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ABSTRACT

The identification of hot spots, a small subset of protein interfaces that accounts 
for the majority of binding free energy, is becoming more important for the research 
of drug design and cancer development. Based on our previous methods (APIS and 
KFC2), here we proposed a novel hot spot prediction method. For each hot spot residue, 
we firstly constructed a wide variety of 108 sequence, structural, and neighborhood 
features to characterize potential hot spot residues, including conventional ones and 
new one (pseudo hydrophobicity) exploited in this study. We then selected 3 top-
ranking features that contribute the most in the classification by a two-step feature 
selection process consisting of minimal-redundancy-maximal-relevance algorithm 
and an exhaustive search method. We used support vector machines to build our 
final prediction model. When testing our model on an independent test set, our 
method showed the highest F1-score of 0.70 and MCC of 0.46 comparing with the 
existing state-of-the-art hot spot prediction methods. Our results indicate that these 
features are more effective than the conventional features considered previously, 
and that the combination of our and traditional features may support the creation of 
a discriminative feature set for efficient prediction of hot spots in protein interfaces.

INTRODUCTION

Protein-protein interactions (PPIs) play a critical 
role in nearly all aspects of cellular functions like DNA 
replication and signal transduction [1, 2]. Studies of 
principles governing PPIs have revealed that most of the 
binding free energy in an interaction is contributed by a 
small fraction of interface residues known as hot spots [3]. 
Identifying these hot spot residues in protein interfaces can 
help us better understand protein binding mechanisms and 
may also help us to modulate protein-protein association. 
In addition, it has been suggested that mutations in protein 
interfaces play a key roles in cancer development [4], 

which means that systematically studying the roles of 
mutations in protein interfaces, including hot spots, can 
help us to identify cancer driver genes. For example, 
Porta-Pardo et al. [4] have explored the role of missense 
mutations on PPI interfaces as cancer driver mutations in 
a pan-cancer cohort of 5,989 tumors from 23 projects of 
The Cancer Genome Atlas. Their analysis identified PPI 
interfaces enriched in somatic mutations in a total of 103 
genes, proving that alteration of interaction interfaces is a 
common pathogenic mechanism of cancer mutations.

Experimentally, hot spots can be detected using 
molecular biology and thermodynamic methods upon site-
directed mutagenesis like alanine scanning, which aims 
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to evaluate the change in the binding free energy resulting 
from the mutations of protein residues to alanine within a 
protein interface. A database collecting a list of hot spots 
identified by alanine scanning mutagenesis experiments is 
Alanine Scanning Energetics Database (ASEdb) [5]. Binding 
Interface Database (BID) is another database which contains 
experimentally verified hot spots from literature studies [6].

The characteristics of hot spots have been 
extensively studied. Sequential and structural analysis of 
the protein-protein interface has indicated that hot spots 
are more conserved than non-hot spot residues [7, 8]. Also, 
it reveals that hot spots are usually tightly packed within 
the interface and surrounded by a ring of energetically less 
important residues that occlude bulk solvent from the hot 
spots [9]. Other features are also found to be correlated 
with hot spots, including pairing potential [10] and 
protrusion index [11].

Because identification of hot spots by experimental 
methods like alanine scanning mutagenesis is time-
consuming, labor-intensive and expensive, there is a need 
for developing reliable computational methods to identify 
hot spots. In recent years, a number of computational 
methods have been proposed which exploit one or more 
properties of hot spots, as described above, to detect them 
from protein interfaces. Some of these methods are based 
on molecular dynamics simulation techniques [12–14] 
while others are based on different energy functions 
such as Robetta [15] and FOLDEF [16]. Recently, there 
has been considerable progress in applying machine 
learning approaches to discriminate hot spots from the 
rest of the interface residues such as decision trees [17], 
neural network [18], support vector machine [19], random 
forests, and extreme learning machine. We also have 
developed two hot spot prediction approaches based on 
support vector machine, i.e. APIS [11] and KFC2 [20], 
which have both clearly improved predictive ability. These 
machine learning methods try to predict hot spots by using 
sequence, structure or a combination of both sequence and 
structure information. Most of these approaches are trained 
on a subset of ASEdb and tested independently on another 
dataset obtained from BID. Overall, these computational 
approaches, especially machine learning methods, 
have become a valuable complement to experimental 
approaches and can reduce the number of mutations that 
experimental researchers have to pursue when attempting 
to establish principles about binding mechanisms.

In this paper, we proposed a novel hot spot 
prediction method, HEP, which based on our previous 
APIS and KFC2 approaches. First, we constructed a wide 
variety of 108 sequence, structural, and neighborhood 
features to characterize potential hot spot residues, 
including conventional ones and new ones exploited in this 
study. Then, we used a two-step feature selection method 
to identify the best top-ranking features that contribute 
the most in the classification. Finally, we built a model 
(HEP) using support vector machine (SVM) and evaluated 

the performance of the proposed HEP model on two 
benchmark datasets, ASEdb and BID. The results show 
that the proposed method was able to outperform existing 
hot spot prediction methods. The basic architecture of the 
proposed model HEP is shown in (Figure 1).

RESULTS

Feature selection and predictive ability

Features for machine learning methods is an 
important factor in building a model. In this work, 
we investigated physicochemical, structural, and 
neighborhood features for identifying hot spot (shown in 
Table 1 and Supplementary Table S1). Additional features 
[11] derived from residue-residue pairing preferences 
at the interface, residue conversation and temperature 
factor are also considered in HEP. The physicochemical 
features consist of a total of 17 attributes, where PSHP 
(pseudo hydrophobicity) is a novel feature for hot spot 
identification. The structural features include accessible 
surface area (ASA), relative ASA (RASA), depth index 
(DI), protrusion index (PI) [11], and the residue’s position 
information within the protein interface [20]. Because 
the environment of a target interface residue can affect 
its importance to the protein interaction, we defined 33 
features related to neighbors of the target residue, which 
were used in our KFC2 hot spot model [20] and DBSI 
DNA-binding site model [21]. In total, we identified 4 
groups of features, which consist set of 108 feature vectors 
for each hot spot. More details about the feature encoding 
schema can be found in features representation under 
Materials and Methods section.

To assess the feature importance of the 108 features 
in predicting hot spots, we applied a two-step feature 
selection method on ASEdb Dataset. In the first step, 
we used minimum Redundancy Maximum Relevance 
(mRMR) [22, 23], a well-designed filter method, to 
assess the feature vector elements in each feature 
group (physicochemical features, structural features, 
neighborhood features, and features derived from residue-
residue pairing preferences at the interface, residue 
conversation and temperature factor). The top 1/3 features 
from different groups were selected. The total number of 
features we got is 36. Table 1 gives the information of 
the composition of each feature group and the number  
of features that were selected. 

In the second step, we used a similar wrapper 
method in our previous work. We first considered 
2 different features combinations. Then we added one 
feature to train our models with SVM each time. This 
was an effective way to decrease the combinational 
complexity of feature sampling while creating models 
with diverse feature combinations. According to the 
models trained using different feature combinations, 
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we found that the following three features achieved the 
best model among those we examined: electron-ion 
interaction pseudopotential (EIIP), pseudo hydrophobicity 
(PSHP), and relative change in total mean PI upon binding 
(RctmPI). Many more features and combinations were 
tried, but no better models were obtained. For details of 
feature representation and selection, please see features 
representation and two-step features selection under 
Materials and Methods section.

After identifying the best feature combination, we 
wanted to optimize the corresponding parameters for 
SVM. The LIBSVM package [24] was employed in this 
work. The Gaussian Radial Basis Function kernel was 
exclusively used in the computations based on previous 
studies. The capacity parameter C (0.0–80.0) and the 
kernel parameter G (0.0–2.0) of the SVMs were tried 
using a grid search method for Gaussian RBF kernel 
functions. The cross-validation produced the best results 
using parameter values C = 80.0 and G = 0.002. These 
parameters were then used to train the final HEP model 
on the entire training set (ASEdb), on which a 10-fold 
cross-validation was performed to assess predictive 
performance. 

The performance of our model is measured by six 
metrics: accuracy (ACC), specificity (SPE), precision 
(PRE), recall (REC), MCC and F1 score. F1-score is 
the harmonic mean of the precision and recall, which is 

widely used to handle unbalanced data such as hot spot 
data. Table 2 illustrates the results of cross-validations. 
HEP achieved Accuracy = 0.73, Specificity = 0.70, 
Precision = 0.63, Recall = 0.77, F1 = 0.70, and 
MCC = 0.46. We can see that compared with HEP model, 
F1 score is quite low when we use all 108 features 
without feature selection. After feature selection, we 
got 3 significant features. We predict 48 of the hot spots 
correctly with 28 false positives. On the other hand, 64 
of the non-hot spots are correctly classified with 14 false 
negatives.

We have further tested the effect of deleting one 
feature from the 3 features (EIIP, PSHP, and RctmPI). We 
observe that the specificity and precision increases but the 
recall decreases when the feature EIIP was removed. In 
other words, fewer positive hot spot residue are predicted 
with higher percentage of true cases. Compared with 
HEP model, a slight decrease in F1-score performance 
from 0.70 to 0.69 is observed when the feature PSHP 
was removed. Further, when the feature RctmPI was 
eliminated, both the precision and recall decrease, with 
the F1-score of only 0.48. The results indicate that the 
performance based on 2 features (maximum F1 = 0.69) 
was lower than HEP model based on the three features 
EIIP, PSHP, and RctmPI. Therefore, we used these three 
features based classifiers as our final model to infer hot 
spot residues in protein interfaces.

Figure 1: The framework of the present HEP method.
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Performance comparisons with other prediction 
methods

We have been careful in making comparisons 
between models, and we have provided exhaustive 
information to facilitate future comparisons with the 
HEP model on the independent test dataset. The detailed 
measures of these different predictors are listed in Table 3. 
We can see that our method substantially outperforms the 
existing methods in four performance metrics (accuracy, 
recall, F1 score and MCC). We have the highest REC, 
which means our method can predict more hot spots than 
the others. Furthermore, the F1-score of our method is 
0.70, while those of the existing methods fall in the range 
of 0.34–0.64. Comparing with APIS and KFC2, we find 
our performance has a high improvement. The predictive 
results for the independent test also indicate that the 
proposed model performs significantly better than the 
existing state-of-the-art approaches.

Case studies

Complex between the erythropoietin receptor 
and erythropoietin mimetic peptide

The erythropoietin receptor (PDBID: 1ebp, 
chain A) binds to erythropoietin mimetic peptide (PDBID: 
1ebp, chain C). Four hot spots (PHE93: A, PHE205: A, 
MET150: A and TRP13: C, indicated in (Figure 2)) and 
five non-hot spots have been experimentally determined 
in the 1ebpAC interface. In these 9 alanine-mutated 
residues, our method identified three residues (PHE93: A, 

MET150: A and TRP13: C) as hot spots and the rest as 
non-hot spots. Three of the four hot spots were correctly 
predicted. In contrast, APIS predicted only one residue 
(TRP13: C) as hot spot and the others as non-hot spots.

Complex between the beta-catenin and 
adenomatous polyposis protein

The beta-catenin (PDBID: 1jpp, chain B) binds 
to adenomatous polyposis protein (PDBID: 1jpp, 
chain D). Experimentally identified hot spots residues 
at 1jppBD interface are LYS345: B and TRP383: B 
(indicated in Figure 3). Furthermore, LYS354: B, 
ARG386: B, LYS435: B, ARG469: B and HIS470:  
B were experimentally determined to be non-hot spots. 
Our method correctly predicted one out of the two hot spot 
residues, that is, TRP383: B, and all the non-hot spots. 
As a comparison, APIS correctly predicted all the non-hot 
spots but none hot spots.

DISCUSSION

In this study, we computed 108 different features 
including physicochemical features, structural features 
and other conventional features. We used a two-step 
feature selection method to choose significant features. 
The importance of features provides insights for their 
discrimination abilities between hot spots and non-hot 
spots. In order to show different ability of the three features 
for distinguishing hot spots from non-hot spots, statistical 
analysis method Mann-Whitney U test (the confidence level 
is 0.95) is performed. The differences of the three features 

Table 1: The composition of each feature group
Group name The number of features* Feature type

Group 1 17 (6) Physicochemical feature

Group 2 55 (18) Structural feature

Group 3 33 (11) Neighborhood feature

Group 4 3 (1) Other feature

*The number within the parenthesis represents the number of features after the two-step feature selection’s first step  
(mRMR method).

Table 2: Prediction results of the cross-validation with different feature number
Feature used TP TN FP FN ACC SPE PRE REC F1 MCC

All 5 90 2 57 0.62 0.98 0.71 0.08 0.14 0.14

HEP 48 64 28 14 0.73 0.70 0.63 0.77 0.70 0.46

-EIIP 35 77 15 27 0.73 0.84 0.70 0.56 0.63 0.42

-RctmPI 25 74 18 37 0.64 0.80 0.58 0.40 0.48 0.23

-PSHP 46 67 25 16 0.73 0.73 0.65 0.74 0.69 0.46

The highest values are highlighted in bold.
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Table 3: Comparison of different hot spot prediction methods in the independent test set
Methods TP TN FP FN ACC SPE PRE REC F1 MCC

HEP 32 68 21 6 0.79 0.76 0.60 0.84 0.70 0.56

APIS 28 67 21 11 0.75 0.76 0.57 0.72 0.64 0.45

Robetta 12 80 11 24 0.72 0.88 0.52 0.33 0.41 0.25

FOLDEF 10 78 11 28 0.69 0.88 0.48 0.26 0.34 0.17

KFC 12 75 13 27 0.69 0.85 0.48 0.31 0.38 0.19

MINERVA 17 79 9 22 0.76 0.90 0.65 0.44 0.52 0.38

KFC2a 29 64 24 10 0.73 0.73 0.55 0.74 0.63 0.44

KFC2b 21 77 12 17 0.77 0.87 0.64 0.55 0.60 0.44

The highest values are highlighted in bold.

Figure 2: Interaction between erythropoietin receptor (PDBID: 1ebp, chain A, coloured by green) and erythropoietin 
mimetic peptide (PDBID: 1ebp, chain C, coloured by magenta). PHE93: A, PHE205: A, MET150: A and TRP13: C (represented 
by VDW spheres) are experimentally determined hot spots in the 1ebpAC interface. Of these four residues, PHE93: A, MET150: A and 
TRP13: C (all coloured by red) were correctly predicted by our method.
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between hot spots and non-hot spots are significant shown 
in (Figure 4). And Table 4 gives the median value and 
P-value of hot spots and non-hot spots for these 3 features.

(Figure 4A) shows the box plot of EIIP between hot 
spots and non-hot spots in the training set. The median 
value of EIIP of hot spots and non-hot spots is 0.0646 and 
0.1442, respectively with a P-value of 0.714 (Table 4). 
According to the P-value, EIIP may not be a good feature 
to distinguish hot spots from non-hot spots by itself. 
However, in Nguyen et al [25]. They use frequency-related  
features involved physicochemical characteristic such as 
electron-ion interaction potentials and ionization constants 
to predict hot spots and get a high F1. Their results brought 
evidence to support the conjecture of Cosic et al. [26]. That 
protein hot spots are associated with frequency features of 
physicochemical characteristics of the amino acid sequence. 
Meanwhile, we tested the result without the feature using the 
same method and got the best F1 of 0.52 and the best recall 
of 0.61, which were far from our performance. It means that 
EIIP is an important feature even that it has not good ability 
to discriminate hot spots and non-hot spots when used alone. 

(Figure 4B) is the box plot of RctmPI, in which the 
median value of RctmPI of hot spots (0.9237) is higher 
than that of non-hot spots (0.6442). In addition, the 
P-value is 0 (Table 4). These results suggest the hot spots 
residues prefer to protrude from the surface, which are 
in accordance with the results obtained from Pintar et al 
[27]. and Wu et al [28]. So the feature RctmPI is a useful 
feature to construct the SVM model. In our previous work 
[11], we used individual feature to construct models and 
also found the individual-feature model with RctmPI has 
more prediction power.

(Figure 4C) represents the box plot of PSHP of hot 
spots and non-hot spots. The median PSHP of hot spots is 
0.77 and that of non-hot spots is -0.04 (P-value = 0.009, 
Table 4). Thus, PSHP is also an important feature for 
distinguishing hot spots from non-hot spots. To consider 
the relationship among PSHP, residue hydrophobicity 
(HP), and residue hydrophobicity multiplying charges 
(CHP), we tested our results by using them respectively 
with the other two features (EIIP and RctmPI). We also 
plotted their box plots as that showed in (Supplementary 

Figure 3: Interaction between the beta-catenin (PDBID: 1jpp, chain B, coloured by green) and adenomatous polyposis 
protein (PDBID: 1jpp, chain D, coloured by magenta). The defined hot spot residues are LYS345: B and TRP383: B (represented 
by VDW spheres) in the 1jppBD interface. TRP383: B (coloured by red) is the hot spot that was correctly predicted by our method.



Oncotarget18071www.impactjournals.com/oncotarget

Figure S1). CHP is defined as the hydrophobicity 
multiplied by -1 when the residue is ASP, GLU, LYS or 
ARG and the hydrophobicity when the residue is other 
type, which is a little different from that defined in PSHP. 
(Supplementary Figure S1B) shows the box plot of HP of 
hot spots and non-hot spots. The median HP of hot spots 
is –0.61 and that of non-hot spots is –0.04, with a P-value 
of 0.728, respectively. (Supplementary Figure S1C) is the 
box plot of CHP with a median value 0.96 for hot spots 
and 0.26 for non-hot spots (P-value = 0). The charged 
residues, ASP, GLU, LYS and ARG, can often be hot spots 
when they are in the interface, because they formed strong 
hydrogen bond or salt bridges with other residues. We 
multiplied the hydrophobicity scales of these residues by -1  
to make the correspondence between these residues with 
other hydrophobic residues (TRP, PHE) that are often 
hot spots in the interface. However, it turned out LYS 
and ARG in the interface could have been well described 
by other two features. We owe it to that the side chains 
of ASP and GLU are long but not too long compared to 
LYS and ARG, so that when they are in the interface the 
entropy loss can be complementary by the strong hydrogen 

bond or salt bridges formed by them with other residues. 
(Figure 4D–4F) also shows the box plots of hot spots and 
non-hot spots in the test data set.

In conclusion, hot spot residues comprise a small 
fraction of the interface residues that make a dominant 
contribution to the free energy of the binding. Owing to 
the time consumption and labor intensity in experiment 
determination of binding free energy for alanine-mutated 
residues, computational methods can thus be helpful 
in suggesting residues for possible experimentation. In 
this study, we proposed a new computational method to 
identify hot spots in the protein interfaces. We extracted 
108 various features from different aspects such as 
physicochemical, structure, atom contact from APIS and 
KFC2. Then we used a two-step feature selection approach 
that can significantly improve the prediction performance 
and reduce the risk of over-fitting. Firstly, we used mRMR 
to select a number of features from different feature 
groups, which can facilitate the integration of other feature 
selection methods to select a compact subset of superior 
features within a very low cost. Secondly, we tried to use 
the least number of features to construct our model and we 

Figure 4: Box plot of hot spots and non-hot spots with respect to their EIIP (A), RctmPI (B), and PSHP (C) in training 
data, and EIIP (D), RctmPI (E), and PSHP (F) in test data, respectively. In each box, the bottom and the top of the box are the 
lower and upper quartiles, respectively, and the middle line is the median.
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selected only three features at last when we tried different 
feature combinations. Test results on independent data set 
indicated that our method is more effective than the major 
existing hot spot prediction methods. Researchers who 
are interested in finding new features of hot spot residues 
could use the HEP model to characterize the roles of their 
features. HEP would also benefit from these new features 
on the other hand.

MATERIALS AND METHODS

Datasets

Two benchmark hot spot datasets are used in this 
work. Following our previous work [11], we used the 
ASEdb dataset [5] and the published data of Kortemme 
and Baker [15] as the training set. An interface residue 
in the dataset corresponding to a binding free energy 
higher or equal to 2.0 kcal/mol is defined as a hot spot 
residue. The interface residues with binding free energy 
less than 0.4 kcal/mol is considered as non-hot spot. Other 
interface residues with binding free energy between 0.4 
and 2.0 are excluded from the training set for the purpose 
of increasing discrimination between hot spots and non-
hot spots. The final training set comprised of 62 hot spots 
and 92 non-hot spots.

Similar to our previous work [11], the BID database 
[6] was used an as independent test set. In BID, the alanine 
mutation data are categorized as “strong”, ”intermediate”, 
“weak”, or “insignificant”. In our study, only the residues 
labeled as “strong” are considered as hot spots and the 
remaining residues are regarded as non-hot spots. As a result, 
the final test set contained 127 alanine mutated interface 
residues in 18 complexes with 39 hot spots and 88 non-hot 
spots. For details of these two datasets, please refer to [11].

Features representation 

A wide variety of 108 physicochemical, structural 
and neighbor features are used to characterize potential 
hot spot residues. In our study, we combined the features 
used in APIS [11] and KFC2 [20]. Meanwhile, we added 
a number of features proposed in DBSI [21] in this study. 
These features can be roughly divided into four groups: (I) 
Physicochemical features; (II) structural Features related 
to solvent accessibility; (III) features related to neighbors 
of the target residue; and (IV) other features.

Physicochemical features

Physicochemical features of an amino acid residue 
were described by 16 values such as hydrophobicity, 
hydrophilicity, isoelectric point, mass, expected number 
of contacts with 14 Å sphere, electron-ion interaction 
pseudopotential (EIIP). The description of these features 
can be found in our previous works [11, 20].

In addition, a new feature called pseudo 
hydrophobicity (PSHP) was generated based on the 
combination of hydrophobicity and charge. If the charge of 
the residue was non-negative, the pseudo hydrophobicity was 
defined as the hydrophobicity of the residue; if the charge 
of the residue was negative, i.e. Asp or Glu, the pseudo 
hydrophobicity was defined as the product of the 
hydrophobicity index and the charge of the residue. Here the 
negatively charged residues were assigned a charge of -1.

Features extracted from structural attributes

55 structure-based features related to accessible 
surface area (ASA), relative ASA (RASA), depth index 
(DI), and protrusion index (PI) were used in this study. 
These features were calculated using PSAIA [29]. For 
details, please refer to our previous works [11, 20].

Table 4: Statistic data of hot spots and non-hot spots in training and test data set

Feature Data Median value
(hot spots)

Median value
(non-hot spots) P-value

EIIP Training 0.065 0.144 0.714

Test –0.291 –0.296 0.598

RctmPI Training 0.924 0.644 0.000

Test 0.842 0.647 0.000

HP Training –0.610 –0.040 0.728

Test 0.960 –0.040 0.014

PSHP Training 0.770 –0.040 0.009

Test 0.960 0.260 0.003

CHP Training 0.960 0.260 0.000

Test 1.010 0.990 0.010
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Features related to neighbors of the target 
residue

The environment of a target interface residue is very 
important because hot spots were found to be clustered 
within tightly packed regions. We defined environmental 
features of a target residue with two distances cutoffs 
4.0 and 5.0 Å. The number of residues and the number 
of atoms around the side chain of the target residue were 
calculated within this environment, respectively. We also 
calculated the number of rotatable single bonds within the 
side chain. In addition, the weighted rotatable single bond 
number, which is the number of rotatable single bonds 
divided by the number of atoms in the side chain, was also 
calculated. Lastly, we calculated the total hydrophobicity 
of residues around the side chain of the target residue, with 
the purpose of reflecting the environmental hydrophobicity 
of the target residues.

Other features

B-factor was used to represent the flexibility of 
amino acid residue. Secondary structure of each residue 
collected from DSSP [30] was also used to describe 
hot spots. We also computed the pair potential of each 
residue in our data set by using the method in Xia at el 
[11]. Additionally, the evolution rate for each residue was 
obtained using the Rate4Site algorithm [31], which was 
implemented in the ConSurf-DB [32] server.

Totally, 108 descriptors were generated for each 
interface residue (For details, please see Supplementary 
Table S1).

Two-step features selection

Feature selection, more precisely feature subset 
selection, is performed to eliminate uninformative 
properties to generate robust and general prediction 
models. In this work, we propose a two-step feature 
selection method, as shown in (Figure 1), to select a subset 
of features, with which to obtain better discrimination of 
hot spots and non-hot spots.

In the first step, we divided the feature into 4 groups. 
Then we assessed the feature elements using minimum 
Redundancy Maximum Relevance (mRMR) [22, 23] 
in each group. mRMR is very useful in the preprocess 
of feature selection as described in Peng et al [22]. 
We applied mRMR to each group and chose the top 
1/3 features of group 1, 2, 3, and 4. Table 1 gives the 
information of the composition of each group and the 
number of features that were selected and non-selected. 
After that, we got 36 features.

In our second step, we used the similar method in 
our previous work [20]. We first selected 2 features from 
the selected 36 features. Then we added one feature each 
time until the F1 score and MCC was improved. And 
we used support vector machines (SVM) to evaluate 

the features by 10-fold cross-validation. After that, we 
combined features from different classes to create diverse 
feature combination sets. 

Classification method

The classification model for predicting hot spots was 
based on SVM, which is a class of effective supervised 
learning methods that demonstrate high prediction 
accuracy while efficiently avoiding the overfitting 
problem. The LIBSVM package (Chang and Lin 2001) 
was employed in this work. The Gaussian Radial Basis 
Function kernel was exclusively used in the computations 
based on previous studies. We tried different C factors 
(ranging from 0 to 80) and different G factors (ranging 
from 0 to 2) for Gaussian RBF kernel functions. The value 
of C controls the trade-off between allowing training errors 
and forcing strict margins, while the value of G determines 
the Gaussian RBF width. Depending on the composition 
of the data set and the number of features used, the optimal 
values for C and G can vary tremendously.

Performance assessment

Predicting a binding site as hot spot or non-hot spot 
is a binary classification problem, and many measures have 
been introduced for validation issues. Here the prediction 
performances are evaluated by the overall prediction 
accuracy (ACC), specificity (SPE), precision (PRE), recall 
(REC), F1 score, and the Matthew’s correlation coefficient 
(MCC). These measures are defined as,

ACC TP TN TP FP TN FN= + + + +( ) / ( )

SPE TN TN FP= +/ ( )

PRE TP TP FP= +/ ( )

REC TP TP FN= +/ ( )

F REC PRE REC PRE1 2= × × +/ ( )

MCC
TP TN FP FN

TP FN TP FP
TN FP TN FN

=
× − ×

+ +

+ +

( )

( )( )
( )( )

where TP, FP, TN, and FN are the number of true 
positive (correctly predicted hot spot), false positive 
(non-hot spot residue incorrectly predicted as hot spot), 
true negatives (correctly predicted non-hot spot), and the 
number of false negatives (hot spot residue incorrectly 
predicted as non-hot spot), respectively.
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