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An increase in galectin-3 causes cellular unresponsiveness
to IFN-y-induced signal transduction and growth inhibition in
gastric cancer cells
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ABSTRACT

Glycogen synthase kinase (GSK)-3B facilitates interferon (IFN)-y signaling
by inhibiting Src homology-2 domain-containing phosphatase (SHP) 2. Mutated
phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN)
cause AKT activation and GSK-3pB inactivation to induce SHP2-activated cellular
unresponsiveness to IFN-y in human gastric cancer AGS cells. This study investigated
the potential role of galectin-3, which acts upstream of AKT/GSK-3B/SHP2, in
gastric cancer cells. Increasing or decreasing galectin-3 altered IFN-y signhaling.
Following cisplatin-induced galectin-3 upregulation, surviving cells showed cellular
unresponsiveness to IFN-y. Galectin-3 induced IFN-y resistance independent of its
extracellular B-galactoside-binding activity. Galectin-3 expression was not regulated
by PI3K activation or by a decrease in PTEN. Increased galectin-3 may cause GSK-33
inactivation and SHP2 activation by promoting PDK1-induced AKT phosphorylation
at a threonine residue. Overexpression of AKT, inactive GSK-3BR°%A, SHP2, or active
SHP2P%A caused cellular unresponsiveness to IFN-y in IFN-y-sensitive MKN45
cells. IFN-y-induced growth inhibition and apoptosis in AGS cells were observed
until galectin-3 expression was downregulated. These results demonstrate that
an increase in galectin-3 facilitates AKT/GSK-3B/SHP2 signaling, causing cellular
unresponsiveness to IFN-y.

[4, 5]. Additionally, gastric cancers may require escape
from immune surveillance, thereby developing advanced
survival strategies [6, 7]. However, the crosstalk between
oncogenic processes and immune escape strategies is

INTRODUCTION

Gastric adenocarcinoma is caused by a variety
of carcinogenic stimuli, including Helicobacter pylori

infection, tobacco, dietary factors, and host gene
polymorphisms [1-3]. Studies showed that oncogenic
activation (including activation of phosphoinositide
3-kinase (PI3K)/AKT, Ras/Raf/mitogen-activated protein
kinase kinase (MEK)/extracellular signal-regulated kinase
(ERK) and growth factor receptors), inactivation of tumor
suppressors (e.g., p53 and adenomatous polyposis coli
mutations), and reduced phosphatase and tensin homolog
(PTEN) and runt-related transcription factor 3 expression
levels are involved in gastric tumor growth and survival

undocumented.

Galectin-3, one of the galectin family proteins that
are defined by their binding specificity for B-galactoside
sugars, has a chimeric structure containing one con-
served carbohydrate-recognition domain and a long
non-lectin domain [8]. Extracellular galectin-3 can bind
to glycoproteins and glycolipids in cell membranes
to control the cell cycle and apoptosis [9]. In contrast,
cytoplasmic galectin-3 can bind to Bcl-2 to promote
cell survival and inhibit apoptosis [10]. Galectin-3 is
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overexpressed in several human cancers, including
gastric, colon, and pancreatic cancers [11-13]. Further-
more, oncogenic galectin-3 may induce cellular trans-
formation through the Ras and PI3K/AKT signaling
pathways [14, 15]. In gastric cancers, galectin-3 increases
cell motility by upregulating fascin-1, protease-activated
receptor-1, and matrix metalloproteinase-1 expression
levels [16, 17]. A galectin-3 germline variant induces
nuclear accumulation and activation of B-catenin [18].
Therefore, decreasing galectin-3 can serve as a strategy
against gastric tumorigenesis.

For cancer immunosurveillance, T/NK cells confer
anticancer immunity by secreting several cytotoxic
molecules, including interferon (IFN)-y, perforin, granzy-
mes, CD95 ligand, and TRAIL [7, 19, 20]. Immune IFN-y
exhibits anticancer activities by upregulating the expression
levels of tumor-suppressing factors, such as the Fas/Fas
ligand, p53, caspases, and major histocompatibility complex
(MHC) molecules, and by inducing cell growth inhibition
and cytotoxicity [21-23]. Indeed, T/NK cell-derived IFN-y
attenuates cancer cell growth in vitro and in vivo [24-26].
Gastric cancers commonly show a decreased level of MHC
I expression [27, 28], indicating an endogenous defect in
IFN-y signaling. Only a few reports have shown a defective
response of MHC I expression in [FN-y-resistant AGS cells
[29, 30]; however, possible mechanisms of IFN-y resistance
remain unknown. To control IFN-y-activated JAK2/signal
transducer and activator of transcription (STAT)1 signaling,
Src homology-2 domain-containing phosphatase (SHP)2
can dephosphorylate JAK2 and STAT1 to suppress [FN-y
signaling [23, 31-33]. We hypothesize that cancers may
acquire aberrant SHP2 to avoid the immune defense of
IFN-y. We previously showed that glycogen synthase
kinase (GSK)-3p facilitates [FN-y-activated STAT1 by
inhibiting SHP2 [34], and aberrant PI3K and a decrease in
PTEN increase AKT activation and GSK-3f inactivation
to cause SHP2-activated IFN-y resistance in gastric cancer
AGS cells [35]. In the present study, we investigated the
crosstalk of galectin-3 with AKT/GSK-3 signaling and
IFN-y resistance in gastric cancer cells.

RESULTS

Increasing or decreasing galectin-3 expression
changes IFN-y signaling

We previously demonstrated that, compared to
IFN-y-sensitive MKN45 cells, AGS cells are resistant
to IFN-y-induced signaling and cell growth inhibition
[35]. Because SHP2 can be activated by the PI3K/AKT-
mediated pathway, aberrant expression of galectin-3,
an oncogenic protein that acts upstream of AKT [14,
15], was next examined in gastric cancer cells. Western
blotting showed an increased level of galectin-3 in IFN-
y-insensitive AGS cells accompanied by the generation
of cellular unresponsiveness to IFN-y-induced STAT1

phosphorylation at Tyr701 (Figure 1A) and IRF1
transactivation (Figure 1B). We next evaluated the
effects of galectin-3 on IFN-y signaling. In galectin-3-
silenced AGS cells, IFN-y ultimately induced STAT1
phosphorylation at Tyr701 (Figure 1C, left). In contrast,
overexpression of galectin-3 in MKN45 cells inhibited
STAT1 phosphorylation (Figure 1C, right). The IRF1
transactivation assay confirmed the different responses
of IFN-y signaling in galectin-3-silenced AGS cells
(Figure 1D, top) and galectin-3-overexpressing MKN45
cells (Figure 1D, bottom). Furthermore, galectin-3
overexpression in THP1 and U937 cells was also
resistant to IFN-y-activated IRF1 (Supplementary
Figure S1). Similarly, changes in galectin-3 expression
in AGS and MKN45 cells did not increase or decrease
the expression of IFNGR1 or IFNGR2 in those cells
(Supplementary Figure S2). These results indicate that
increasing or decreasing galectin-3 expression changes
IFN-y signaling.

Increased galectin-3 in cells shows cellular
unresponsiveness to IFN-y-activated IRF1

To further evaluate the effect of increased galectin-3
causing IFN-y resistance, a natural inducible approach
was utilized as previously described [36], and it showed
that galectin-3 can be induced in surviving cells under
cisplatin stimuli. Accordingly, treating human leukemia
K562 cells with the chemotherapeutic agent cisplatin
effectively increased galectin-3 expression (Figure 2A).
The IRF1 transactivation assay demonstrated a significant
blockade effect on IFN-y-activated IRF1 in cisplatin-
treated cells (Figure 2B). These findings suggest that the
inducible expression of galectin-3 in cells shows cellular
unresponsiveness to IFN-y stimulation.

The pharmacological inhibition of extracellular
galectin-3 does not decrease IFN-y resistance

Galectin-3 is expressed within cells and is also
expressed as a soluble protein via autocrine and paracrine
routes [8]. To evaluate the potential role of extracellular
galectin-3, we collected culture supernatants from AGS
and MKN45 cells to detect protein expression. However,
Western blot analysis detected no secreted galectin-3
expression in either AGS or MKN45 cells (Figure 3A).
Further cytosolic/nuclear extraction studies in AGS
cells showed that galectin-3 was expressed in both the
cytosol and the nuclei (Figure 3B). To confirm inhibition
of the effect of extracellular galectin-3, we applied
exogenous lactose, which inhibits galectin-3 by inhibiting
B-galactoside-binding activity. Western blot (Figure 3C)
and IRF1 transactivation assays (Figure 3D) showed no
changes in AKT/GSK-3B/SHP2 signaling, which is known
to be a negative regulator of IFN-y signaling [35], and
IFN-y-activated STAT1 and IRF1. Furthermore, treatment
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with modified citrus pectin [37], an antagonist specific
to the galectin-3 carbohydrate-recognition domain, did
not affect IFN-y and AKT/GSK-3B/SHP2 signaling
(Supplementary Figure S3). These results indicate that
intracellular but not extracellular galectin-3 is vital for the
cellular unresponsiveness to IFN-y in AGS cells.

IFN-v-insensitive AGS cells show an increase in
galectin-3 expression independent of deregulated
PI3K and PTEN expression levels

The molecular mechanisms of galectin-3 upregula-
tion remain unclear. Consistent with the finding that
galectin-3 expression increases in gastric cancers [38],
the expression of galectin-3 was higher in AGS cells
as demonstrated by Western blotting (Figure 4A) and
an immunostaining-based flow cytometric analysis
(Figure 4B). Compared to MKN45 cells, the increased
galectin-3 expression in AGS cells was correlated with
constitutive activation of PI3K (by detecting PIP3
generation) and AKT and a decrease in PTEN expression
(Figure 4A). To determine the potential mechanisms for
the increase in galectin-3, the roles of PI3K activation
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and decreased PTEN expression were pharmacologically
determined by inhibiting PI3K and genetically restoring
PTEN expression. However, neither LY294002 treatment
(Figure 4C) nor exogenous PTEN expression restored
(Figure 4D) the changes in galectin-3 expression in AGS
cells, although these treatments efficiently reduced PIP3
generation and AKT activation. These results show a PI3K-
and PTEN-independent increase in galectin-3 expression
in AGS cells, potentially leading to AKT activation.

Changing galectin-3 expression does not alter
PI3K activity but changes AKT phosphorylation
at the threonine residue

To verify the potential effects of galectin-3 on
AKT, we next investigated the potential role of galectin-3
in regulating PI3K, as previous studies reported that
galectin-3 acts upstream of PI3K/AKT/GSK-3f signaling
[12, 14]. However, neither galectin-3 silencing in AGS
cells nor galectin-3 overexpression in MKN45 cells
produced any changes in PI3K activities (Figure 5A),
indicating an independent role for galectin-3 in PI3K
activation. Interestingly, decreasing galectin-3 using
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Figure 1: Decreasing or increasing galectin-3 expression interferes with interferon (IFN)-y signaling. Western blot of
the indicated proteins (A. and C.) and detection of IRF1 transactivation using a luciferase reporter assay (B. and D.) in MKN45 (IFN-y
sensitive) and AGS (IFN-y insensitive) cells treated with IFN-y for the indicated times or in IFN-y-treated AGS cells transfected with
shRNA targeting luciferase (shLuc) and shRNA targeting galectin-3 (s2Gal3), and IFN-y-treated MKN45 cells transfected with pcDNA3
and pcDNA3-Gal3. For Western blotting, f-actin was used as an internal control. A representative dataset from triplicate experiments is
shown. For the luciferase reporter assay, the ratio of IRF1 to control Renilla is shown, and the data are presented as the mean + SD from
three independent experiments. ns, not significant. **p < 0.01 compared to PBS; #p < 0.05 and *p < 0.01 compared to the relative control.
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shRNA or increasing galectin-3 by overexpression both
significantly caused changes in AKT phosphorylation at
Thr308, without affecting PDK1, an upstream kinase that
specifically phosphorylates AKT at Thr308 (Figure 5B).
Furthermore, silencing galectin-3 in AGS cells induced
decreases in GSK-3p and SHP2 phosphorylation at Ser9
and Thr542, respectively, while galectin-3 overexpression
in MKN45 cells induced the opposite effects (Figure 5B).
In addition, the galectin-3-silenced human myeloid leuke-
mia cell lines THP1 and U937 were used to confirm the
identified effects (Supplementary Figure S4). These
findings demonstrate potential regulation of AKT/GSK-
3B/SHP2 signaling by galectin-3, independent of direct
effects on PI3K and PDK1.

To address the induction of SHP2-induced cellular
unresponsiveness to [FN-y by AKT/GSK-3f signaling, we
overexpressed AKT, GSK-3BR* (inactive GSK-3f), SHP2,
and SHP2P®'A (active SHP2) in MKN45 cells to evaluate
the cellular unresponsiveness to IFN-y stimulation. Protein
expression was assessed by Western blot analysis, and
the results confirmed the activation of AKT/GSK-3p/
SHP2 signaling through AKT overexpression, GSK-
3B inactivation, and SHP2 activation, as AKT, GSK-
3B, and SHP2 were phosphorylated at Ser473, Ser9,
and Tyr542, respectively (Figure 5C). Following IFN-y
stimulation with or without SHP2 inhibition using the
selective inhibitor NSC87877, we observed that AKT-,

A

GSK-3pR%A- SHP2-, and SHP2P*'A-transfected MKN45
cells were significantly resistant to IFN-y-induced STAT1
phosphorylation at Tyr701 (Supplementary Figure S5) and
IRF1 transactivation (Figure 5D) in a SHP2-dependent
manner. However, changes in IFN-y receptor 1 (IFNGR1)
and IFNGR2 expression levels were observed in the
transfected MKN45 cells (Supplementary Figure S6).
These results confirm the finding that the AKT/GSK-3p/
SHP?2 signaling axis induces cellular unresponsiveness to
IFN-y signaling.

Decreased galectin-3 facilitates IFN-y-induced
cell growth inhibition and apoptosis in AGS cells

We showed that galectin-3 is vital for AKT/GSK-3p/
SHP2-induced IFN-y resistance in AGS cells. We therefore
hypothesized that galectin-3 contributes to the growth of
AGS cells and to the generation of resistance to IFN-y-
induced cell growth inhibition and apoptosis. Consistent
with the results of previous studies showing that galectin-3
is required for gastric cancer cell growth [38], galectin-3
silencing significantly inhibited the growth of AGS
cells (Figure 6A). Indeed, in IFN-y-insensitive AGS
cells, cell growth was not inhibited by IFN-y treatment
as previously demonstrated [35]; however, silencing
galectin-3 expression ultimately significantly facilitated
IFN-y-induced cell growth inhibition (Figure 6A) and cell
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Figure 2: Inducible galectin-3 causes cellular insensitivity to interferon (IFN)-y. Western blot of the indicated proteins A. and
detection of IRF1 transactivation using a luciferase reporter assay B. in MKN45 cells (IFN-y sensitive) treated with cisplatin for 24 h,
followed by IFN-y treatment for 6 h. For Western blotting, B-actin was used as an internal control. A representative dataset from triplicate
experiments is shown. Luciferase reporter assay showing the ratio of IRF1 to control Renilla, and the data are presented as the mean + SD
from three independent experiments. ***p < 0.001 compared to PBS; *#p < 0.001 compared to IFN-y alone.
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apoptosis (Figure 6B). These findings demonstrated that
an increase in galectin-3 induces cellular unresponsiveness
to IFN-y-induced growth inhibition and cell apoptosis.

DISCUSSION

No studies have demonstrated the intracellular
role of galectin-3 in regulating IFN-y signaling
and bioactivity. IFN-y treatment might increase or
decrease galectin-3 expression [39, 40], suggesting that
galectin-3 is a potential regulator of IFN-y signaling as
a homeostatic mechanism. However, in melanoma cells,
IFN-y stimulation causes galectin-3 downregulation
followed by cell growth inhibition [39]. To the best of
our knowledge, the present study is the first to show
an inhibitory effect of intracellular galectin-3 on IFN-y
signaling. Although increased galectin-3 has been
well-known for a correlation with AKT activation,
as summarized in Figure 6C, an increase in galectin-3
might facilitate PDK1-induced AKT phosphorylation
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at threonine residues to deactivate GSK-3B. Addi-
tionally, upregulated galectin-3 does not enhance AKT
phosphorylation at serine residues, while mTORC2
determines this phosphorylation. Consistent with previous
studies suggesting that GSK-3p potentially inhibits SHP2
to facilitate IFN-y signaling [34, 35], galectin-3 stimulates
the identified GSK-33/SHP2 pathway by activating AKT.
Regarding a potential role of galectin-3 in promoting
tumorigenesis, it is hypothesized that galectin-3 may
decrease IFN-g signaling by facilitating AKT/GSK-3b/
SHP?2 signaling.

Mechanisms for galectin-3 overexpression in cancer
cells remain unclear, although several transcription factors,
such as Spl, cAMP response element-binding protein,
nuclear factor (NF)-kB, activator protein (AP)-1, Runx2,
and Ras/mitogen-activated protein kinase (MAPK) signa-
ling, have been suggested to be involved [8], while p53
shows negative regulation of galectin-3 [41, 42]. The
involvement of p53 is precluded because both AGS and
MKN45 cells are wild-type p53-bearing gastric cancer
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Figure 3: No extracellular galectin-3 is involved in interferon (IFN)-y insensitivity of AGS cells. Western blot of the
indicated proteins in supernatants and cell lysates of AGS and MKN45 cells A., in the cytosolic and nuclear fractions of AGS cells B., and
in AGS cells pretreated with lactose for 0.5 h, followed by IFN-y treatment for another 6 h C. Tubulin and histone were respective markers
for the cytosolic and nuclear fractions. D. A luciferase reporter assay detected IRF1 transactivation in AGS cells pretreated with lactose for
0.5 h, followed by IFN-y treatment for another 6 h. For Western blotting, 3-actin was used as an internal control. pAKT T, phospho-AKT
at Thr308; pAKT S, phospho-AKT at Ser473. A representative dataset from triplicate experiments is shown. For the luciferase reporter
assay, the ratio of IRF1 to control Renilla is shown, and the data are presented as the mean + SD from three independent experiments. ns,

not significant.
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cells. We previously showed that activation of NF-kB and
Ras/MAPK promoted AGS cell hyperproliferation and
migration [43]. The potential roles of NF-xB and Ras/
MAPK in inducing galectin-3 expression require further
investigation.

Galectin-3 is expressed in nuclei, cytoplasm,
mitochondria, extracellular spaces and on cell surfaces
[8]. The extracellular role of galectin-3 in AGS cells is
precluded in the present study, as inhibiting galectin-3
through the exogenous administration of lactose neither
decreased AKT nor reversed IFN-y resistance. Expression
of galectin-3 is increased in primary gastric cancer and
metastatic lymph nodes [11]. Galectin-3 facilitates cell
survival against apoptosis and cell growth inhibition
induced by the tumor necrosis factor-related apoptosis-
inducing ligand, Adriamycin, staurosporine, and cisplatin
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[14, 15, 36, 44]]. With a cisplatin-induced galectin-3
increase, we also observed that galectin-3-expressing
cells were more resistant to [FN-y signaling. In addition to
enhancing survival responses, chemotherapeutic-resistant
cells showed antiapoptotic properties and IFN-y resistance
via a mechanism involving galectin-3 induction. This
requires further demonstration by decreasing galectin-3.
Compared to galectin-3-deficient cancers, galectin-
3-positive cancers are correlated with the presence of
inactive GSK-3B, which might facilitate the Wnt/p-
catenin pathway [45]. Regarding the negative regulation
of galectin-3 on GSK-3-activated IFN-y signaling, it is
important to verify the effects of galectin-3 on PI3K/AKT
signaling, which is important for GSK-3f inactivation.
Elad-Sfadia and colleagues [46] originally demonstrated
that galectin-3 is required for Ras-induced PI3K/AKT

120

= 100 -

%

~

A O @
o O O
1 1 1

N
o
1

skeskosk

PIP3 generation

0+

1.0 1.0

Galectin-3- umm——

1.0 1.0

pAKT T

1.0 0.4 1.0 0.3

e

PTEN-GFP

LY294002 (uM) - 25
AGS MKN45
B AGS MKN45
o) MFI: 140.7+1.3 | MFI: 16.9+0.1 GFP
2 20Ab 29A
E 11 ')
> \ 1
c | R |
! B-actin
O [— A, Vector + -
Galectin-3 P PTEN - +

Figure 4: Increased galectin-3 expression correlates with PI3K-AKT activation and PTEN decrease in interferon
(IFN)-y-insensitive AGS cells. A PIP3 MASS ELISA Kit assay and Western blot analysis detected PI3K activity and expressions of the
indicated proteins, respectively, in untreated AGS (IFN-y insensitive) and MKN45 (IFN-y sensitive) cells A., AGS cells treated with the
PI3K inhibitor, LY294002, for 24 h C., and AGS cells transfected with pcDNA3.1-GFP or pcDNA3.1-GFP-PTEN D. For kinase activity,
data are the mean + SD from three independent experiments. **p < 0.01 and ***p < 0.001 compared to the control. For Western blotting,
B-actin was used as an internal control. pAKT T, phospho-AKT at Thr308; pAKT S, phospho-AKT at Ser473. A representative dataset
from triplicate experiments is shown. B. A representative histogram of immunostaining followed by a flow cytometric analysis showing
expression of galectin-3 in AGS and MKN45 cells. An isotype control is also shown. The data are shown as the mean fluorescence intensity
(MF]I) obtained from three independent experiments. ***p < 0.001 compared to MKN45.
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activation in response to growth factor stimulation. Some
cancer cells possessing galectin-3 advancement showed
enhanced PI3K/AKT signaling [12, 14]. Although we
showed that increasing or decreasing galectin-3 expression
did not interfere with the activity of PI3K, these results
were inconsistent, potentially reflecting: (1) the inability
of Ras to induce PI3K/AKT activation in AGS cells as
previously demonstrated [43]; (2) the attenuation of PIP3-
based AKT activation through PI3K inhibition, even
with galectin-3 overexpression [12, 14]; and (3) different
responses in different cell types causing differences in the
regulation of galectin-3/PI3K/AKT signaling.

There is no evidence for showing an interaction
between galectin-3 and AKT, although galectin-3 benefits
AKT activation [8]. In addition to PI3K, upstream signaling
molecules, such as PDK1, ILK, and mammalian target of
rapamycin (mTOR), should therefore be further investigated.
Accordingly, we showed that changing galectin-3 expression
altered AKT phosphorylation at threonine residues. Without
increasing PI3K activity, galectin-3 acted upstream of
AKT and downstream of PDK1, while PDK1 specifically
phosphorylated AKT at threonine residues. It is commonly
demonstrated that galectin-3 function extracellularly;
however, galectin-3 can be expressed within the cells and
may function as an intracellular regulator. The underlying
mechanism of galectin-3-induced AKT activation remains
undefined; however, our results suggested that an intracellular
galectin-3 may act as an essential regulator for facilitating
PDK1-mediated AKT phosphorylation. Further studies are
needed to clarify the intracellular role of galectin-3.

SHP2 is overexpressed and hyperactivated in gastric
tumors [5, 47—49]. However, regulation of the expression
and activation of SHP2 remains unclear. We previously
showed the upstream role of GSK-33 in SHP2 inhibition
[34], and, in gastric AGS cells, PI3K/AKT-induced GSK-
3P inactivation might trigger SHP2 activation for IFN-y
resistance [35]. In the present study, we demonstrated that
increased galectin-3 expression facilitates PI3K-induced
AKT/GSK-3B/SHP2 pathway activation, thereby induc-
ing cellular unresponsiveness to IFN-y. These findings
support the idea that deactivating GSK-3f3 promotes SHP2
activation, which inhibits IFN-y signaling and bioactivities,
such as cancer cell growth inhibition and apoptosis.
Regarding the anticancer properties of IFN-y [7, 50, 51],
the implication of PI3K/PTEN/galectin-3/AKT/GSK-3p/
SHP2 signaling might reflect a strategy hijacked by cancer
cells to cause cellular unresponsiveness to IFN-y. Ablating
IFN-y resistance by inhibiting the pathway identified
herein and in previous studies [35] may provide benefits
for treating IFN-y-unresponsive gastric cancers.

MATERIALS AND METHODS

Cell cultures and reagents

Human primary AGS (CRL-1739, ATCC) and
metastatic MKN45 (JCRB0254, The RIKEN Cell Bank,

Koyadai, Japan) gastric adenocarcinoma cells were
routinely grown on plastic plates in F-12 nutrient mixture
(Ham) and RPMI medium 1640 (F-12, RPMI; Invitrogen
Life Technologies, Rockville, MD), respectively, with
L-glutamine and 15 mM HEPES supplemented with
10% heat-inactivated fetal bovine serum (FBS), 50 units
of penicillin, and 50 pg/ml of streptomycin and were
maintained in a humidified atmosphere of 5% CO, and
95% air. Cells were suspended in trypsin/EDTA and
counted. The reagents and antibodies used were PI3K
inhibitor 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-
4-one hydrochloride (LY294002), cisplatin, lactose, and
dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St. Louis,
MO); recombinant human IFN-y (PeproTech, Rocky
Hill, NJ); anti-GSK-30/f and anti-GFP (Santa Cruz
Biotechnology, Santa Cruz, CA); antibodies against
phospho-STAT 10/ at Tyr701, STAT10/B, phospho-AKT
at Thr308 and Ser473, AKT, phospho-SHP2 at Tyr542,
SHP2, phospho-GSK-3a/p at Ser21/9, PTEN, phospho-
PDK1 Ser241, and PDK1 (Cell Signaling Technology,
Beverly, MA); antibodies against galectin-3 (Abcam,
Cambridge, MA); a mouse monoclonal antibody specific
for B-actin, histone, and tubulin (Chemicon International,
Temecula, CA); and Alexa Fluor 488- and horseradish
peroxidase (HRP)-conjugated goat anti-mouse, goat anti-
rabbit, and donkey anti-goat immunoglobulin G (IgG)
(Invitrogen, Carlsbad, CA). All drug treatments were
assessed for cytotoxic effects using cytotoxicity assays
prior to the experiments. Non-cytotoxic dosages were used
in this study.

Plasmid transfection

Transient transfection was performed using an
MP-100 Microporator (Digital BioTechnology, Seoul,
Korea) according to the manufacturer’s instructions for
optimization and usage. The pcDNA 3.1-green fluorescent
protein (GFP) constructs expressing a constitutively
inactive form of GSK-3B*® were kindly provided by
Dr. Pei-Jung Lu (Institute of Clinical Medicine, College
of Medicine, National Cheng Kung University, Tainan,
Taiwan). The plasmid expressing GFP-PTEN (ID
NM_000314; Plasmid 13039) and its control pcDNA3-
GFP (Plasmid 13031); pcDNA3 flag HA AKT1 (Plasmid
9021) and its control pcDNA3 flag HA (Plasmid 1436);
and pBABE-puro SHP2 (Plasmid 8329) and pPBABE-puro
SHP2P¢!4 (Plasmid 8330) and their control vector pPBABE-
puro (Plasmid 1764) were purchased from Addgene
(Cambridge, MA). After transfection, cells were cultured
for 24 h before the experiments.

Western blotting

Harvested cells were lysed in buffer containing 1%
Triton X-100, 50 mM Tris (pH 7.5), 10 mM EDTA, 0.02%
NaN,, and a protease inhibitor cocktail (Roche Boehringer
Mannheim Diagnostics, Mannheim, Germany). After
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freeze-thawing, cell lysates were centrifuged at 10*
x g and 4°C for 20 min. For the cytosolic/nuclear
protein analysis, protein fractions were isolated using
a Compartmental Protein Extraction Kit (Calbiochem,
San Diego, CA) according to the manufacturer’s
instructions. The lysates and supernatants were boiled in
sample buffer for 5 min. The proteins were subsequently
subjected to sodium dodecylsulfate polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred to
polyvinylidene difluoride membranes (Millipore,
Billerica, MA) using a semi-dry electroblotting system.
After blocking with 5% skim milk in phosphate-buffered
saline (PBS), the membranes were incubated overnight
with a 1:1000 dilution of primary antibodies at 4°C.
The membranes were subsequently washed with 0.05%
PBS-Tween 20 and incubated with a 1:5000 dilution of
an HRP-conjugated secondary antibody at room tem-
perature for 1 h. After washing, membranes were soaked
in an enhanced chemiluminescence (ECL) solution
(PerkinElmer Life and Analytical Sciences, Boston, MA)
for 1 min and exposed to x-ray film (BioMax; Eastman
Kodak, Rochester, NY). The relative signal intensity
was quantified using ImageJ software (version 1.410;
W. Rasband, National Institutes of Health, Bethesda,
MD). Changes in the ratio of proteins compared to the
normalized value of untreated cells (indicated protein/p3-
actin or phosphorylated protein/total protein/B-actin)
were also determined. One set of representative data
obtained from three independent experiments is shown.

Luciferase reporter assay

For the luciferase reporter assay, cells were transiently
co-transfected, using GeneJammer reagent (Stratagene, La
Jolla, CA), with an IRF1 promoter-driven luciferase reporter
(0.2 pg) and 0.01 pg of Renilla luciferase-expressing
plasmid (pRL-TK; Promega, Madison, WI). Twenty-four
hours post-transfection, cells were treated with IFN-y for
6 h, lysed, and subsequently harvested for luciferase and
Renilla measurements using a luciferase assay system
(Dual-Glo; Promega). For each lysate, the firefly luciferase
activity was normalized to Renilla luciferase activity to
assess transfection efficiencies.

PI3K activity assay

A PIP3 mass enzyme-linked immunosorbent assay
(ELISA; K-2500s, Echelon Biosciences, Salt Lake City,
UT) was performed to detect PI3K activity in cells
according to the manufacturer’s instructions.

Immunostaining

To detect galectin-3 expression, we fixed, stained,
and analyzed cells. For the flow cytometric analysis, cells
were stained with anti-galectin-3 antibodies, followed by
incubation with a mixture of Alexa Fluor 488-conjugated

goat anti-rabbit IgG. Cells were analyzed using flow
cytometry (FACSCalibur; BD Biosciences, San Jose, CA)
with excitation at 488 nm; emission was detected with the
FL-1 channel (at 515~545 nm). Samples were analyzed
using CellQuest Pro 4.0.2 software (BD Biosciences), and
quantification was performed using WinMDI 2.8 software
(The Scripps Institute, La Jolla, CA). Small cell debris
was excluded by gating on a forward scatter plot. After
washing twice with PBS, tissue sections were incubated
with primary antibodies in antibody diluents (DAKO,
Carpentaria, CA) at 4°C overnight.

RNA interference

Protein expression was downregulated using
lentiviral expression of short hairpin (sh)RNA targeting
galectin-3 (Clonel, TRCNO0000029304 containing the
following shRNA target sequence: 5'-GCTCACTTGTTG
CAGTACAAT-3"; Clone2, TRCN0000029306 containing
the following shRNA target sequence: 5'-GCAAACAGAA
TTGCTTTAGAT-3’; Clone3, TRCN0000029307 containing
the following shRNA target sequence: 5'-GCAGTACA
ATCATCGGGTTAA-3"; and Clone4, TRCN0000029308
containing the following shRNA target sequence:
5'-GCAATACAAAGCTGGATAAT-3") and a negative
control construct (luciferase ShRNA, shLuc). shRNA clones
were obtained from the National RNAi Core Facility,
Institute of Molecular Biology/Genomic Research Center,
Academia Sinica, Taipei, Taiwan. Lentiviruses were
prepared, and cells were infected according to previously
described protocols [52]. Briefly, AGS cells were transduced
using a lentivirus with an appropriate multiplicity of infection
in complete growth medium supplemented with polybrene
(Sigma-Aldrich). After transduction for 24 h and puromycin
(Calbiochem, San Diego, CA) selection for 3 days, protein
expression was monitored using a Western blot analysis.

Cell growth assay

To measure cell growth, cell viability was
determined using a colorimetric assay (Cell Counting Kit-
8; Dojindo Molecular Technologies, Kumamoto, Japan)
according to the manufacturer’s instructions. A micro-
plate reader (SpectraMax 340PC; Molecular Devices,
Sunnyvale, CA) was used to measure the absorbance
at 450 nm, and data were analyzed using Softmax Pro
software (Molecular Devices). The relative growth rate
was normalized to the control group.

Cell apoptosis assay

Cell apoptosis was analyzed using propidium iodide
(PI; Sigma-Aldrich) staining with RNase reaction and
then analyzed using flow cytometry (FACSCalibur; BD
Biosciences) with excitation at 488 nm. Samples were
analyzed using WinMDI 2.8 software (The Scripps Institute).
Apoptotic cells were gated and quantified in the sub-G, phase.
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Statistical analysis

Values are expressed as the mean + standard
deviation (SD). Significant differences between groups
were assessed using a one-way analysis of variance
(ANOVA), followed by Dunnett’s post-hoc test, Student’s
t test, or an ANOVA, as appropriate. These analyses were
performed using GraphPad Prism 4 software (GraphPad
Software, La Jolla, CA). Exact p values are listed in the
corresponding figure legends. Statistical significance was
set at p <0.05.
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