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ABSTRACT
The critical role of angiogenesis in tumor development makes its inhibition a 

valuable new approach in therapy, rapidly making anti-angiogenesis a major focus 
in research. While the VEGF/VEGFR pathway is the main target of the approved anti-
angiogenic molecules in NSCLC treatment, the results obtained are still modest, 
especially due to resistance mechanisms. Accumulating scientific data show that vessel 
co-option is an alternative mechanism to angiogenesis during tumor development in 
well-vascularized organs such as the lungs, where tumor cells highjack the existing 
vasculature to obtain its blood supply in a non-angiogenic fashion. This can explain the 
low/lack of response to current anti-angiogenic strategies. The same principle applies 
to lung metastases of other primary tumors. The exact mechanisms of vessel co-
option need to be further elucidated, but it is known that the co-opted vessels regress 
by the action of Angiopoietin-2 (Ang-2), a vessel destabilizing cytokine expressed 
by the endothelial cells of the pre-existing mature vessels. In the absence of VEGF, 
vessel regression leads to tumor cell loss and hypoxia, with a subsequent switch to 
a neoangiogenic phenotype by the remaining tumor cells. Unravelling the vessel co-
option mechanisms and involved players may be fruitful for numerous reasons, and 
the particularities of this form of vascularization should be carefully considered when 
planning anti-angiogenic interventions or designing clinical trials for this purpose. In 
view of the current knowledge, rationale for therapeutic approaches of dual inhibition 
of Ang-2 and VEGF are swiftly gaining strength and may serve as a launchpad to more 
successful NSCLC anti-vascular treatments.

INTRODUCTION

Cancer is a major health issue, constituting the 
second leading cause of death worldwide and expected to 
surpass heart diseases as the leading cause of death in the 

next few years [1, 2]. In 2013, the incidence of cancer 
cases worldwide was 14.9 million, with 8.2 million cancer-
related deaths. Lung cancer was the most common incident 
form of cancer, with an estimated 1.8 million new cases 
having deaths that exceeded those from any other type of 
malignancy worldwide, accounting for nearly one in five 
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deaths (1.6 msillion deaths in total) [2]. Most lung cancers 
(~85%) are non-small cell lung cancers (NSCLC) which 
are divided according to two major histologic subtypes: 
the non-squamous carcinomas (mainly adenocarcinomas) 
and the squamous-cell carcinomas [3]. The parenchyma 
and the stroma are the two almost-indistinguishable 
compartments that compose the NSCLC and build up the 
tumor microenvironment [4]. The stromal cells contribute 
to the development and expression of certain cancer 
hallmark capabilities, defined by Hanahan and Weinberg 
in 2011 [5]. Among these, angiogenesis assumes major 
importance, since rate-limiting steps in tumor progressions 
include gaining access to the host vascular system and the 
generation of a tumor blood supply to obtain oxygen and 
nutrients, growth factors and hormones [6].

ANGIOGENESIS AND CANCER

While the identification of massive vascularization 
in tumors dates back to 1863 [7] and the importance of 
tumor angiogenesis has been recognised since 1908 [8], it 
was only through the work of Folkman in the early 1970s 
that the scientific community acknowledge angiogenesis 
as a potential target to inhibit cancer progression [9-12]. 
The therapeutic potential of anti-angiogenic strategies 
boosted this field of research, placing angiogenesis as one 
of the major hubs of current cancer research. 

It is now widely accepted that most tumors and 
metastases originate as small avascular structures which 
must induce the development of new blood vessels from 
pre-existing ones in order to grow beyond a minimum 
size of 2-3 mm3 [6, 13]. To achieve this, tumors undergo 
an angiogenic switch, disrupting the equilibrium between 
pro and anti-angiogenic regulators and favouring pro-
angiogenic mechanisms. Signalling molecules induce 
quiescent endothelial cells to continuously sprout from 
existing blood vessels, thereby forming new vessels that 
help to sustain expanding neoplastic growth [6, 14, 15], 
according to the conventional model of angiogenesis 
known as angiogenic sprout [16].

Decades of research investigating the molecular 
basis of angiogenesis led to the discovery of a number of 
angiogenic molecules that promote tumor angiogenesis 
[15]. Of all the identified angiogenic pathways, the most 
critical appears to be the one involving the VEGF family 
and their receptors (VEGFR1-2-3) [17-19], although a 
number of other important molecules and their receptors 
have also proven to work in combination with VEGF/
VEGFR signalling in tumor angiogenesis [19]. These 
include the fibroblast growth factor receptors (FGFRs) 
family and their ligands, particularly FGF1 and FGF2, 
that induce the proliferation and migration of endothelial 
cells [20]; as well as the platelet-derived growth factor 
receptors (PDGFRs) and their ligands (PDGFs) that, 
either alone or in combination with FGF and VEGF, 

are associated with tumor vascularization in malignant 
disease, including NSCLC [21, 22] and the Ang-Tie-2 
system [19, 22]. Ever since the identification of VEGF 
as the first endothelium-acting specific cytokine in 1983 
[13, 23, 24], its overexpression has been found in several 
human tumors, including NSCLC [25-29]. More recently, 
scientists are gaining a better understanding of the many 
functions of this molecule in the tumor angiogenic process 
[29]: it triggers multiple signalling networks that enhance 
endothelial cell proliferation and survival, increases 
migration and invasion of endothelial cells, increases 
vascular permeability of existing vessels, and enhances 
chemotaxis and mobilization of bone marrow derived 
endothelial progenitor cells (EPCs) into the peripheral 
circulation [30, 31]. 

The growing acknowledgment of VEGF’s key role 
in tumor angiogenesis has made it an attractive target for 
therapeutic intervention in cancer. The VEGF pathway is 
a promising avenue in research that aims to uncover more 
effective, targeted anti-angiogenic strategies [23, 32]. The 
extensive investigation in this field has led to the study 
of several anti-angiogenic agents, including monoclonal 
antibodies to block VEGF and its receptor VEGFR2 and 
VEGFR tyrosine kinase inhibitors (TKIs) [33]. 

ANTI-ANGIOGENIC THERAPY AND 
LUNG CANCER

From the multitude of potential therapeutic options 
that target angiogenesis in NSCLC, [34] (Table 1), there 
are currently three anti-angiogenic compounds approved 
by EMA for the treatment of NSCLC. Bevacizumab, an 
anti-VEGF monoclonal antibody that blocks the binding 
of VEGF to its high-affinity receptors, was the first 
angiogenic inhibitor to complete clinical development, 
showing clinical benefit in patients with metastatic 
colorectal cancer when combined with chemotherapy 
[31, 33]. It was approved in 2006 for the treatment of 
advanced non-squamous NSCLC in the first line setting 
in combination with chemotherapy [29]. In 2014, 
ramucirumab, a fully humanized monoclonal antibody that 
targets angiogenesis by specifically binding to VEGFR-2 
with higher affinity than its natural ligand VEGF 
[35], was approved for the treatment of patients with 
metastatic NSCLC in second line setting, in combination 
with docetaxel [36]. In the same year, nintedanib, an 
oral medication that can simultaneously inhibit triple 
angiokinase, VEGFR, platelet-derived growth factor 
receptors (PDGFR), and fibroblast growth factor 
receptors (FGFR) signalling pathways, was approved to 
be used in combination with docetaxel in patients with 
locally advanced, metastatic, or locally recurrent NSCLC 
adenocarcinoma, after first-line chemotherapy [37]. There 
are also other potential agents that are under clinical 
evaluation, whether that be in the clinical trial stage or 
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currently waiting for approval for treatment of metastatic 
or recurrent NSCLC [38, 39].

In spite of the impressive clinical efficacy of 
bevacizumab, ramucirumab, and nintedanib in various 
cancer treatment settings, the results were relatively 
modest and limited [40]. In addition, the clinical use of 
VEGF/VEGFR blockers as anti- angiogenic therapy for 
patients with advanced NSCLC has been more challenging 
than anticipated by the preclinical experiments in which 
long-term benefit of VEGF/VEGFR inhibition was 
achieved [41]. Anti-angiogenic agents are usually given to 
all patients for the approved indications; in a high fraction 
of these patients, however, the tumor is intrinsically 
refractory to the anti-angiogenic therapy and the disease 
progresses ceaselessly [42]. Moreover, when there is no 
intrinsic resistance, acquired resistance to therapy can 
rapidly occur and limit the efficacy of the anti-angiogenic 
treatments [41, 43], and the clinical benefit of prolonging 
cancer patients survival with advanced disease becomes 
limited, often in the order of weeks or months [16, 44]. 

Tumor resistance to the anti-angiogenic therapies 
(whether intrinsic or acquired), represents a significant 
problem faced in routine clinical practice. The mechanisms 
underlying the response to these therapies are far from 
being clearly understood, further fuelling this active field 
of research [43]. Preclinical investigations have shed some 
light on the subject, and although different authors propose 
escape ways from angiogenic inhibitors that are somewhat 
distinct, some key features appear to be consensual among 
most of them; these features are likely to be involved in 
primary and acquired resistance and deserve consideration 

[16, 18, 41-43, 45]. One of such features is invasive (or 
metastatic) co-option of normal quiescent vessels without 
requisite of angiogenesis.

VESSEL CO-OPTION AND LUNG CANCER 
GROWTH

It is widely accepted that tumor progression is 
heavily dependent on angiogenesis. Much less understood, 
is the concept that angiogenesis is necessary for a tumor 
to become larger than a few millimetres and become 
clinically detectable, as some research has shown that 
angiogenesis is not always a pre-requisite for tumor 
growth [46]. Hence, one possibility for anti-angiogenic 
therapy resistance is that some primary and metastatic 
tumors are non-angiogenic, meaning that these tumors 
do not need angiogenic sprout to obtain an efficient 
blood supply [47]. Rather, the tumors use alternative 
vascularization mechanisms. For example, in vessel-dense 
tissues, the most likely route is hijacking the pre-existing 
normal blood vessels [42, 44, 48], and more aggressive 
tumors can undergo vasculogenic mimicry, a process 
by which tumor cells dedifferentiate to an endothelial 
phenotype forming structures that provide tumour cells 
with a secondary circulation system independently of 
angiogenesis [49].

When tumors arise in well-vascularized organs, 
their growth will rely on the invasion of host tissue. 
Enhancement of invasion and metastasis facilitates access 
to normal tissue vasculature, and cancer cells stay in 

Table 1: Angiogenesis inhibitors in non-small cell lung cancer (NSCLC)
Approved
Drug Target Indication

Bevacizumab VEGF First-line treatment of nonsquamous 
NSCLC with CT

Nintedanib VEGFR 2, FGFR 1-3, PDGFRα 
and β TKI

Second-line treatment of 
adenocarcinoma NSCLC with CT

Ramucirumab VEGFR-2 Second-line treatment of NSCLC 
with CT

On clinical trials or not approved
Drug Target
Vandetanib VEGFRs, EGFR, and RET 
Sunitinib VEGFRs, PDGFRs, KIT, FLT3, CSF-1R, and RET
Aflibercept VEGF
Sorafenib VEGFR, PDGFRs, FGFR, KIT, and RAF 
Motesanib VEGFRs, PDGFRs, and KIT 
Pazopanib VEGFRs, PDGFRs, FGFR, and KIT 
Cediranib VEGFRs 
Cabozantinib VEGFR, RET, and MET 
Axitinib VEGFRs, PDGFRs, and KIT 

CT - chemotherapy; VEGF - vascular endothelial growth factor; VEGFR - vascular endothelial growth factor receptor; FGFR 
- fibroblast growth factor receptor; PDGFR - platelet-derived growth factor receptor; KIT - stem cell factor receptor; FLT3 
- Fms-like tyrosine kinase-3; CSF-1R - colony stimulating factor receptor; RET - glial cell-line derived neurotrophic factor 
receptor; MET - met proto-oncogene;
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close contact with the surface of blood vessels [39, 50, 
51]. This allows tumor cells to grow and migrate along 
quiescent normal vessels and take their oxygen and 
essential nutrients without obligate neovascularization, in 
a process known as vessel (or vascular) co-option [42, 43, 
49]. These non-angiogenic tumors are a separate group of 
fast-growing malignancies with little apoptosis and very 
efficient mitochondrial metabolism [52]. This seems to be 
the case of tumors arising in the lungs, liver, and brain, 
areas where this form of vascularization appears to assume 
a major role [31, 50, 51, 53, 54]. This is also true for tumor 
metastasis that occurs through lymph and blood vessels 
and outgrow mostly in these vessel-dense organs [55-58].

In recent years, research related to angiogenesis 
has been massive; but on the contrary, there is a scarcity 
of research focusing on tumors that escape pathways of 
classical angiogenesis and use vessel co-option as an 
alternative blood supply for tumor growth. This has led 
to a dearth in information regarding the mechanisms and 
players involved in that process.

The first insights into the relationship between 
vessel co-option and lung cancer were made by Pezzella 
and co-workers, who described NSCLC that grew without 
morphological evidence of neoangiogenesis but with 
signs of normal tissue vessel exploitation [59]. They 
characterized these tumors as having an alveolar pattern, 
with tumor cell nests filling the alveolar spaces without 
destruction of the lung parenchyma. The only vessels 
evident in these tumors appeared to belong to the trapped 
alveolar septa [59]. Moreover, patients with alveolar 
pattern tumors presented a worse survival rate than 
their angiogenic counterparts. Later, when investigating 
the possible role of microvessel count in NSCLC as 
a potential marker of disease prognosis, Offersen and 
colleagues [60] identified the same special vascular 

pattern in 17 out of 35 NSCLC samples, thus confirming 
the description of Pezzella’s group. Their observations 
led them to the hypothesis that these alveolar tumors are 
nonangiogenic and invasive and exploited the pre-existing 
vascular beds. They also noted that some tumors exhibited 
only the alveolar pattern while other tumors presented a 
mixed alveolar pattern consisting of both alveolar and 
angiogenic features [60]. There was no correlation, 
however, between angiogenic or vessel co-option status 
and disease aggressiveness.

Taking into account the NSCLC growth patterns, 
Nia Sardari et al. suggested a modification of Pezzella’s 
classification according to morphological features, 
based on the biological properties of the tumor-lung 
interface, which is the region where the tumor expands 
and the tumor-stroma interactions are more active and 
homogeneous [61]. According to them, NSCLCs can 
be classified as having a destructive growth pattern 
(angiogenic growth pattern), papillary growth pattern 
(with preservation of the alveolar structure of the lung 
parenchyma at the interface with co-option of alveolar 
blood vessels with formation of stromal stalks and 
subsequent angiogenesis), and alveolar growth pattern 
(preservation of the alveolar structure of lung parenchyma 
with co-option of septal blood vessels and without 
evidence of new stroma formation at the interface). 
Moreover, they suggested that, in NSCLC, a low degree 
of ongoing angiogenesis is predictive of poorer prognosis 
[61, 62]. 

The hypothesis of co-option by lung metastases, 
which are often the main cause of death in many solid 
malignancies, was also proposed by Pezzella’s group 
back in the 1990’s. They observed that, regardless of 
the angiogenic status of the primary breast carcinomas, 
they could relapse as nonangiogenic tumors in the lungs. 

Figure 1: Vessel co-option and Ang-2 regulation in cancer development in vessel dense tissues. A. In well vascularized 
organs, such as the lung, tumor cells grow and migrate along quiescent normal vessels (vessel co-option). B. Over time, tumor cells induce 
extreme changes in the co-opted vessels and ECs start to express Ang-2, leading to vascular disruption and vessel regression. C. Regression 
of the co-opted vessel associated with regression of the ECs generates a hypoxic core in the tumor centre, with massive tumor cell loss. This 
triggers the angiogenic switch, with the remaining tumor cells expressing high amounts of VEGF. D. VEGF expression induces a robust 
angiogenic response that ultimately rescues the tumor and allows its growth and progression.
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This was also true for lung metastases of human renal 
and colorectal carcinomas [56, 63, 64]. In a very recent 
study, Szabo and co-workers used cell lines from six 
different solid tumors, and showed that lung metastases 
vascularize by co-opting the pulmonary microvasculature. 
The investigated cell lines incorporated the pre-existing 
host tissue capillaries within the alveolar walls, striping 
the epithelium from these co-opted alveolar walls [57]. 
Once there, the metastases expand as the malignant cells 
spread from one alveolar space to another. Their work 
not only shed some light on the mechanisms underlying 
this phenomenon, but it also raised some questions 
surrounding the biology of the nonangiogenic tumors, 
further advocating the need for additional exploration in 
this subject. 

VESSEL CO-OPTION AND ANGIOPOIETIN-2

In the lungs, the normal co-opted vessels trapped 
in the tumor can be very effective because they allow 
for more efficient tumor growth by exploiting the highly 
regular vascular network of the lungs and progressively 
filling the empty alveolar spaces [46]. Regardless of the 
efficacy of vessel co-option in sustaining tumor growth, 
the quiescent blood vessels co-opted by tumors suffer 
extreme changes over time [65]. While there is still debate 
if this due to a host defence mechanism against tumor 
development [47] or whether dependence on the survival 
of endothelial cells (ECs) [50], there is little doubt on the 
subsequent alterations observed. First, in the centre of 
the tumor, there is widespread regression of the co-opted 
vessels associated with the regression of the EC, turning it 
progressively hypoxic, with subsequent massive tumor cell 
loss [13, 32], followed by a robust de novo angiogenesis 
at the outer rim of the tumor, that rescues the remaining 
tumor cells in a later stage [13, 31]. 

The key regulator in the regression of the initially 
co-opted blood vessels appears to be Angiopoietin-2 
(Ang-2) [49, 53, 66], a cytokine that belongs to the 
Angiopoietins family, an important class of angiogenic 

molecules. It is a natural ligand of the endothelial tyrosine 
kinase-receptor, Tie-2, primarily synthetized and secreted 
by ECs at sites of vascular remodelling, like tumors, in a 
tightly regulated fashion [66-68]. Ang-2 is overexpressed 
in a number of tumors including NSCLC [69, 70], and 
there is also evidence that it is deeply involved in lung 
metastases homing and progression [71, 72]. Experimental 
evidence supports the notion that, soon after vessel co-
option, host vessels start to express high levels of Ang-2 
that acts through an endogenous autocrine loop mechanism 
that is context dependent [73, 74]. When it binds to its Tie-
2 receptor, it functions as a vessel-destabilizing molecule 
that converts mature vessels to a tenuous and plastic state 
by inducing loosening of endothelial cell interactions with 
pericytes and smooth muscle cells, leading to the loss of 
vascular integrity and increased vascular permeability. 
The ECs of such destabilized vessels can be prone to 
two fates, depending on the local cytokine milieu [74, 
75]. In the presence of VEGF, these cells will respond to 
the proliferating signals induced by the pro-angiogenic 
molecule and will migrate or proliferate, triggering a 
sprouting angiogenesis [13, 66, 70, 73, 76, 77]. In the 
absence of VEGF, however, the expression of Ang-2 
causes irreversible loss of vascular structures [76,78] 
with marked regression of the co-opted vessels, as is the 
case when tumors co-opt pre-existing vessels [77]. This 
is due to the fact that, without the pericytes coverage, 
the ECs of the Ang-2-unstable vessels will die [79] in 
a very similar fashion to what happens with primitive 
vessels during development [74]. This generates the 
hypoxic core and the apoptotic tumor cell loss observed in 
nonangiogenic tumors [47, 76], that presumably act as the 
initial stimulus for the molecular changes that culminate 
in VEGF expression by the remaining tumor cells and in 
neoangiogenesis [69], mediated both by VEGF and Ang-2 
[47] (Figure 1).

Not surprisingly, the discovery of the role of 
Ang-2 in tumor progression led to the suggestion that 
its inhibition could translate into clinically meaningful 
responses, opening the door to multiple approaches that 

Table 2: Ang-1/Ang-2 and Tie inhibitors in development for NSCLC 
Drug Target Studies

Regorafenib VEGFRs, PDGFRs, FGFR, RET, Kit, 
B-Raf and Tie-2 NCT01187615

Trebananib
Fc fusion peptibody Ang-1 and Ang-2 NCT01666977, EudraCT 2011-001111-31

Foretinib VEGFRs, PDGFR β, FLT3, MET, and 
Tie-2 NCT01068587

MGCD265 VEGFRs, MET, and Tie-2 NCT02544633, EudraCT 2015-002070-21
AMG 780
Fully human
anti Ang-1/2 mAb

Ang-1 and Ang-2 NCT01137552

VEGFR - vascular endothelial growth factor receptor; PDGFR - platelet-derived growth factor receptor; FGFR - fibroblast 
growth factor receptor; RET - glial cell-line derived neurotrophic factor receptor; KIT - stem cell factor receptor; Tie - 
endothelial tyrosine kinase-receptor; FLT3 - Fms-like tyrosine kinase-3; B-Raf - serine/threonine-protein kinase; 
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have been used to experimentally inhibit Ang-2 as well 
as explore its effects on angiogenesis and tumor growth 
[80-82]. Pre-clinical models revealed that Ang-2 inhibition 
reduces the growth of a broad range of tumors. Although 
some of the results were modest, some revealed to be 
very promising and there is now a robust pipeline of 
drugs targeting the Ang/Tie-2 system in different clinical 
trials phases (Table 2) [67, 78, 83]. Furthermore, with 
Ang-2 being required to render endothelium responsive 
to VEGF and with both molecules contributing to tumor 
angiogenesis and metastases [84, 85], there seems to be a 
more encouraging response to the straightforward question 
of whether co-targeting of both ligands in a bispecific 
manner would improve the outcomes of current anti-
angiogenic therapies [80, 83, 86-88]. 

VESSEL CO-OPTION AND CLINICAL 
IMPLICATIONS

The ability to identify tumors that make vascular 
co-option their primary source of blood supply does not 
envisage an easy task, hence why few strategies have been 
used to achieve this goal [48]. Research in the field has 
been scarce, especially when compared to the angiogenic 
field that has largely overshadowed alternative blood 
sources for tumor development. Moreover, much of the 
research has been performed in cell lines or murine models 
and only a few in human tissues [48]. While the findings 
are limited so far, what has been discovered highly 
advocates for unravelling the vessel co-option mechanisms 
and involved players. The precise identification of tumors 
that preferentially use this route to support growth and the 
factors driving them to switch from this to an angiogenic 
pattern may be crucial to delineate future cancer 
treatments for two main reasons. The first is that vascular 
co-option may represent a clever strategy by which tumors 
partly evade and resist conventional anti-angiogenic 
treatments [89]. Even if a treatment like bevacizumab is 
effective against one angiogenic factor such as VEGF, the 
therapy can still fail if this factor is not important for the 
endothelium in that given tumor, as appears to be the case 
in tumors that co-opt pre-existing vessels in NSCLC [45]. 
In these cases, vessel co-option may serve as a pathologic 
biomarker for selecting potentially nonresponsive patients 
[43]. There is also evidence that in some nonangiogenic 
tumors, cancer cells adapt by migrating more aggressively 
into normal tissue [42]; and when anti-angiogenic 
treatments are used indiscriminately, they may contribute 
to the selection of clones of nonangiogenic cells that will 
progress with a more aggressive behaviour [89, 90]. These 
features should be carefully considered when planning 
anti-angiogenic therapeutic interventions, suggesting the 
need for tailor-made treatments against such tumors. 

Secondly, anti-angiogenic compounds do not 
affect incorporated pre-existent vasculature or matured 
tumor vasculature, making targeting existing vessels on 

which the tumor growth relies, an attractive approach 
to accomplish tumor regression [91]. This is also of 
primordial importance in cases of metastases that establish 
in well-vascularized organs, since vessel co-option may 
constitute their primary feeding option [57]. Moreover, it 
can be speculated that in earlier stages of the tumor, the 
interval that mediates Ang-2 overexpression, co-opted 
vessels regression, and de novo angiogenesis seems to be 
the perfect therapeutic window for intervention using a 
dual-pronged approach with Ang-2 and VEGF blockers 
rather than in more advanced stages of the disease. This 
issue should be addressed by investigators developing pre-
clinical/clinical trials of drugs that target angiogenesis or 
envisage tumor arrest by anti-angiogenic strategies.

CONCLUSIONS

Anti-angiogenic strategies focusing on VEGF/
VEGFR in combination with chemotherapy marked 
a milestone in the field of cancer treatment, including 
NSCLC. However, a relevant number of patients are 
unresponsive or refractory to anti-angiogenic treatments. 
Some tumors obviate the need to generate angiogenesis 
by co-opting host mature vessels and growing along 
them, using them as blood sources. Vessel co-option is a 
mechanism that may help explain the limited success of 
anti-angiogenic therapy in these patients in an adjuvant 
setting. 

Thus far, the only growth factors proven to be 
associated with vessel co-option are VEGF and Ang-
2. This lack of information is likely due to the limited 
number of studies examining this subject. Ang-2 seems to 
have a particularly critical role in the process, but is also 
an extremely laborious study topic due to the complexity 
of its functions and regulation, which are both highly cell 
context dependent. 

Tumors that grow in non-angiogenic fashions 
through exploitation of pre-existing vessels are non-
responsive to anti-angiogenic molecules and raise a 
number of concerns in terms of treatment. First, little is 
known about the modifications a neoplastic cell must go 
through in order to co-opt a blood vessel, which is a huge 
obstacle for strategies that aim to interfere with this step in 
tumor progression. Second, once the tumor is committed 
to vascular co-option pathway, an effective way of 
blocking tumor progression would be to target existing 
tumor vasculature; this would require the availability of 
tumor-vessel specific targeting agents, however, and the 
few candidates that have been identified so far have failed 
to prove their clinical efficacy. 

All of these concerns reinforce the need for better 
understanding of the mechanisms and molecular players 
underlying vessel co-option during tumor development 
within the proper biologic context. This would not only 
explore more assertive cancer treatments and help with 
the identification of tumors where vessel co-option is 
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the growth support (instead of angiogenesis), but could 
also help identify patients who may be nonresponsive to 
current anti-angiogenic treatments. Additionally, it could 
open doors to novel areas of NSCLC research at both the 
molecular and microanatomical level.
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