genes. 
Our analysis showed that the number of transcriptional 
dysregulations mediated by disease lncRNAs was greater 
than that of other lncRNAs (Figure 2B, P = 6.22 × 10−4, 
Wilcoxon Rank-Sum Test). On average, disease lncRNAs 
mediated 218.4 TF-gene dysregulations, while other 
lncRNAs mediated approximately 163.6 dysregulations. The 
observed functional and topological centrality of lncRNAs 
fits well with our current understanding that many lncRNAs 
play critical roles in cellular development and growth. 

lncRNAs mainly affect TF activities in trans

lncRNAs may work either in cis or in trans to 
negatively or positively control protein-coding gene 
expression [20]. Next, we explored the distances between 
the lncRNAs and target genes in identified lncRNA-TF-
gene triplets. LncRNA modulating the targets on the 
different chromosomes accounted for about 95.07% 
of triplets in GBM. Moreover, the majority of these 
lncRNAs seem to mediate transcriptional dysregulation 
in trans, more than 85.92% of these lncRNAs affected 
the transcriptional dysregulation of a gene beyond 
10 Mb away (Figure 2C). A recent study concluded 
that lincRNAs act in cis based on the observation that 
knockdown of 7 out of 12 lincRNAs affected expression 
of a gene within 300 kb [21]. However, we found that 
only 0.67% of lncRNAs dysregulated the transcription 
of genes within this distance threshold in GBM. This 
is consistent with the observation of another recent 
study that only 8/147 lncRNAs affected genes within 
300 kb; this proportion is lower than that observed for 
protein-coding genes [22]. However, we found that 
the proportions of lncRNA-gene pairs on the same 
chromosome and pairs further than 10 MB from each 
other were similar to randomly selected lncRNA-TF-gene 
triplets. For instance, HOTAIR represses transcription 
in trans across 40 kb of the HOXD cluster [23]. Here, 
we found that HOTAIR also mediated transcriptional 
dysregulation in trans. Just 6.41% of the target genes 
mediated by HOTAIR were on the same chromosome 
as it, and the distance between the nearest affected 
gene (ORMDL2) and HOTAIR was more than 1.8 Mb. 
Besides these trans-regulating lncRNAs, 402 lncRNAs 
in GBM affected genes located within 10 genes of the 
lncRNA in either direction, and only 19 lncRNAs affected 
more than two genes within this range (Figure 2D); 
these proportions are similar to those observed for 
randomly selected lncRNA-TF-gene triplets. For 
example, XLOC_008935 and XLOC_005133 only 
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mediated the transcriptional dysregulation of three 
neighbor genes. In short, the majority of lncRNAs seem 
to affect the activity of TFs largely by acting in trans, but 
some also work in cis.

Complex patterns of lncRNA-mediated 
transcriptional dysregulation

Many TFs both activate and repress gene expression 
depending on sequence, chromatin structure, and 
modulators. lncRNAs also affect specific subsets of TF 
targets, functioning as ‘coactivators’ or ‘corepressors’ [24]. 
In addition, lncRNAs may reverse the effect of TFs on 
target genes. The ternary lncRNA-TF-gene relationship is 
complicated. Genome-wide analysis of the lncRNA-TF-
gene triplets in GBM showed that lncRNAs can not only 
enhance or attenuate the effects of TFs, but can also reverse 

them. To capture this complexity, we assigned each lncRNA-
TF-gene triplet to one of six different patterns (Figure 3A). 
Globally, the majority of lncRNAs fine-tuned the expression 
of target genes in GBM. Approximately 85.03% lncRNAs 
enhanced or attenuated the effect of the TF in GBM, and 
14.97% lncRNAs reversed the effect of TFs (Figure 3B). 

In addition, we observed that most lncRNAs (98.94%) 
affected multiple genes and were multimodal; lncRNAs fit 
more than one pattern, acting as enhancers, attenuators, or 
invertors based on the target gene. For example, HOTAIR 
enhanced the association between STAT5 and CENPA, but 
also inhibited the association between STAT5 and EML5 
in GBM (Figure 3C). It is well documented that gene 
modulators affect specific subsets of TF targets in different 
patterns [9]. Our findings support this complexity in that 
lncRNA modulators typically had many target-specific 
effects. These findings provide new insight on the role of 

Figure 2: lncRNAs modulate transcriptional dysregulation in trans. (A) The number of lncRNAs, TFs, and genes in the 
identified triplets. (B) Disease lncRNAs modulate more transcriptional dysregulations. (C) The distribution of distances between lncRNAs 
and genes. (D) Examples of lncRNAs that affect 10 neighbour genes on each side. 
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lncRNAs in regulating the activity of TFs, and suggest 
that more complex models are needed to better elucidate 
how gene expression is regulated. lncRNAs were clustered 
by their regulation patterns, yielding distinct groups of 
lncRNAs that mediated transcriptional dysregulation in 
specific patterns (Figure 3D). For instance, the lncRNAs in 
cluster 4–5 tend to enhance TF activity, whereas those in 
cluster 1–2 tend to attenuate TF activity. These lncRNAs 
may function as coactivators or corepressors to mediate 
transcriptional regulation. However, clustering of lncRNA-
mediated TFs showed that the majority of TFs and target 

genes were widely distributed in all lncRNA clusters 
(Figure S3). These observations indicated that the distinct 
lncRNA patterns were TF-gene-regulation dependent, but 
did not depend on specific TFs or target genes.

lncRNAs modulate cancer-associated functions

Although accumulating evidence has provided 
insight into the various functions of lncRNAs, the exact 
functions of the majority of such transcripts are still 
unknown. In this study, we showed that lncRNAs mediated 

Figure 3: The complex patterns of lncRNA mediated transcriptional dysregulation. (A) Classification of lncRNA modulators. 
(B) The proportion of each pattern. (C) Target genes of some TFs detected to be modulated by HOTAIR. (D) Clustering of lncRNA 
modulators based on regulation patterns. Some representative lncRNAs, TFs, and genes are shown on the right. 
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many transcriptional dysregulations. Investigating the 
functions of their target genes may provide new insights 
about the functions of these lncRNAs. One characteristic 
of cancer is the presence of abnormal cells that grow 
beyond their natural boundaries, and this property is driven 
by hallmark biomarkers of human cancers [25]. Although 
the biology of cancer is extremely complex, it can be well-
represented by a few markers that enable tumor growth 
and metastasis dissemination. These “hallmarks” provide a 
framework for understanding may diverse types of cancer. 

Cancer-relevant lncRNAs were identified through 
analysis of target genes for functional enrichment of one or 
more hallmarks of cancer. In total, targets of 5,967 lncRNAs 
in GBM were enriched in at least one hallmark (Figure 4A). 
Globally, most lncRNA modulators regulated targets 
involved in hallmarks of tissue invasion and metastasis 
and insensitivity to antigrowth signals. Specifically, 463 of 
the disease-related lncRNAs identified were functionally 
implicated in known physiological or pathological processes; 
445 lncRNAs also mediated transcription dysregulation of 
cancer genes (Figure 4B). The lncRNA with the highest 
connectivity in the network, BDNF antisense RNA 
(BDNF-AS1), mediated 124 transcriptional dysregulations, 
including some well-known GBM associated genes, 

such as YAP1, ITGB2 [26] and CDKN1A [27]. YAP1 is 
widely expressed in human brain tumors and promotes 
glioblastoma growth [28]. In addition, BDNF regulates 
cell growth, differentiation, migration, and apoptosis in 
the nervous system [29]. These observations suggest that 
novel therapeutic strategies that target BDNF might improve 
GBM treatment. A second lncRNA with high connectivity, 
LOC100506474, inverted the association between MYCN 
and IL6; recurrent amplification of LOC100506474 has also 
been demonstrated in GBM [30]. The lncRNA SOX2-OT, 
which mediated 22 pairs of TF-cancer gene dysregulations 
(Figure 4B), is highly expressed in tumors and is associated 
with the development of Alzheimer’s disease [31]. 
Additionally, we showed that SOX2-OT inverted the 
transcriptional association of STAT4 to CD4, which plays a 
key role in cancers. These observations suggest that SOX2-
OT may be a novel tumor therapy candidate. In addition, we 
found that MEG3 enhanced the positive regulation between 
RARA and VEGFA, and GAS5 enhanced the negative 
regulation between ASCL1 and CD70 (Figure 4B). These 
two lncRNAs play key roles in cancer development [32, 33]. 
Moreover, we examined the functions of distinct lncRNA 
clusters identified above and found that the functional 
profiles of distinct clusters were similar (Figure 4C). This 

Figure 4: lncRNA modulated wide cancer-associated functions. (A) Heatmap of lncRNA function profiles. Each row corresponds 
to a lncRNA and each column corresponds to a GO term associated with 10 hallmarks of cancer. Color represents the -log10 (p-adjusted). 
The number of lncRNAs enriched in each hallmark is shown in the bar plot on the left of the heatmap. (B) The representative lncRNA 
modulated transcriptional dysregulation associated with cancer genes. lncRNA and TF-gene pairs are shown as nodes and the lncRNA was 
linked to the TF-gene if it mediated the transcriptional dysregulation. Rectangles, lncRNAs; circles, TF-gene pairs. Node colors indicate 
hallmarks and the edge colors indicate effect patterns. (C) The heatmap of the function profiles of seven lncRNA clusters. Color represents 
the –log10 (p-adjusted).
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suggests that more complex models and classification 
systems are needed to better elucidate how transcriptional 
regulation is mediated by lncRNA.

lncRNA-TF-gene triplet signatures predict 
survival in GBM

Exhaustive survival analysis was also performed on 
each of the triplets in GBM to test whether their expression 
profiles were associated with cancer prognosis (details in 
Methods). Specifically, we focused on candidate lncRNA 
modulators that were located in amplified/deleted regions 
or have been previously associated with diseases. Studies 
suggest that genes with causal roles in oncogenesis are often 
located in the SCNAs (somatic copy-number alterations) 
that are frequently altered across tumors. To determine 
which lncRNA modulators might have tumor-promoting 
or -suppressing functions, we identified 239/168 lncRNAs 
in GBM that map to regions of recurrent amplification/
deletion, respectively. It has been reported that some genes 
within amplified (or deleted) regions show increased (or 
decreased) expression levels that alter activity in cancer 
cells. We therefore reasoned that alternations in lncRNA 
modulator activity may dysregulate associations between 
TFs and their target genes. The functional importance of an 
lncRNA was only evaluated if one of its targets interacted 
with at least one of the cancer hallmarks. 9,359 triplets, 
consisting of 264 lncRNA modulators, 205 TFs, and 1,125 
target genes, were identified for further analysis. Among 
these candidate triplets, 214 can be used to train and 
test GBM patients into good and poor prognosis groups 
(Figure S4). Although most lncRNAs in these triplets fine-
tuned TF activity, TF activity was inverted in approximately 
14.95% triplets. Additionally, although the combination of 
lncRNA, TF, and gene expression successfully stratified 
patients, approximately 97.20% of the triplets included 
a component that was not significantly associated with 
GBM prognosis. This suggests that studying dysregulation 
patterns at a cellular network level, rather than in a ‘gene-
centric’ manner, may be a more efficient method of 
identifying prognosis biomarkers. 

As an example, 12 triplets involving HOTAIR were 
identified as being associated with GBM patient survival 
(Figure 5A). Of these 12 triplets, HOTAIR attenuated 
transcriptional regulations between five TF-gene pairs, 
enhanced regulation of five TF-gene pairs, and inverted 
regulation of two TF-gene pairs. In addition, our data 
suggested that HOTAIR was a negative prognostic factor in 
GBM (beta = 0.11, p = 0.043, univariate Cox regression in 
the train dataset). HOTAIR inverted the activity of MXI1 on 
CD58. Using combined HOTAIR-MXI1-CD58 expression, 
patients in the training set were divided into high- and 
low-risk groups; patients with high-risk scores had shorter 
median survival than those with low-risk scores (Figure S5, 
p = 0.008). Next, we conducted a test in which samples 
were also classified into high or low-risk groups using the 

same cut-off points as in the training set to validate this 
triplet signature. Again, patients with high-risk scores had 
shorter overall survival (Figure S5, p = 0.016). MXI1 over-
expression inhibits the proliferation of U87 GBM cells, and 
MXI1-deficient mice show increased tumorigenesis [34]. 
In addition, activated CD58 upregulates the Wnt pathway, 
and knockdown of CD58 impairs sphere formation and 
tumor growth [35]. In a second triplet, HOTAIR-MXI1-
PRKCE, HOTAIR also inverts the activity of MXI1. The 
PRKCE kinase is involved in many different cellular 
functions, such as neuron channel activation, apoptosis, 
cardioprotection from ischemia, heat shock response, 
and insulin exocytosis. Survival analysis revealed that 
combined HOTAIR-MXI1-PRKCE expression successfully 
stratified patients into good and poor prognosis groups in 
both the training and testing datasets (Figure S6). However, 
the expression of MXI1 and PRKEC could not distinguish 
patients based on survival times (Figure 5B, Cox regression 
p > 0.05), suggesting that the ‘triplet biomarkers’ are more 
informative than individual genes. Moreover, TF-ATF5 
activity was also mediated by HOTAIR, which supressed 
negative regulation between ATF5 and NCAM1. ATF5 
is essential in the genesis of malignant glioma [36], and 
analysis of human malignant glioma samples indicated 
that ATF5 expression inversely correlated with disease 
prognosis. NCAM1 protein is involved in the development 
of the nervous system [37], and in cells involved in T cell 
and dendritic cell expansion, which plays an important 
role in immune surveillance. Transcriptional dysregulation 
mediated by HOTAIR may serve as new targets for the 
diagnosis, therapy and prognosis in GBM. 

To confirm the lncRNA-TF-gene triplet signatures 
as independent predictors, we obtained expression data 
for HOTAIR and the genes from an independent cohort of 
97 Chinese GBM patients [38]. The K-means clustering 
procedure was used to divide patients into two subgroups 
based on triplet expression, and the Kaplan-Meier method 
was then used to estimate overall survival time for the two 
subgroups. Differences in survival times were analyzed 
using the log rank test. Expression of 11 of the 12 triplets 
modulated by HOTAIR was measured in this dataset. 
The expression of 10 (90.90%) triplets was associated 
with survival in the Chinese GBM patients (Figure 5C 
and Figures S5–S14). In addition, we observed that the 
three triplets discussed above yielded low p-values in 
the validation dataset (Figure 5D–5F). This suggests 
that HOTAIR plays an important role in GBM molecular 
classification and may serve as a novel therapeutic target.

DISCUSSION

Here, we introduce LncMod, a new computational 
method for the identification of lncRNA modulators 
affecting TF activity in cancer. By integrating genome-
wide lncRNA and gene expression profiles with TF-target 
regulation, LncMod identifies lncRNA modulators that 
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affect TF activity, but not mRNA levels. By applying 
LncMod to published human GBM-associated lncRNA and 
gene expression datasets, we demonstrated that lncRNAs 
mainly affect target gene expression in trans. In addition, 
we found that most lncRNAs affect multiple targets and are 
multimodal, acting as enhancers, attenuators, or invertors 
depending on the specific target. Our results suggest that 
many more lncRNAs besides those identified in classical 
studies may affect cellular functions. In our study, 
functional analysis of these lncRNAs based the targets they 
regulate identified additional cancer-relevant lncRNAs. We 
focused on lncRNAs located in amplified or deleted regions 
and provided examples of lncRNA-TF-gene triplets (such 
as HOTAIR-MXI1-CD58/PRKCE and HOTAIR-ATF5-
NCAM1/APC) that are associated with GBM prognosis. 
Kaplan–Meier survival curve analysis indicated that GBM 
patients with lower HOTAIR expression showed prolonged 
survival compared to patients with high HOTAIR levels 
(p < 0.001) [39]. In addition, we compared triplet signatures 
with previously identified prognosis-associated biomarkers 
in glioma, such as VSIG4 [40] and TRIM8 [41]. The 
P-values of the triplet signatures are much smaller than 
these previous identified biomarkers. Identification of 
triplets for which expression correlates with survival may 

improve our understanding of tumor development and 
provide more accurate information for the development of 
new targeted therapies.

Although thousands of lncRNA modulators 
were identified in our current study, the underlying 
mechanisms of how lncRNAs affect TF activity remains 
to be discovered. lncRNAs can act as scaffolds for several 
proteins tethered to a specific cellular compartment and 
thus guide recruitment of proteins to specific target genes 
[24, 42–44]. We proposed that some of these lncRNA 
modulators may also disturb the activity of TFs (Figure 6A). 
The development of high-throughput strategies, such as 
ChIRP, allows for unbiased discovery of RNA-bound 
DNA and proteins. In a ChIRP dataset of HOTAIR in 
cancer [45], there was a trend in which HOTAIR-mediated 
targets slightly overlapped with interacting genes (p = 0.09, 
hypergeometric test). HOTAIR also specifically attenuated 
the association of TCF7L1 to SENP7. Additionally, 
HOTAIR can also bind to TCG7L1 and SENP7, suggesting 
that HOTAIR may function as a scaffold that modifies TF 
activity (Figure 6A). In addition, lncRNA interaction data 
in LncRNADisease [46] showed that H19 can interact 
with E2F1 in the nervous system. In the present study, we 
found that H19 mediated the association of E2F1 with its 

Figure 5: lncRNA triplets were associated with GBM prognosis. (A) The prognosistic value of triplets with HOTAIR in training 
and testing datasets. (B) the p-values of the TFs, genes, or the triplets in training and test datasets. (C) the p-values of the lncRNA-TF-gene 
triplets involving HOTAIR in the validation dataset. (D–F) Color-gram of lncRNA-TF-gene expression profiles of GBM patients in the 
independent dataset. Rows represent lncRNAs, TFs, or genes and columns represent patients. The green (red) color bar represents low-risk 
(high-risk) patient groups. (Bottom panel) Kaplan–Meier estimates of overall survival of GBM patients according to the triplet signature.
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targets. Moreover, the ability of MIR155HG to mediate 
the association of MYB with its targets was also supported 
by the LncRNADisease database. The increase in publicly 
available datasets of lncRNA annotations and interactions 
will provide new insights into lncRNA-mediated 
transcriptional dysregulation in cancer. In addition, lncRNA 
transcription can also result in chromatin remodelling that 
either favors or inhibits the binding of regulatory factors 
(Figure 6B). This may be the primary action of some cis-
acting lncRNAs, such as RP11-80H5.7 and KIF20B. These 
two RNAs were located adjacent to each other (3.68 kb)  
and were co-expressed with each other (R = 0.27,  
p < 1.0 × 10−32). This implies that expression of this lncRNA 
may enhance the assembly of TFs at this genomic region and 
then promote the transcription of target genes. Moreover, 
lncRNAs may fold into structures that mimic the DNA-
binding sites of the TFs, and the resulting interaction may 

inhibit or enhance the activity of specific TFs (Figure 6C). 
For example, the lncRNA GAS5 binds to the DNA-binding 
domain of the glucocorticoid receptor (GR) by acting as a 
decoy “glucocorticoid response element (GRE)”, and thus 
competes with DNA GREs for binding to the GR [47]. In 
our study, we found that GAS5 can also be targeted by 
the TFs it mediates, such as CEBPA, E2F1, and HOXB4. 
Yolanda et al. recently demonstrated that two p53-regulated 
lncRNAs are also required for efficient binding of p53 to 
some of its target genes, modulating the p53 transcriptional 
network and contributing to apoptosis in cancer [48]. These 
observations indicate that TFs and lncRNAs may establish 
positive regulatory feedback loops to regulate TF activity. 
In addition, new lncRNA-dependent mechanisms of protein 
translation control have been described [49]. This suggests 
that some lncRNAs may mediate the translation of TFs and 
also affect TF activity (Figure 6D). For instance, GAS5 

Figure 6: LncRNA mediated the activity of TF through several mechanisms. (A) lncRNAs serve as scaffolds to bind TFs 
and target genes, and then affect the association of TFs with specific DNA loci. For example, HOTAIR can bind TCF7L1 and SENP7. 
(B) Transcription of lncRNAs can also result in chromatin remodeling that can either favor or inhibit the binding of TFs to their adjacent 
genes. Depending on the nature of TFs, gene expression is activated or repressed. (C) lncRNAs can fold into structures that mimic TF 
binding sites, and then inhibit or enhance the associations of TFs with their target genes. For example, the TFs mediated by GAS5 can also 
regulate the expression of GAS5, causing TF levels and activities to influence other genes. (D) lncRNAs can also regulate gene expression 
by binding TFs to inhibit the nuclear localization or translation of specific TFs. 
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mediated the activity of MYCN, which is a member of the 
MYC family. A recent study demonstrated a role for GAS5 
lncRNA in translation regulation through its interactions 
with eIF4E and c-Myc mRNA [50]. In addition, Liu et al. 
have demonstrated that GAS5 enhances G1 cell cycle arrest 
via binding to YBX1, which regulates p21 expression in 
cancer [51]. Additional mechanisms by which lncRNAs 
mediate transcription likely have yet to be discovered.

Although the performance of LncMod is encouraging, 
integrating more source data is likely to improve its ability 
to detect cancer-relevant triplets. As a preliminary test, we 
combined TF binding profiles using a linear regression 
model to identify transcriptional regulations between TFs 
and genes. Advances in DNA sequencing technologies 
have led to the development of ChIP-seq (chromatin 
immunoprecipitation followed by DNA sequencing), 
which allows rapid and genome wide analysis of TF 
binding in cells [52]. Integrating these ChIP-Seq datasets 
may provide more accurate data regarding transcriptional 
regulations in cancer. Moreover, since lncRNAs are also 
regulated by TFs and play important roles in cancer, 
further investigation of the lncRNA-TF-lncRNA regulation 
loop would be useful. We also examined the effects of 
HOTAIR on the transcriptional regulation between MXI1 
and CD58/PRKCE/CD97 using public ChIP-seq datasets. 
HOTAIR is overexpressed in the K562 cell line compared 
with GM12878 cells (Figure S15A). Consistent with our 
above analyses, MXI1 activity was altered in these two 
cell lines (Figure S15B–S15D). These results indicated 
that, at the level of “epigenomic control”, HOTAIR altered 
the association between TF and its target genes. Currently, 
LncMod focuses on the transcriptional regulation of TFs 
in cancer, but modified algorithms based on the same 
principles could be applied for other regulations. Examples 
are already emerging in which lncRNAs act as competing 
endogenous RNA (ceRNAs) to mediate miRNA and mRNA 
regulation [53–55]. In addition to their roles in human 
development, lncRNA ceRNAs have been implicated in 
various cancers. In addition to in silico prediction strategies, 
recently developed high-throughput biochemical techniques 
(such as HITS-CLIP and PAR-CLIP) allow genome-wide 
identification of miRNA-lncRNA/mRNA regulations. 
Analyzing data obtained using these experimental 
techniques in a manner similar to that presented here will 
provide further insights into ceRNA regulation. Moreover, 
the increasing availability of sample-matched lncRNA and 
gene expression profiles may make it possible to generalize 
the models proposed here to other cancers.

We expect that the integration of lncRNAs into 
regulatory networks with help improve understanding 
of the transcriptional control of TFs. Here, we provide a 
large-scale survey of lncRNA modulators in GBM and 
speculate about transcriptional regulation based on this 
additional layer of RNA-based regulation. The lncRNA 
modulators identified here may offer new targets for 
cancer diagnosis and therapy and help improve prognoses.

MATERIALS AND METHODS

Paired gene and lncRNA expression profiles 
across cancers

We collected paired gene and lncRNA expression 
profiles for GBM (451 samples) from a recent study 
[30]. Briefly, the exon array data was downloaded from 
TCGA (https://tcga-data.nci.nih.gov/) and probe sets 
of Human Exon array were re-annotated to the human 
genome (hg19). lncRNA expression was calculated by 
summarizing the background-corrected intensity of all 
probes that were mapped to the gene. lncRNA expression 
was quantile normalized across different biological 
samples, and Combat was used to remove potential batch 
effects [56]. As a result, the expression of 10,207 lncRNAs 
and 18,319 protein coding genes were obtained for further 
analysis. All expression profiles were log2 transformed. 
In addition, we downloaded clinical annotations of GBM 
patients from TCGA. 

Collection of disease-associated lncRNAs and 
cancer genes

The LncRNADisease database curates experimentally 
supported lncRNA-disease association data [46]. We 
downloaded experimentally supported disease-associated 
lncRNAs from this database. Additional known disease-
related lncRNAs were collected by manual curation of 
published literature. All of these known disease-related 
lncRNAs were re-annotated according to lncRNA genomic 
positions derived from the Ensemble database (http://www.
ensembl.org/). Known disease-related lncRNAs were 
mapped to the lncRNA IDs in our current study when they 
had at least 80% reciprocal overlap. In total, 67 disease-
related lncRNAs were identified. In addition, recurrent 
somatic copy-number alteration (SCNAs) regions in GBM 
were identified by the GISTIC method from a previous 
study [57]. SCNA magnitude was estimated as the log2 ratio 
of segmented copy numbers between cancer and control 
DNAs. lncRNAs were then mapped to these SCNA regions 
using bedtools; in total, 239 and 168 lncRNAs in GBM were 
located in the amplified and deleted regions, respectively. 
In total, 463 disease-associated lncRNAs were collected. In 
addition, we collected cancer-associated genes from public 
databases, including Cancer Gene Census (CGC, http://
cancer.sanger.ac.uk/cosmic), Online Mendelian Inheritance 
in Man (OMIM) [58], and the Genetic Association Database 
(GAD, http://geneticassociationdb.nih.gov). 

Identification of TF-gene regulations

To identify the regulatory relationship between 
TFs and genes, we first downloaded the defined promoter 
region (−2000/+2000 bp around TSS) of the 32,941 RefSeq 
genes from the UCSC table browser. Then, we searched 
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the binding sites of TFs using the MatchTM software that 
is integrated in TRANSFAC Professional (release 2013.6) 
[59]. We used pre-calculated cut-offs to minimize false 
positive matches (minFP) and create a high-quality matrix. 
To restrict the search, we required that TFs belong only to 
the human genome [12, 60]. 

Because physical binding of transcription factors is 
necessary, but not sufficient, for transcription initiation in 
the context of GBM, we used a linear regression model 
to obtain context-dependent TF-gene regulations in GBM. 
This process was performed using the ‘lm’ function of R 
programming tool in which gene expression (log2) changes 
as a linear function of a specific TF across tumor samples. 
The p-value computed for the linear regression model 
was corrected by the BH procedure, and only regulations 
with an adjusted p-value less than a predefined threshold 
were further considered. In our study, we chose the 
corresponding thresholds (p < 1.0 × 10−10) that resulted in 
passing  p-values for the top 30% of regulations in GBM.

Overview of the identification of lncRNA-
mediated transcriptional dysregulations 
in cancer

Here, we pursued a framework called LncMod 
to identify the lncRNA modulators which affect TF 
activities in cancer by integrating genome-wide gene 
expression profiles and transcription regulations. Briefly, 
the ‘LncMod’ method is based on a multivariate statistical 
dependence model designed to capture a particular type of 
three-way interaction where the ability of a transcription 
factor, gTF, to control its target gene, gt, is influenced by a 
number of lncRNAs, which we call modulators (gm).

A flowchart outlining the identification of 
misregulatory lncRNA-TF-gene triplets in specific cancers 
is outlined in Figure 1. First, paired lncRNA and gene 
expression profiles for specific cancers were obtained, 
and lncRNAs, TFs, and genes were filtered based on the 
expression variation across samples (‘range constraint’). 
Individual TFs (gTF), target genes (gt) and lncRNA 
modulators (gm) were selected based on their variation across 
samples (log2 IQR > 0.58). In addition, the expressions of 
candidate lncRNA modulators and TFs were required to be 
statistically independent (‘independence constraint’). For 
each lncRNA gm, the tumor samples were then sorted based 
on the expression of gm; the top and bottom 25% of samples 
in terms of lncRNA expression were then contrasted. 
Downstream analysis was only performed on TFs that 
were deemed independent based on a lack of differential 
expression between the lncRNA high-expression and low-
expression sample subsets at p < 0.01 and >1.5-fold changes 
using a standard t-test. Each possible lncRNA-TF-gene 
triplet was then independently tested to determine whether 
the relationship between the TF and the gene was altered in 
the presence/absence of a given lncRNA. The regulations 
were deemed altered if the difference between PCClow and 

PCChigh was >Th1 and the absolute value of either PCClow 
or PCChigh was > Th2. In our current analysis, Th1 and Th2 
were chosen as 0.45 and 0.4 according to Heidi et al. [18].

To assess the statistical significance of the difference 
(ΔR) between PCClow and PCChigh, we generated a series of 
null hypotheses by measuring the ΔR distribution across 
random conditions. That is, for each (gTF,gt) gene pair, 
expression profiles in non-overlapping sample subsets that 
were used to measure the PCClow, PCChigh, and ΔR, were 
chosen at random from the complete dataset, rather than 
based on the expression of a candidate lncRNA modulator. 
This process was repeated 100 times. The p value is the 
fraction of ΔR in random conditions that was larger than 
that in the real conditions; p-values were Bonferroni-
corrected for the total number of candidate lncRNA-TF-
gene triplets [61]. The triplets with adjusted p-values less 
than 0.01 were regarded as significant. The R source code 
for the calculation is available at http://www.bio-bigdata.
com/LncMod/ or http://ftp.ctex.org/mirrors/CRAN/web/
packages/LncMod/index.html.

Category of lncRNA action

For each triplet (lncRNA, TF, target) identified 
above, we defined the mode of action of the modulator with 
respect to the the effect of TF on target. TFs can activate 
or inhibit the activity of target genes, and lncRNAs can 
enhance, attenuate, or invert the activity of the TF. In total, 
there are six possible categories of action. These cases and 
their interpretations are listed in Table 1. 

Functional analysis of lncRNA modulators

The identified lncRNA-TF-gene triplets serve as 
paradigms for understanding lncRNA functions. Function 
enrichment analysis was carried out via the targets of 
triplets to determine the functions of lncRNAs by a 
hypergeometric test. Specifically, a list of GO terms that 
were related to the hallmarks of cancer were obtained 
from a previous study [62] and genes annotated to these 
hallmark-associated GO terms were obtained from MsigDB 
V4.0, which is a collection of annotated gene sets for use 
with GSEA software [63]. The targets of TFs mediated 
by lncRNAs were used to identify the hallmarks related 
to lncRNAs. GO terms with adjusted p-values < 0.01 and 
including at least two genes of interest were considered 
associated with lncRNA modulators. 

Survival analysis

To identify the lncRNA-TF-gene triplets that could 
predict GBM patient survival, specimens were randomly 
assigned to a training dataset or a test dataset. Two sample 
subsets had the same number of patients. In the random 
assignment of patients, age and sex information was also 
considered to make sure that the training and test subsets 
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were balanced with regard to these factors (Table S1). We 
then used univariate Cox regression analysis to evaluate 
the association between survival and the expression level 
of each lncRNA, TF, and gene. Regression coefficients 
with a plus sign indicated that increased expression was 
associated with decreased survival (risky factors), and, 
conversely, a minus sign indicated that increased expression 
was associated with increased survival (protective factors). 
A mathematical formula for survival prediction was 
then constructed, taking into account both the strength 
and direction for each factor in the triplet with respect to 
survival. As in one of our previous studies [38], the risk 
score for each patient i was calculated as follows:

Risk Score Exp lncRNA
Exp TF
Exp gene

i i

i

i

_ * ( )
* ( )
* ( )

=
+
+

α
β
γ

α, β, γ were the regression coefficients for lncRNA, 
TF, and gene in the training dataset, respectively. All 
patients in the training dataset were thus assigned to high-
risk and low-risk groups using the median risk score as 
the cut-off point. Patients with higher risk scores were 
expected to have poor survival outcomes. The coefficient 
and threshold values derived from the training dataset were 
directly applied to expression data of the corresponding 
test dataset to divide the patients in the test dataset into 
high-risk and low-risk groups. The Kaplan-Meier method 
was used to estimate the overall survival time for the two 
subgroups, and differences in survival time were analyzed 
using the log rank test. All analyses were performed using 
R 2.13.2 statistical software.

FUNDING

This work was supported by the National High 
Technology Research and Development Program of 
China [863 Program, Grant No. 2014AA021102], the 
National Program on Key Basic Research Project [973 
Program, Grant No.2014CB910504], the National Natural 

Science Foundation of China [Grant Nos. 91439117, 
61473106, 61203264, 31571331, and 61502126], the China 
Postdoctoral Science Foundation [Grant No. 2014T70364, 
2015M571436, and LBH-Z14134], the Natural Science 
Foundation of Heilongjiang Province [Grant Nos. 
QC2015020], the WeihanYu Youth Science Fund Project 
of Harbin Medical University, and Harbin Special Funds 
of Innovative Talents on Science and Technology Research 
Project [Grant No. RC2015QN003080]. 

CONFLICTS OF INTEREST

No potential conflicts of interest were disclosed.

REFERENCES

 1. Xu J, Li CX, Li YS, Lv JY, Ma Y, Shao TT, Xu LD, Wang YY, 
Du L, Zhang YP, Jiang W, Li CQ, Xiao Y, et al. MiRNA-
miRNA synergistic network: construction via co-regulating 
functional modules and disease miRNA topological features. 
Nucleic acids research. 2011; 39:825–836.

 2. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, 
Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, 
Lagarde J, Veeravalli L, Ruan X, et al. The GENCODE v7 
catalog of human long noncoding RNAs: analysis of their 
gene structure, evolution, and expression. Genome research. 
2012; 22:1775–1789.

 3. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, 
Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, 
Barnes I, Bignell A, Boychenko V, et al. GENCODE: the 
reference human genome annotation for The ENCODE 
Project. Genome research. 2012; 22:1760–1774.

 4. Li Y, Chen H, Pan T, Jiang C, Zhao Z, Wang Z, Zhang J, Xu J, 
Li X. LncRNA ontology: inferring lncRNA functions based 
on chromatin states and expression patterns. Oncotarget. 
2015; 6:39793–39805. doi: 10.18632/oncotarget.5794.

 5. Bassett AR, Akhtar A, Barlow DP, Bird AP, Brockdorff N, 
Duboule D, Ephrussi A, Ferguson-Smith AC, Gingeras TR, 
Haerty W, Higgs DR, Miska EA, Ponting CP. Considerations 

Table 1: Categories of lncRNA meditated transcriptional regulations

Modulation category PCClow PCChigh DPCC

Attenuates inhibition — − |PCChigh| < |PCClow|

Enhances inhibition − — |PCChigh| > |PCClow|

Inverts inhibition + −

Inverts activation − +

Enhances activation + ++ |PCChigh| > |PCClow|

Attenuates activation ++ + |PCChigh| < |PCClow|

Note: ‘+’ and ‘−’ signs in the columns indicate positive and negative values of Pearson correlation coefficient, respectively.



Oncotarget45039www.impactjournals.com/oncotarget

when investigating lncRNA function in vivo. eLife. 2014; 
3:e03058.

 6. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-
coding RNAs: regulators of disease. The Journal of pathology. 
2010; 220:126–139.

 7. Dey BK, Mueller AC, Dutta A. Long non-coding RNAs as 
emerging regulators of differentiation, development, and 
disease. Transcription. 2014; 5:e944014.

 8. Wang K, Saito M, Bisikirska BC, Alvarez MJ, Lim WK, 
Rajbhandari P, Shen Q, Nemenman I, Basso K, Margolin AA, 
Klein U, Dalla-Favera R, Califano A. Genome-wide 
identification of post-translational modulators of transcription 
factor activity in human B cells. Nature biotechnology. 2009; 
27:829–839.

 9. Babur O, Demir E, Gonen M, Sander C, Dogrusoz U. 
Discovering modulators of gene expression. Nucleic acids 
research. 2010; 38:5648–5656.

10. Flores M, Hsiao TH, Chiu YC, Chuang EY, Huang Y, Chen Y. 
Gene regulation, modulation, and their applications in gene 
expression data analysis. Advances in bioinformatics. 2013; 
2013:360678.

11. Riley T, Sontag E, Chen P, Levine A. Transcriptional control 
of human p53-regulated genes. Nature reviews Molecular 
cell biology. 2008; 9:402–412.

12. Li Y, Shao T, Jiang C, Bai J, Wang Z, Zhang J, Zhang L, 
Zhao Z, Xu J, Li X. Construction and analysis of dynamic 
transcription factor regulatory networks in the progression 
of glioma. Scientific reports. 2015; 5:15953.

13. Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD, 
Dorrestein PC, Rosenfeld MG. ncRNA- and Pc2 methylation-
dependent gene relocation between nuclear structures 
mediates gene activation programs. Cell. 2011; 147:773–788.

14. Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, 
Zhang Y, Gorospe M, Prasanth SG, Lal A, Prasanth KV. Long 
noncoding RNA MALAT1 controls cell cycle progression by 
regulating the expression of oncogenic transcription factor 
B-MYB. PLoS genetics. 2013; 9:e1003368.

15. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, 
Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, 
Attardi LD, Regev A, Lander ES, et al. A large intergenic 
noncoding RNA induced by p53 mediates global gene 
repression in the p53 response. Cell. 2010; 142:409–419.

16. Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, 
Zhang S, Wang HB, Ge J, Lu X, Yang L, Chen LL. Human 
colorectal cancer-specific CCAT1-L lncRNA regulates long-
range chromatin interactions at the MYC locus. Cell research. 
2014; 24:513–531.

17. Krishnan J, Mishra RK. Emerging trends of long non-coding 
RNAs in gene activation. The FEBS journal. 2014; 281: 
34–45.

18. Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C, 
Sottoriva A, Zhao Y, Hirst M, Armisen J, Miska EA, Chin SF, 
Provenzano E, Turashvili G, et al. The shaping and functional 
consequences of the microRNA landscape in breast cancer. 
Nature. 2013; 497:378–382.

19. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL. 
The human disease network. Proceedings of the National 
Academy of Sciences of the United States of America. 2007; 
104:8685–8690.

20. Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene 
regulation by the act of long non-coding RNA transcription. 
BMC biology. 2013; 11:59.

21. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, 
Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, 
Guigo R, Shiekhattar R. Long noncoding RNAs with 
enhancer-like function in human cells. Cell. 2010; 143:46–58.

22. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, 
Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, 
Amit I, Meissner A, et al. lincRNAs act in the circuitry 
controlling pluripotency and differentiation. Nature. 2011; 
477:295–300.

23. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, 
Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, 
Segal E, Chang HY. Functional demarcation of active and 
silent chromatin domains in human HOX loci by noncoding 
RNAs. Cell. 2007; 129:1311–1323.

24. Geisler S, Coller J. RNA in unexpected places: long non-
coding RNA functions in diverse cellular contexts. Nature 
reviews Molecular cell biology. 2013; 14:699–712.

25. Hanahan D, Weinberg RA. Hallmarks of cancer: the next 
generation. Cell. 2011; 144:646–674.

26. Rajaraman P, Brenner AV, Butler MA, Wang SS, Pfeiffer RM, 
Ruder AM, Linet MS, Yeager M, Wang Z, Orr N, Fine HA, 
Kwon D, Thomas G, et al. Common variation in genes 
related to innate immunity and risk of adult glioma. Cancer 
epidemiology, biomarkers & prevention. 2009; 18:1651–1658.

27. Zolota V, Tsamandas AC, Aroukatos P, Panagiotopoulos V, 
Maraziotis T, Poulos C, Scopa CD. Expression of cell cycle 
inhibitors p21, p27, p14 and p16 in gliomas. Correlation 
with classic prognostic factors and patients’ outcome. 
Neuropathology. 2008; 28:35–42.

28. Orr BA, Bai H, Odia Y, Jain D, Anders RA, Eberhart CG. Yes-
associated protein 1 is widely expressed in human brain tumors 
and promotes glioblastoma growth. Journal of neuropathology 
and experimental neurology. 2011; 70:568–577.

29. Xiong J, Zhou L, Lim Y, Yang M, Zhu YH, Li ZW, Zhou FH, 
Xiao ZC, Zhou XF. Mature BDNF promotes the growth of 
glioma cells in vitro. Oncology reports. 2013; 30:2719–2724.

30. Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, Chen Y, 
Liu XS. Integrative genomic analyses reveal clinically 
relevant long noncoding RNAs in human cancer. Nat Struct 
Mol Biol. 2013; 20:908–913.

31. Shi X, Sun M, Liu H, Yao Y. Song Y. Long non-coding 
RNAs: a new frontier in the study of human diseases. Cancer 
letters. 2013; 339:159–166.

32. Li G, Zhang H, Wan X, Yang X, Zhu C, Wang A, He L, Miao R, 
Chen S, Zhao H. Long noncoding RNA plays a key role 
in metastasis and prognosis of hepatocellular carcinoma. 
BioMed research international. 2014; 2014:780521.



Oncotarget45040www.impactjournals.com/oncotarget

33. Zhou Y, Zhang X, Klibanski A. MEG3 noncoding RNA: a 
tumor suppressor. Journal of molecular endocrinology. 2012; 
48:R45–53.

34. Manni I, Tunici P, Cirenei N, Albarosa R, Colombo BM, Roz L, 
Sacchi A, Piaggio G, Finocchiaro G. Mxi1 inhibits the 
proliferation of U87 glioma cells through down-regulation of 
cyclin B1 gene expression. British journal of cancer. 2002; 
86:477–484.

35. Xu S, Wen Z, Jiang Q, Zhu L, Feng S, Zhao Y, Wu J, Dong Q, 
Mao J, Zhu Y. CD58, a novel surface marker, promotes 
self-renewal of tumor-initiating cells in colorectal cancer. 
Oncogene. 2015; 34:1520–31.

36. Angelastro JM, Canoll PD, Kuo J, Weicker M, Costa A, 
Bruce JN, Greene LA. Selective destruction of glioblastoma 
cells by interference with the activity or expression of 
ATF5. Oncogene. 2006; 25:907–916.

37. Song X, Andrew Allen R, Terence Dunn S, Fung KM, 
Farmer P, Gandhi S, Ranjan T, Demopoulos A, Symons M, 
Schulder M, Li JY. Glioblastoma with PNET-like components 
has a higher frequency of isocitrate dehydrogenase 1 
(IDH1) mutation and likely a better prognosis than primary 
glioblastoma. International journal of clinical and 
experimental pathology. 2011; 4:651–660.

38. Li Y, Xu J, Chen H, Bai J, Li S, Zhao Z, Shao T, Jiang T, Ren H, 
Kang C, Li X. Comprehensive analysis of the functional 
microRNA-mRNA regulatory network identifies miRNA 
signatures associated with glioma malignant progression. 
Nucleic acids research. 2013; 41:e203.

39. Zhou X, Ren Y, Zhang J, Zhang C, Zhang K, Han L, Kong L, 
Wei J, Chen L, Yang J, Wang Q, Yang Y, Jiang T, et al. 
HOTAIR is a therapeutic target in glioblastoma. Oncotarget. 
2015; 6:8353–8365. doi: 10.18632/oncotarget.3229.

40. Xu T, Jiang Y, Yan Y, Wang H, Lu C, Xu H, Li W, Fu D, Lu Y, 
Chen J. VSIG4 is highly expressed and correlated with poor 
prognosis of high-grade glioma patients. American journal of 
translational research. 2015; 7:1172–1180.

41. Micale L, Fusco C, Fontana A, Barbano R, Augello B, De 
Nittis P, Copetti M, Pellico MT, Mandriani B, Cocciadiferro D, 
Parrella P, Fazio VM, Dimitri LM, et al. TRIM8 
downregulation in glioma affects cell proliferation and it is 
associated with patients survival. BMC cancer. 2015; 15:470.

42. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, 
present, and future. Genetics. 2013; 193:651–669.

43. Rinn JL, Chang HY. Genome regulation by long noncoding 
RNAs. Annual review of biochemistry. 2012; 81:145–166.

44. Wapinski O, Chang HY. Long noncoding RNAs and human 
disease. Trends in cell biology. 2011; 21:354–361.

45. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic 
maps of long noncoding RNA occupancy reveal principles 
of RNA-chromatin interactions. Molecular cell. 2011; 44: 
667–678.

46. Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, 
Yan G, Cui Q. LncRNADisease: a database for long-non-
coding RNA-associated diseases. Nucleic acids research. 
2013; 41:D983–986.

47. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding 
RNA gas5 is a growth arrest- and starvation-associated 
repressor of the glucocorticoid receptor. Science signaling. 
2010; 3:ra8.

48. Sanchez Y, Segura V, Marin-Bejar O, Athie A, Marchese FP, 
Gonzalez J, Bujanda L, Guo S, Matheu A, Huarte M. 
Genome-wide analysis of the human p53 transcriptional 
network unveils a lncRNA tumour suppressor signature. 
Nature communications. 2014; 5:5812.

49. Wang H, Iacoangeli A, Popp S, Muslimov IA, Imataka H, 
Sonenberg N, Lomakin IB, Tiedge H. Dendritic BC1 RNA: 
functional role in regulation of translation initiation. The 
Journal of neuroscience. 2002; 22:10232–10241.

50. Hu G, Lou Z, Gupta M. The long non-coding RNA GAS5 
cooperates with the eukaryotic translation initiation factor 4E 
to regulate c-Myc translation. PLoS One. 2014; 9:e107016.

51. Liu Y, Zhao J, Zhang W, Gan J, Hu C, Huang G, Zhang Y. 
lncRNA GAS5 enhances G1 cell cycle arrest via binding 
to YBX1 to regulate p21 expression in stomach cancer. Sci 
Rep. 2015; 5:10159.

52. Yang JH, Li JH, Jiang S, Zhou H, Qu LH. ChIPBase: a 
database for decoding the transcriptional regulation of long 
non-coding RNA and microRNA genes from ChIP-Seq 
data. Nucleic acids research. 2013; 41:D177–187.

53. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA 
hypothesis: the Rosetta Stone of a hidden RNA language? 
Cell. 2011; 146:353–358.

54. Liu K, Yan Z, Li Y, Sun Z. Linc2GO: a human LincRNA 
function annotation resource based on ceRNA hypothesis. 
Bioinformatics. 2013; 29:2221–2222.

55. Xu J, Li Y, Lu J, Pan T, Ding N, Wang Z, Shao T, Zhang J, 
Wang L, Li X. The mRNA related ceRNA-ceRNA landscape 
and significance across 20 major cancer types. Nucleic acids 
research. 2015; 43:8169–8182.

56. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in 
microarray expression data using empirical Bayes methods. 
Biostatistics. 2007; 8:118–127.

57. Cancer Genome Atlas Research N. Comprehensive genomic 
characterization defines human glioblastoma genes and core 
pathways. Nature. 2008; 455:1061–1068.

58. Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA. 
Online Mendelian Inheritance in Man (OMIM). Human 
mutation. 2000; 15:57–61.

59. Kel AE, Gossling E, Reuter I, Cheremushkin E, 
Kel-Margoulis OV, Wingender E. MATCH: A tool for 
searching transcription factor binding sites in DNA sequences. 
Nucleic acids research. 2003; 31:3576–3579.

60. Sun J, Gong X, Purow B, Zhao Z. Uncovering MicroRNA 
and Transcription Factor Mediated Regulatory Networks 
in Glioblastoma. PLoS computational biology. 2012; 
8:e1002488.

61. Hochberg Y. A sharper Bonferroni procedure for multiple 
tests of significance. Biometrika. 1988; 75:800–803.

62. Plaisier CL, Pan M, Baliga NS. A miRNA-regulatory network 



Oncotarget45041www.impactjournals.com/oncotarget

explains how dysregulated miRNAs perturb oncogenic 
processes across diverse cancers. Genome research. 2012; 
22:2302–2314.

63. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL,  
Gillette MA, Paulovich A, Pomeroy SL, Golub TR, 
Lander ES, Mesirov JP. Gene set enrichment analysis: a 
knowledge-based approach for interpreting genome-wide 
expression profiles. Proceedings of the National Academy 

of Sciences of the United States of America. 2005; 102: 
15545–15550.


