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Aging is a weak but relentless determinant of dementia severity 
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AbstrAct
Structural Equation Models (SEM) can explicitly distinguish “dementia-relevant” 

variance in cognitive task performance (i.e., “δ” for dementia). In prior work, δ 
appears to uniquely account for dementia severity regardless of the cognitive 
measures used to construct it. In this study, we test δ as a mediator of age’s 
prospective association with future cognitive performance and dementia severity in a 
large, ethnically diverse longitudinal cohort, the Texas Alzheimer’s Research and Care 
Consortium (TARCC). Age had adverse effects on future cognition, and these were 
largely mediated through δ, independently of education, ethnicity, gender, depression 
ratings, serum homo-cysteine levels, hemoglobin A1c, and apolipoprotein e4 status. 
Age explained 4% of variance in δ, and through it, 11-18% of variance in future 
cognitive performance. Our findings suggest that normative aging is a dementing 
condition (i.e., a “senility”). While the majority of variance in dementia severity must 
be independent of age, age’s specific effect is likely to accumulate over the lifespan. 
Our findings also constrain age’s dementing effects on cognition to the age-related 
fraction of “general intelligence” (Spearman’s “g”). That has broad biological and 
pathophysiological implications.

INtrODUctION 

Cognitive performance is associated with age, 
and seemingly healthy elderly persons may be impaired 
relative to young adult norms [1]. Age is also a major risk 
factor for dementia, whether attributed to Alzheimer’s 
disease (AD) or to other neurodegenerative disorders 
[2]. However, it is an empirical question whether 
neurodegenerative changes mediate the association 
between age and cognition, or indeed, whether age-
specific cognitive changes might dementing in their own 
right. 

We do not yet know the phenotype of age-specific 
cognitive change. Many studies describe longitudinal age-
related trends in cognition [3-5]. However, those estimates 
have significant interindividual variability which suggests 
the existence of subgroups, any of which might uniquely 
exhibit the true Aging-Specific Cognitive Phenotype 
(ASCP).

We have used a Growth Mixture Model (GMM) 

analysis, to better precise the ASCP [6]. This allowed 
us to distinguish an “Aging Proper” subgroup, and to 
characterize its performance on a battery of cognitive 
measures. Aging Proper was characterized by improving 
verbal function, stable memory and declines in non-verbal 
performance and Instrumental Activities of Daily Living 
(IADL) [7]. In contrast, a presumed pathological “Aging 
et alia” group was characterized by declines in general 
cognition, memory, executive function, and IADL. 40.2% 
of subjects in the Aging Proper group had survived up to 
a decade after their assessment, compared with 16.9% of 
subjects the in Aging et alia group. 79.3% of survivors 
classified as Aging Proper remained in independent 
levels of care a decade later (at a mean age = 88.8 ± 3.4 
years) compared with 53.9% of Aging et alia. However, 
declines in IADL suggested that both groups may have 
been experiencing one or more dementing processes. If 
Aging Proper is dementing, then even normative cognitive 
aging may be a matter of concern, and a potential target 
for therapeutic intervention.
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Meanwhile, we have recently been using a theory 
driven Confirmatory Factor Analysis (CFA) in a Structural 
Equation Model (SEM) framework to construct a latent 
phenotype for dementia itself, as distinct from either 
global cognitive performance or performance in any single 
cognitive domain [8]. Our intent has been to identify 
dementia’s essential biomarkers, and to distinguish 
them from those of an illness’ non-dementing features. 
The resulting latent variable, i.e., “δ” (for “dementia”), 
is relatively free of measurement error, continuously 
distributed, and appears to be “indifferent” to its cognitive 
indicators. δ is strongly related to IADL, and with 
dementia severity, as measured by the Clinical Dementia 
Rating Scale “Sum of boxes” (CDR) [9-10].

δ is extracted from Spearman’s general intelligence 
factor “g” [11]. δ’s remainder in g is also extracted from 
our model, and has been labeled “g’ “ to distinguish it 
from g itself. In contrast to δ, g’ is weakly associated 
with CDR, has a poor Area Under the Receiver Operating 
Curve (AUC; ROC) for the discrimination between AD 
cases and controls, and is not associated with IADL (by 
definition). 

We have successfully validated numerous δ 
homologs in three different cohorts [8, 10, 12-13]. δ has 
also been independently replicated by a second group in 
the National Alzheimer’s Coordinating Center (NACC)’s 
Uniform Dataset (UDS) (n = 26,606) [14]. Regardless of 
either the sample frame or the measures used to construct 
it, the latent variable δ appears to be strongly related to the 
CDR and achieves very high AUCs for the discrimination 
between AD cases and either controls (range 0.987-0.995) 
or Mild Cognitive Impairment (MCI) (range 0.950-0.957). 

It is an empirical question whether age is associated 
with cognitive performance independently of δ, whether 
δ and /or g’ mediate(s) their relationship, or whether 
multiple pathways are involved. These questions can 
be addressed via mediation models [15]. If δ is found 
to mediate age’s association with prospective cognitive 
performance, then Aging Proper might join the ranks of 
potentially dementing conditions. 

Longitudinal mediation models are arguably 
causal [15]. We propose to test δ and g’ as temporally 
intermediate mediators of baseline age’s effect on 
prospective cognitive performance. This may seem 
trivial, but it is not. If δ scores characterize the ASCP, then 
normative aging becomes a dementing condition and its 
effect may sum independently of other dementia risks to 
advance the onset of a clinically demented state, and /or 
modulate the presentations of neurodegenerative disorders 
by independent mechanisms. 

If age is an independent determinant of dementia 
severity, then its effect on δ ought to be independent of 
comorbidities, including depression (which has previously 
been shown to affect δ) [12] and neurodegenerative 
diseases. The biomarkers mediating the association 
between age and cognition could be determined. They 

might offer opportunities for the specific remediation, 
modulation or prevention of age-specific cognitive 
disability. 

rEsULts

Descriptive statistics are presented in Table 1. The 
mean age of TARCC participants at baseline was 70.9 
(9.7) years, with a range of 52-102 years. There were 
no cross-group differences between the two randomly 
selected subgroups (by Student’s t, all p >0.05). 

The unadjusted dEQ composite’s AUC for the 
discrimination between AD cases and controls at Wave 2 
was high [AUC = 0.986 (CI: 0.981-0.991)]. g’s AUC for 
the same discrimination was at a near chance level [AUC 
= 0.630 (CI: 0.601-0.65.9)]. This is consistent with past 
findings, across batteries, in this and other cohorts. 

The Base Model (Figure 1) had excellent fit [χ2 = 
48.33 (22), p < 0.001; CFI = 0.996; RMSEA = 0.020]. 
Baseline Age was significantly associated with Wave 
3 cognitive performance and with Wave 3 CDR. Age’s 
effects on Wave 3 cognitive performance were significant 
and inverse (adverse), ranging from Boston (r = -0.07, p = 
0.04) to Animal (r = -0.35, p <0.001) (Figure 1). Age was 
moderately associated with Wave 3 CDR scores (r = 0.30, 
p <0.001). The positive association implies an adverse 
effect on future dementia severity. 

The final mediation model (Figure 2) also had 
excellent fit [χ2 = 36.44 (24), p < 0.001; CFI = 0.999; 
RMSEA = 0.013]. Independently of the covariates (i.e., 
education, ethnicity, gender, GDS scores, HCY, Hgb A1c, 
and APOE e4 burden) baseline Age was significantly 
directly associated with Wave 3 Animal, Boston and 
CERAD. These direct associations were statistically weak 
(Boston, CERAD) to moderate (Animals) and attenuated 
relative to the Base Model. Age’s direct association with 
Wave 3 CDR was also attenuated and now statistically 
weak (r = 0.12, p <0.001). Age was significantly 
associated with Wave 2 dEQ (r = 0.24, p < 0.001), but 
not with the Wave 2 g’ composite (r = 0.00, p = 0.87). 
Age’s significant association with Wave 2 dEQ scores was 
moderately strong and in a positive direction (r = 0.24, p 
<0.001). Given Age’s unstandardized association of 0.02 
with dEQ, each year of increasing age is associated with 
an 0.02 SD increase in dEQ. 

Because age was not significantly associated with g’, 
it cannot be a mediator of Wave 3 cognitive performance. 
g’ was therefore omitted from further consideration. 
Independently of both Wave 2 g’ ‘s adverse effects, and 
Wave 3 g’s, Wave 2 dEQ was strongly inversely related 
to Wave 3 cognitive performance (and positively with 
CDR). Thus, the age-related effects mediated by dEQ 
were functionally adverse and likely to reinforce Age’s 
attenuated and relatively weak direct effects. 

Age’s significant direct effects in Model 1 were 
largely or fully mediated by dEQ (Table 2). Similar results 
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are obtained if alternative measures are substituted. For 
example, 91.4% of Age’s effect on Wave 3 MMSE scores 
were mediated by dEQ, while Age’s effects on Wave 3 
LMII performance were fully mediated (data not shown). 

The constrained model’s fit was statistically 
indistinguishable from the unconstrained model. Therefore 
age’s associations with all Wave 2 and Wave 3 measures 
remain stable across both subsamples (Table 3). 

In post hoc analyses, Age’s direct association with 

dEQ was statistically indiscriminable in the young old (r 
= 0.17, p <0.001) vs. the elder old (r = 0.11, p <0.001) 
[χ2 difference = 0.09 (1), p = 0.75]. Nor was it affected 
by a diagnosis of dementia (AD: r = 0.09, p <0.001; MCI 
+ NC: r = 0.09, p <0.001) [χ2 difference = 0.01 (1), p = 
0.90]. 

Figure 1: Age’s direct associations with future cognition and dementia severity (group 1, n = 1544). Animals = Animal 
Naming Test; APOE = apolipoprotein e4 status; Boston = Boston Naming Test; CDR = Clinical Dementia Rating Scale Sum of Boxes; CFI 
= Comparative Fit Index; CERAD = Consortium to Establish a Registry of Alzheimer’s Disease List Learning Total score; DF = degrees 
of freedom; GDS = Geriatric Depression Scale; HCY = serum homocysteine; HgbA1c = serum hemoglobin A1c; RMSEA = Root Mean 
Square Error of Association; SD = standard deviation; S.E. = Standard Error; Trails A = Trail Making Test Part A. *All observed variables 
except Age are adjusted for education, ethnicity, gender, GDS, HCY, HgbA1c, and APOE e4 status (paths not shown for clarity). The 
covariates are densely intercorrelated.
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DIscUssION

We have used a formal, longitudinal mediation 
analysis to test a δ homolog as a mediator of age’s effects 
on observed cognitive performance. The analysis has 

many strengths. Our sample size is large and ethnically 
diverse. The model is longitudinal, has excellent fit, 
and was replicated across two large randomly selected 
subsamples. There is no overlap in the cognitive measures 
used to construct the Wave 2 mediators and the outcomes 

Figure 2: dEQ Mediates Age’s Associations with Future cognition and Dementia severity (Group 1, n = 1544).  Animals 
= Animal Naming Test; APOE = apolipoprotein e4 status; Boston = Boston Naming Test; CDR = Clinical Dementia Rating Scale Sum of 
Boxes; CFI = Comparative Fit Index; CERAD = Consortium to Establish a Registry of Alzheimer’s Disease List Learning Total score; 
DF = degrees of freedom; GDS = Geriatric Depression Scale; HCY = serum homocysteine; HgbA1c = serum hemoglobin A1c; RMSEA = 
Root Mean Square Error of Association; SD = standard deviation; S.E. = Standard Error; Trails A = Trail Making Test Part A. *All observed 
variables except Age are adjusted for education, ethnicity, gender, GDS, HCY, HgbA1c, and APOE e4 status (paths not shown for clarity). 
The covariates are densely intercorrelated.
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used to test the mediation effects. The dEQ mediator 
achieved a high AUC for AD’s diagnosis. The entire model 
is adjusted for multiple competing sources of cognitive 
variance. 

We have two principal findings. First, age’s adverse 
effects on cognition were largely mediated through δ. 
Because δ specifically mediates cognition’s association 
with disability, Age’s contributions along this path are 
potentially “dementing”, and can be expected to modulate 

age-independent causes of dementia. Second, Age 
accounts for little variance in dEQ (5%) and by that path 
accounts for a relatively small fraction future outcomes, 
ranging from R2 = 0.11 (Age > dEQ > Trials A) to 0.16 
(Age > dEQ > CERAD). Age-independent mechanisms 
must therefore be the dominant determinants of the 
dementia risk of older persons. 

We found that age’s adverse effects on cognition 
were largely mediated through δ. Age had incremental 

table 1: Descriptive statistics
student’s t

Variable 
N

total sample Group 1
N = 1544
Mean (sD)

Group 2
N = 1528
Mean (sD)

p

baseline (Wave 1)
Gender (% female) 3071 61.0 62.0 60.0 0. 50
Ethnicity (% Hispanic) 3071 36.0 36.0 37.0 0.62
Age at baseline Visit 3072 70.9 (4.3) 71.1 (9.7) 70.8 (9.6) 0.33
Education 3072 13.2 (4.3) 13.2 (4.3) 13.2 (4.3) 0.69
MMsE 3071 25.4 (4.9) 25.3 (4.9) 25.6 (4.8) 0.25
cDr (sum of boxes) 3066 2.5 (3.4) 2.5 (3.5) 2.4 (3.3) 0.12
GDs (30 item) 2765 5.6 (5.3) 5.7 (5.2) 5.5 (5.4) 0.53
Wave 2
LM II 1882 8.9 (4.9) 8.8 (5.0) 8.9 (4.9) 0.85
Vr I 2116 8.3 (4.3) 8.3 (4.3) 8.2 (4.2) 0.96
cOWA 2212 8.7 (3.6) 8.5 (3.7) 8.8 (3.6) 0.08
Dst 2272 9.0 (3.2) 8.9 (3.2) 9.1 (3.2) 0.39
IADL (summed) 2311 12.2 (6.7) 12.3 (6.8) 12.0 (6.6) 0.17
Wave 3
Animal 1504 14.5 (6.4) 14.3 (6.6) 14.6 (6.1) 0.35
boston 1696 8.6 (4.7) 8.4 (4.5) 8.8 (4.5) 0.06
cErAD 1159 18.6 (6.5) 18.5 (6.8) 18.7 (6.3) 0.54
trails A 1607 8.4 (3.9) 8.4 (4.0) 8.4 (3.9) 0.98

Animal = Animal Naming Test; APOE = apolipoprotein e4 status; Boston = Boston Naming Test; CDR = Clinical Dementia 
Rating Scale Sum of Boxes; CFI = Comparative Fit Index; CERAD = Consortium to Establish a Registry of Alzheimer’s 
Disease List Learning Total score; COWA = Controlled Oral Word Association Test; DF = degrees of freedom; DIS = Digit 
Span Test; GDS = Geriatric Depression Scale; GDS = Geriatric Depression Scale; IADL = Instrumental Activities of Daily 
Living; LM II = Weschler Memory Scale: Delayed Logical Memory; MMSE = Mini-mental State Exam; SD = standard 
deviation; RMSEA = Root Mean Square Error of Association; SD = standard deviation; S.E. = Standard Error; Trails A = Trail 
Making Test Part A; VR II = Weschler Memory Scale: Delayed Visual Reproduction.

Table 2: dEQ’s mediation effects (group 1)

  Path Description Unadjusted (Figure 1) Adjusted 
(Figure 2) %Mediation

a Age > Animalw3 -0.35, p < 0.001 -0.21, p = 0.955 42
b Age > Bostonw3 -0.07, p = 0.037 0.07, p = 0.013 91
c Age > CERADw3 -0.29, p < 0.001 -0.14, p = 0.006 54
d Age > TrailsAw3 -0.16, p < 0.001 -0.05, p < 0.001 70
e AGE > CDRw3  0.30, p < 0.001 0.12, p < 0.001 86

Animal = Animal Naming Test; Boston = Boston Naming Test; CDR = Clinical Dementia Rating Scale Sum of Boxes; 
CERAD = Consortium to Establish a Registry of Alzheimer’s Disease List Learning Total score; Trails A = Trail Making Test 
Part A. 
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effects independently of δ, but these were statistically 
weak. dEQ’s residual in Spearman’s general intelligence 
factor “g” (i.e., g’) represents an additional influence on 
observed cognitive performance. It risks to obscure Age’s 
specific effects. However, 1) g’’s contribution, even in 
older persons, is not age-related, and 2) g’’s contribution 
is not functionally salient (by definition). 

In contrast to g’, future dementia severity has been 
shown to be almost entirely attributable to δ and its rate 
of change in time (Δδ) [14, 16]. Therefore, any predictor 
of δ scores might have clinical significance, even age’s 
weak effect. 

Since age’s δ-mediated effects explain a substantial 
fraction of its total effect on cognitive performance, 
age largely exerts a disabling and therefore potentially 
dementing cognitive influence. Since its contribution to δ 
is also stable across diagnostic subgroups, and independent 
of multiple cormorbidities, age must be dementing in its 
own right (i.e., an age-specific dementia = “senility”). 

Age’s contribution to δ is also stable regardless of 
whether it is measured across TARCC’s entire sample, 
or across younger and older subgroups. This suggests 
that age’s effect is likely to accumulate linearly over 
the lifespan. Given that each year of increasing age is 
associated with an 0.02 SD increase in dEQ, 1.0 SD in 
dEQ scores might be traversed over TARCC’s 50 year 
age range due to aging alone. This is not trivial. We have 
observed that each quintile increase in the dEQ scores of 
cognitively normal persons increases their five year risk of 
dementia conversion by 50%, while the risk of cases with 
“Mild Cognitive Impairment (MCI)” increases three-fold 
[17].

Age’s independent contribution should be maximal 
then among the oldest old (e.g., centenarians). This could 
explain 1) the weakened association between APOE and 
dementia in centenarians [18-20], despite dementia’s 
increasing incidence [21], and 2) the reduced burden of 
neurodegenerative lesions among the oldest “AD” cases 
[22].

Age’s cumulative effects on δ scores over a lifetime 
will be more likely to result in clinical “dementia” if they 
are added to a less advantaged baseline. Thus, youthful 
cognitive performance can be associated with late onset 
dementia, while youthful educational attainment seems 
to protect one from it [23-24]. This might also explain 
the propensity of remote insults, such as traumatic brain 
injury (TBI) to increase dementia risk, despite intervening 
decades of normal performance. 

Age is significantly associated with δ in the 

NACC, and their association is entirely mediated by 
AD neuropathology in autopsy proven AD cases [25]. 
However, age’s association with AD pathology was 
inverse, suggesting that older age was associated with 
dementias exhibiting a lesser burden of AD pathology. 
This suggests that the adverse effect of age on cognition 
may not be mediated by the Alzheimer process, but by its 
direct effects on δ. 

A distinct tauopathy, limited to the hippocampus 
and entorhinal cortex and with no more than minimal Aβ 
deposition, has been proposed to represent the “primary 
age-related tauopathy (PART)” [26]. PART is almost 
universally present in extremely old individuals. It 
would be interesting if PART pathology mediated age’s 
association with δ. However, δ has been related instead 
to the Default Mode Network (DMN) [12, 27]. The 
DMN’s involvement by tauopathy may be necessary to 
dementia’s manifestation in AD [28]. PART pathology is 
not so situated, and may therefore not explain dementia in 
older persons [29]. 

We have recently constructed a δ “ortholog” 
representing age-specific cognitive performance (i.e., 
“cAGE”) [30]. That ortholog had a similar bifactor 
structure to dEQ’s, overlapping cognitive indicators 
and identical covariates, but targeted age instead of 
IADL. Similarly to this model, cAGE adversely affected 
cognitive performance independently of HCY, HgbA1c, 
and APOE. 

Serum insulin-like growth factor binding protein 
2 (IGF-BP2) was strongly associated with cAGE and, 
through it, appeared to adversely affect cognition. IGF-
BP2 attenuates Age’s effect on dEQ in Model 2 (DRR 
Unpublished), and may therefore be a partial mediator 
of age’s specific effect on δ. IGF-BP2 is not a serum 
biomarker of age adjusted δ scores. TARCCs remaining 
biomarker panel is being explored for other biomarkers of 
age-specific cognitive change. 

In other recent work we have suggested that 
activation of the Toll-Like Receptor (TLR) may contribute 
to δ scores [31]. Although TLR function appears to 
be dysregulated in old age [32], our finding was age 
adjusted, and may therefore represent an age-independent 
determinant of δ scores. δ’s role as a potential mediator 
of age-independent dementia risks is beyond the scope of 
this analysis. 

Our model has yet to be replicated in an independent 
sample. However, it survives generalization across two 
large random subsets of TARCC’s cohort. Replication 
might be feasible in the NACC. The NACC dataset has 

table 3: cross-group validation of the mediation model (Figure 2)
Model df Χ2 Χ2 difference p
Base Model 24 36.44
Constrained 30 41.54 5.10 (6) 0.50

df = degrees of freedom
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the advantage of including several dementia etiologies 
and associated neuropatholgy. If age contributes to δ 
scores independently of multiple pathologies, then age’s 
apparent role as a risk factor for those dementias could 
be called into question. Instead, age’s effects on δ could 
then be interpreted as an independent comorbid dementing 
process. 

Our findings underscore the potential significance of 
a dementing ASCP in a rapidly aging demographic. Late 
Onset “AD” (LOAD) cases are by far the most common 
manifestation of dementia, and octogenarians are the 
fastest growing demographic segment of the western 
world, including the U.S. [33]. SEM analyses of large 
datasets provide an approach to the disaggregation of 
age-specific influences over cognitive performance. Only 
then can the biomarkers of Aging Proper be identified, 
and steps taken to understand its specific influence on 
dementia risk.  

MAtErIALs AND MEtHODs

subjects

texas Alzheimer’s research and care consortium 
(tArcc)

The Consortium’s methods have been described 
in detail elsewhere [34]. Briefly, the TARCC cohort is a 
convenience sample of n = 3069 well characterized cases 
of Alzheimer’s disease (AD) (n = 1182), “MCI” (n = 
611), and normal controls (NC) (n = 1276). Each TARCC 
participant undergoes a standardized annual examination 
that includes a medical evaluation, neuropsychological 
testing, and clinical interview. Diagnosis of AD 
status is based on National Institute for Neurological 
Communicative Disorders and Stroke-Alzheimer’s 
Disease and Related Disorders Association (NINCDS-
ADRDA) criteria [35]. Institutional Review Board 
approval was obtained at each site and written informed 
consent was obtained for all participants. DRR is PI of 
the San Antonio TARCC site, and a member of TARCC’s 
Steering Committee.

This analysis was performed on data obtained 
prior to 2015. We divided the cohort into two randomly 
selected subsets. Group 1 (n = 1544) was used to construct 
the model. Group 2 (n = 1528) was used to replicate the 
parameters of interest (i.e., the associations between 
baseline age, Wave 2 δ and g’, and Wave 3 cognitive 
performance). 

δ’s Wave 2 Indicators 

Logical Memory II [36]: Following a thirty minute 
delay, the subject recalls two paragraphs read aloud. 
Delayed paragraph recall has been useful clinically in 
identifying dementia and tracking progression of the 

disease.
Visual Reproduction I [36]: The subject recalls two 

paragraphs read aloud. Visual Reproduction has been 
useful clinically in identifying dementia and tracking 
progression of the disease.

The Controlled Oral Word Association (COWA) 
[37]: The COWA is a test of oral word production (verbal 
fluency). The patient is asked to say as many words as 
they can in one minute, beginning with a certain letter of 
the alphabet. 

Digit Span Test (DST) [36]: The DST sums the 
longest set of numbers the subject can repeat back to the 
examiner in correct order (forwards and backwards). 

Instrumental Activities of Daily Living (IADL) 
[7]: IADL’s were assessed using informant ratings. The 
ability to use the telephone, shopping, food preparation, 
housekeeping, laundry, use of transportation, ability 
to handle finances, and responsibility for medication 
adherence were each rated on the Likert scale ranging 
from 0 (no impairment) to 3 (specific incapacity). A total 
IADL score calculated as the sum of all eight items.

Wave 3 Outcome Variables

Animal Naming (Animals) [38]: This test of verbal 
fluency asks the subject to produce as many animal names 
as they can in one minute. 

The Boston Naming Test (BOSTON)[39]: This 
is a confrontation naming test that requires the subject 
to verbally name each of 60 line drawings of objects of 
increasingly low frequency.

Consortium Establish a Registry for Alzheimer’s 
Disease List Learning (CERAD)[40]: This memory test 
uses a list of ten unrelated words that the subject reads 
out loud over three learning trials to ensure registration. 
Following a three to five minute delay, a free recall trial 
and a recognition trial are presented.

Trail-Making Part A (Trails A)[41]: This test of 
attention, speed and mental flexibility requires the subject 
to connect numbers, placed randomly on the page, in their 
appropriate order.

clinical covariates 

 Education: Education was coded continuously as 
years of formal education. 

Ethnicity: Ethnicity was determined by self-report 
and coded dichotomously as “Hispanic” and “non-
Hispanic”. All TARCC evaluations and psychometrics 
are provided in English or in Spanish according to the 
subject’s preference. 
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Gender: Gender was coded dichotomously. 

The Geriatric Depression Rating Scale (GDS) [42-
43]: GDS scores range from zero-30. Higher scores are 
worse. A cut-point of 9-10 best discriminates clinically 
depressed from non-depressed elderly. 

biomarker covariates

Laboratory Analysis 

Non-fasting samples were collected, centrifuged 
and pipetted by 1mL aliquots into polypropylene cryovial 
tubes and placed in -200 C (non-frost free) or -80oC 
freezers until shipment to the TARCC Biobank. 

Measurements of homocysteine (HCY), hemoglobin 
A1c (HgbA1c), and apolipoprotein (APOE) ε4 genotyping 
were performed in the Ballantyne laboratory at the 
Baylor College of Medicine. HgbA1c was measured 
in whole blood. HCY was measured in serum. HgbA1c 
measurement was based on the turbidimetric inhibition 
immunoassay (TINIA) for hemolyzed whole blood. HCY 
concentrations were measured using the recombinant 
enzymatic cycling assay (i.e., Roche Hitachi 911). 

APOE genotyping was conducted using standard 
polymerase chain reaction (PCR) methods [44]. APOEε4 
status was coded 0-2 according to the number of ε4 alleles.

clinical correlates

The Clinical Dementia Rating Scale sum of boxes 
(CDR) [9]: The CDR is used to evaluate dementia 
severity. The rating assesses the patient’s cognitive 
ability to function in six domains –memory, orientation, 
judgment and problem solving, community affairs, home 
and hobbies and personal care. The information necessary 
to those ratings is collected during an interview with the 
patient and their caregiver. Each domain is rated on a scale 
of 0.0-3.0. A total CDR-SB is calculated as the sum of all 
six domains. 

The Mini-Mental Status Examination (MMSE) 
[45]: The MMSE is a well-known and widely used test for 
cognitive impairment screening. Scores range from 0 to 
30. Scores less than 24 reflect cognitive impairment. 

statistical Analyses

Analysis sequence 

Confirmatory factor (CFA) and mediation models 
were performed using Analysis of Moment Structures 
software (AMOS) [46]. The maximum likelihood 
estimator was chosen for these models. δ and g’ were 
derived by bifactor CFA from baseline data. 

A δ homolog was constructed from Wave 2 
data. This is structurally identical to “dEQ”, which has 
elsewhere been reported to 1) have excellent fit (i.e., χ2/
df = 181/24, p < 0.001; CFI = 0.97; RMSEA = 0.05), 2) 
have acceptable factor determinacy by Grice’s Method 
[47], 3) exhibit factor equivalence across ethnicity, 4) to 
be strongly correlated with dementia severity as measured 
by the CDR (r = 0.99, p <0.001) and 5) to exhibit an AUC 
of 0.95 (CI = 0.94 - 0.96) for the discrimination between 
AD cases and controls (in Wave 1 TARCC data) [31]. 
However, for the purposes of this analysis, dEQ was 
constructed without any covariates, specifically age, HCY, 
HGbA1c and APOE e4 burden. 

dEQ and g’ factor weights were applied to Wave 2 
observed data to generate Wave 2 dEQ and g’ composite 
scores (i.e., dEQ w2 and g’ w2, respectively). g’ is dEQ’s 
residual in Spearman’s g. The composite scores were used 
as observed mediators of baseline age’s direct associations 
with Wave 3 CDR scores (CDR w3) and Wave 3 cognitive 
performance. There is no overlap in δ’s Wave 2 indicators 
and selected Wave 3 outcome measures.

In the resulting nested longitudinal models, dEQ and 
g’ are being tested as competing independent mediators of 
age’s direct effects on prospective cognitive performance. 
All observed Wave 2 and Wave 3 measures were adjusted 
for education, ethnicity, gender, GDS scores, HCY, Hgb 
A1c, and APOE ε4 status. 

Both the Wave 1 dEQ homolog and the mediation 
model were constructed in a randomly selected subset 
of TARCC participants, comprising approximately 50% 
of the subjects (i.e., Group 1: n = 1544). As a test of the 
model’s generalizability to the remainder (n = 1528), age’s 
significant direct associations were constrained across the 
two groups, and model fit compared across constrained 
and unconstrained conditions. 

In post hoc analyses, we further ascertained the 
effects of stratification at 79/80 years on Age’s direct 
association with dEQ (“young elderly” mean age = 67.47, 
n = 2428; “older elderly” mean age = 83.93, n = 644). We 
also tested the effects of a dementia diagnosis [“AD”: n = 
1182 vs. “MCI” OR NC: n = 1887].

These models were all constructed in an SEM 
framework, using raw data. No statistical transformation 
was applied to biomarker data. Modern Missing Data 
Methods were automatically applied by the AMOS 
software (see below). 

Mediation models 

Following the approach of MacKinnon et al. [48], 
we first modeled “direct” paths between baseline Age 
and Wave 3 clinical outcomes. We next tested each Wave 
2 composite as an independent predictor of the Wave 3 
clinical outcomes, in separate models. If the composite in 
question was also significant, we then tested the indirect 
path as a mediator of the “direct” path(s). Figure 2, for 
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example, presents the mediation model for dEQ.
According to Kraemer et al. [15], the timing of the 

variables relative to each other is important. For a true 
mediation effect, the mediator should occur between 
the predictor and the outcome, not coincidentally with 
the predictor. Our model is constructed across three 
annual assessments, with Wave 2 composites serving 
as temporally intermediate mediators of baseline age’s 
association with Wave 3 clinical outcomes. The results can 
therefore be interpreted causally.

Missing data 

888 subjects had complete biomarker data. In 
contrast, psychometrics and adjudicated clinical diagnoses 
were available on 2017 subjects. Rather than using case-
wise deletion, the missing biomarker and psychometric 
data were handled by Modern Missing Data Methods [49]. 

Only the ROC analyses, which were performed 
in Statistical Package for the Social Sciences (SPSS) 
[50] were limited to complete cases. AMOS employs 
Full information Maximum Likelihood (FIML) methods 
to address missing data. FIML uses the entire observed 
data matrix to estimate parameters with missing data. 
FIML yields unbiased parameter estimates, preserves the 
overall power of the analysis, and is arguably superior to 
alternative methods, e.g., multiple imputation [51-52]. 

Fit indices 

Model fit was assessed using four common test 
statistics: chi-square, the comparative fit index (CFI), and 
the root mean square error of approximation (RMSEA). 
Where two nested models were compared, Akaike’s 
Information Criterion (AIC) was added. A lower AIC 
statistic indicates better fit. A non-significant chi-square 
signifies that the data are consistent with the model [53]. 
However, in large samples such as TARCC, this metric is 
limited by its tendency to achieve statistical significance 
when all other fit indices (which are not sensitive to 
sample size) show that the model fits the data very well. 
A CMIN/DF ratio < 5.0 suggests an adequate fit to the 
data [54]. The CFI statistic compares the specified model 
with a null model [55]. CFI values range from 0 to 1.0. 
Values below 0.95 suggest model misspecification. Values 
approaching 1.0 indicate adequate to excellent fit. An 
RMSEA of 0.05 or less indicates a close fit to the data, 
with models below 0.05 considered “good” fit, and up 
to 0.08 as “acceptable“[56]. All fit statistics should be 
simultaneously considered when assessing the adequacy 
of the models to the data.

rOc curves

The diagnostic performance or accuracy of a test to 
discriminate diseased from normal cases can be evaluated 
using ROC curve analysis [57-58]. Briefly the true positive 
rate (Sensitivity) is plotted as a function of the false 
positive rate (100-Specificity) for different cut-off points 
of a parameter. The area under the ROC curve (AUC) is a 
measure of how well a parameter can distinguish between 
two diagnostic groups (diseased/normal). The ROC 
analysis was performed in SPSS.
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