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ABSTRACT
Similarities in gene expression between both developing embryonic and 

precancerous tissues and cancer tissues may help identify much-needed biomarkers 
and therapeutic targets in lung squamous carcinoma. In this study, human lung 
samples representing ten successive time points, from embryonic development to 
carcinogenesis, were used to construct global gene expression profiles. Differentially 
expressed genes with similar expression in precancerous and cancer samples were 
identified. Using a network-based greedy searching algorithm to analyze the training 
cohort (n = 69) and three independent testing cohorts, we successfully identified a 
significant 22-gene module in which expression levels were correlated with overall 
survival in lung squamous carcinoma patients.

INTRODUCTION

The initiation of lung squamous carcinoma (LSQC) 
is characterized by five major successive stages: normal 
bronchial epithelium, squamous metaplasia, mild-
moderate dysplasia, severe dysplasia (carcinoma in situ), 
and invasive carcinoma [1]. Many genetic or epigenetic 
changes essential for cancer initiation have already taken 
place in precancerous bronchial lesions before cancer 
formation [2]. Cisplatin plus gemcitabine is still the first-
line treatment for LSQC [3, 4], and therapeutic options 
for LSQC patients remain limited because no specific 
molecular targets have been identified [5]. Therefore, 
understanding the molecular alterations that occur 
during carcinogenesis, especially in precancerous stages, 
might aid in the discovery of prognostic biomarkers and 
identification of candidate therapeutic targets.

The association between embryonic development 
and carcinogenesis has been widely documented, and 
some molecules are essential in both processes. Ptch1 
is a key regulator of embryonic development, and its 

overexpression promotes skin carcinogenesis [6]. Scrib, a 
mediator of epidermal permeability barrier acquisition and 
skeletal morphogenesis during embryonic development, 
is a potent tumor suppressor in cutaneous carcinogenesis 
[7]. Developmental animal models have also been used 
to uncover complicated molecular mechanisms of 
carcinogenesis [8, 9]. For instance, the Notch1 signaling 
pathway, which is activated during development, is 
reactivated during carcinogenesis [10, 11]. In addition, 
cancer gene expression profiles can recapitulate the 
expression patterns of embryonic development [12-17]. 
These findings suggest that tumors can be viewed as an 
aberrant organs which have acquired the capacity for 
indefinite proliferation through various genetic alterations 
[18].

In this study, expression profiles of human lung 
tissues at various stages from embryonic development 
to carcinogenesis were used to identify differentially 
expressed genes (DEGs) of interest. A prior knowledge-
based biological network was used to identify gene 
module(s) correlated with overall survival (OS) in 
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LSQC patients. Using a greedy searching algorithm, 
we successfully identified a 22-gene module for which 
expression was significantly correlated with OS.

RESULTS

A schematic for the study is depicted in Figure 1.

Identification of DEGs consistently differentiated 
in both precancerous and cancer samples reduced 
signal noise

First, we analyzed the global expression profiles 
of human adult normal lung (NL), LSQC precancerous 
progression (Figure 2A-2D), and cancer samples (Figure 

2E-2F) to identify DEGs of interest during carcinogenesis. 
2011 genes were up-regulated and 1877 genes were 
down-regulated in precancerous samples in comparison to 
NL, and 1332 genes were up-regulated and 2047 genes 
were down-regulated in cancer samples compared to 
NL. Notably, a large portion of the DEGs differentiated 
in cancer were already consistently differentiated in 
precancerous stages (Figure 2G-2J). To reduce signal 
noise, DEGs that were up-regulated or down-regulated 
in both progression and cancer samples, referred to as 
consistent DEGs, were isolated. 1025 up-regulated (Figure 
2G) and 1376 down-regulated (Figure 2H) consistent 
DEGs were identified.

Figure 1: Schematic of methodology applied in this study. Step I: Construction of global expression profiles of human lung 
embryonic development and LSQC carcinogenesis samples; Step II: Identification of consistent DEGs in precancerous and cancer samples; 
Step III: Using a greedy searching algorithm to identify module(s) significantly associated with overall survival.
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Consistent DEGs have roles in immune response 
and cell cycle processes

GO enrichment analysis was conducted via the 
DAVID bioinformatics tool (http://david.abcc.ncifcrf.
gov/). The consistently down-regulated DEGs were 
functionally related to “immune response”, since the 
majority of the enriched GO terms for these genes were 
offspring of that GO term (FDR < 0.001, Figure 2K, 
Supplementary Table 1), while consistently up-regulated 
DEGs were functionally related to “cell cycle” (FDR < 
0.001, Figure 2L, Supplementary Table 2). Therefore, we 
used 208 consistently down-regulated DEGs belonging 
to the GO term “immune response” (hereafter termed 
as “Immune DOWN” genes) and 234 consistently up-
regulated DEGs belonging to the GO term “cell cycle” 
(hereafter termed as “Cycle UP” genes) for further 
analyses.

Immune DOWN and Cycle UP genes were 
differentially regulated similarly in both 
embryonic development and carcinogenesis

Expression profiles from human lung tissue 
during embryonic development [whole embryo (WE) at 
postovulatory weeks (PWs) 3 to 5, early embryonic lung 
(EEL) at 6 to 8 PWs, middle embryonic lung (MEL) at 
16 to 24 PWs, and NL], LSQC precancerous progression 
[mild or moderate dysplasia (termed as P1) and carcinoma 
in situ (termed as P2)], and cancer (Stage I-IV) samples, 
were used to construct matplots of Immune DOWN 
(Figure 3A) and Cycle UP (Figure 3B) genes showing 
expression trajectories from embryonic development to 
carcinogenesis. A heatmap was also generated showing 
both Immune DOWN and Cycle UP genes across samples 
from all stages (Figure 3C). Immune genes down-regulated 
during carcinogenesis had the propensity to be kept 

Figure 2: Identification of consistent DEGs and GO enrichment analysis. A.-F. Bronchoscopic manifestation of multi-stage 
tissues during LSQC carcinogenesis. G.-J. Venn diagrams of the DEGs in precancerous and cancer stage samples. The majority of the genes 
differentiated in cancer were already consistently differentiated in the precancerous stage. G. Identification of 1025 consistent up-regulated 
DEGs. H. Identification of 1376 consistent down-regulated DEGs. I.-J. Only two DEGs were inconsistently differentiated in precancerous 
and cancer stages, probably as a result of noise. K. GO enrichment analysis of down-regulated consistent DEGs indicated these genes were 
associated with immune response. L. GO enrichment analysis of up-regulated consistent DEGs indicated that these genes were related to 
the cell cycle.
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increasing along embryonic development (underexpressed 
in developmental samples comparing to NL), while cell 
cycle genes up-regulated during carcinogenesis tended 
to be kept decreasing along development time-axis 
(overexpressed in developmental samples comparing 
to NL); and these two gene groups were divided into 
two distinct clusters (Figure 3). In addition, principle 

component analysis (PCA) of the development data 
indicated that human lung ontogenesis was characterized 
by sequential changes in transcriptomic features, and 
developmental trajectory was recapitulated by Immune 
DOWN (Figure 4A) and Cycle UP (Figure 4B) genes. 
Samples clustered tightly within each developmental 
stage, but differed between different stages (Figure 4A-

Figure 3: Matplots and heatmap of Immune DOWN and Cycle UP genes from embryonic development to cancer. A. 
Matplot of Immune DOWN genes across ten time points showing that these genes were downregulated in both embryonic development 
and cancer. B. Matplot of Cycle UP genes, which were upregulated in both embryonic development and cancer. C. Heatmap of Immune 
DOWN and Cycle UP genes across ten time points. Rows represent genes, and columns represent samples from the ten time points. Genes 
were clustered with an unsupervised clustering algorithm (UCA). The two groups of genes were divided into two distinct clusters.
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4B). Moreover, according to gene set enrichment analysis 
(GSEA) conducted in 52 paired Cancer Genome Atlas 
(TCGA) samples (cancer and adjacent normal tissue), 
Immune DOWN genes were significantly down-regulated 
(Supplementary Figure 1A) and Cycle UP genes were 
significantly up-regulated (Supplementary Figure 1B) in 
cancer, which was highly consistent with our microarray 
results (comparing normal adult lung with cancer 
samples).

Continuous co-expression disruption affected 
Immune DOWN and Cycle UP genes during 
carcinogenesis

Pairwise Pearson correlations among the Immune 
DOWN and Cycle UP genes (442 consistent DEGs in 
total) were calculated to construct diagonally symmetric 
Pearson correlation heatmaps for lung samples during 
embryonic development (Figure 4C), precancerous 
progression (Figure 4D), and cancer (Figure 4E) stages. 
During the developmental stage, Immune DOWN and 

Cycle UP genes were divided into two distinct clusters that 
were not present in the precancerous and cancer stages. 
Superimposing the three Pearson correlation density 
curves (Figure 4F) revealed a clear bimodal distribution 
for the developmental stage and unimodal distributions 
for the progression and cancer stages, suggesting that co-
expression differentiation plays an important role during 
carcinogenesis.

A network-based method identified a 22-gene 
module correlated with overall survival

We projected the 442 Immune DOWN and 
Cycle UP genes onto a merged prior knowledge-based 
biological network; the largest connected component 
contained 246 genes and 540 interactions (Figure 5). 
This subnetwork, composed of the consistent DEGs 
that strongly affected immune response and cell cycle, 
may contain modules that provide useful prognostic 
information. To identify these modules (schematic of 
module identification shown in Supplementary Figure 

Figure 4: Gene expression and Pearson correlation pattern analyses. A.-B. PCA analyses with Immune DOWN and Cycle UP 
genes recapitulating the trajectory of human lung development. The lung developmental samples clustered tightly within each developmental 
stage, but not between different stages, implying that the differentiation of these genes might promote human lung development. C.-E. 
Heatmaps of Pearson correlation patterns for Immune DOWN and Cycle UP genes in C. the development stage, D. the precancerous 
progression stage and E. the cancer stage. Red rows represent Cycle UP genes, while blue rows represent Immune DOWN genes. The 
heatmaps indicated that the co-expression pattern was continuously disrupted from development to carcinogenesis. F. Density curves of 
Pearson correlation in three stages. A bimodal distribution was seen for the developmental stage, in contrast to the unimodal distributions of 
the progression and cancer stages. Furthermore, the cancer stage had a higher maximum density at a Pearson correlation of zero compared 
with the progression or developmental stages, also indicating deteriorating gene-to-gene co-expression.
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2), genes and interactions were weighted with prognostic 
correlation (quantifying the survival correlation) and 
differentiation of co-expression (quantifying the disruption 
of gene-to-gene synchronization) during carcinogenesis, 

respectively. Fifty-three modules were identified using 
a greedy searching algorithm after merging modules 
with ≥ 80% overlap. Only 17 modules with significant 
high scores were found after 10,000 random module 

Figure 5: The largest Immune DOWN and Cycle UP gene component within the merged biological network. Immune 
DOWN and Cycle UP genes were mapped into the merged biological network, and the largest connected component, containing 246 
genes and 540 interactions, was analyzed further. These genes served as the initial gene pool for further module identification. Red nodes 
represent Cycle UP genes, while blue nodes represent Immune DOWN genes.
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sampling (p < 0.1). Furthermore, 3 out of these 17 
modules (Supplementary Figure 3, Figure 7A) were 
associated with OS in our training cohort (p < 0.1, Table 
1). Prognostic evaluation indicated that only the module 
with JAK1 as the seed gene (n = 22) performed well in 
three independent testing cohorts (TCGA, n = 483, p 
= 0.01, Figure 6A-6B; GSE37745, n = 66, p = 0.016, 
Figure 6C-6D; GSE11969, n = 35, p = 0.0083, Figure 6E-
6F). This JAK1-centered module, exhibiting consistent 
prognostic merit in both training and testing cohorts, might 

be essential in promoting LSQC carcinogenesis. The 
prognostic performance of the 22 genes of this module in 
the training cohort is presented in Supplementary Figure 4. 
The signaling pathway annotation of this 22-gene module 
(Figure 7A) indicated that these genes were associated 
with T cell receptor, p53 signaling, and apoptosis signaling 
pathways (Supplementary Table 3, FDR < 0.05). Gene 
and differential co-expression scores for this module are 
shown in Supplementary Table 4 and Supplementary Table 
5, respectively. The expression of CDK1 is not included 

Table 1: Associations between clinicopathological characteristics in the training cohort and overall survival
Characteristics Number % (range) HR (95%CI) p
Age
  Mean±SD 59.6±9.33 40-77 1.002 (0.962~1.043) 0.933
Sex
  Male 65 94.2 1.150 (0.271~4.882) 0.850
  Female 4 5.8 1.000 (reference) -
T status
  T1+T2 46 66.7 1.000 (reference) -
  T3+T4 23 33.3 1.934 (0.901~4.153) 0.091
N status
  N0 35 50.7 1.000 (reference) -
N1+N2 34 49.3 1.577 (0.727~3.420) 0.249
AJCC stage 
  Stage I 25 36.2 1.000 (reference) -
  Stage II 21 30.5 1.590 (0.568~4.455) 0.377
  Stage III 23 33.3 3.032 (1.169~7.866) 0.023
Smoking (packs per year)
  Mean±SD 33.5±26.0 0-138 1.007 (0.994~1.020) 0.299

Abbreviations: SD, standard deviation; HR, hazard ratio; CI, confidence interval. Significant p values are in bold (p < 0.05).

Table 2: Univariate and multivariate analyses of overall survival (Cox proportional hazards regression model) in three 
testing cohorts
Factors Univariate Cox regression Multivariate Cox regression

HR (95% CI) p HR (95% CI) p
GSE37745
Age 1.012 (0.977~1.047) 0.509 - -
Sex (Male/Female) 0.826 (0.456~1.497) 0.528 - -
Stage (I+II/III+IV) 2.050 (1.018~4.132) 0.045 2.621 (1.253~5.483) 0.010
EMa 0.512 (0.293~0.893) 0.018 0.443 (0.247~0.791) 0.006
GSE11969
Age 1.030 (0.975~1.088) 0.295 - -
Sex (Male/Female) 1.282 (0.171~9.592) 0.809 - -
Stage (I+II/III+IV) 3.407 (1.395~8.323) 0.007 3.034 (1.233~7.467) 0.016
EMa 0.289 (0.109~0.765) 0.012 0.321 (0.120~0.863) 0.024
TCGA
Age 1.017 (0.999~1.035) 0.057 - -
Sex (Male/Female) 1.109 (0.797~1.542) 0.539 - -
Stage (I+II/III+IV) 1.516 (1.090~2.108) 0.013 1.506 (1.082~2.095) 0.015
EMa 0.690 (0.518~0.918) 0.011 0.694 (0.522~0.923) 0.012

aSamples were divided into two groups based on the eigengene value for the 22-gene module (EM). Significant p values are 
in bold (p < 0.05). Abbreviations: HR, hazard ratio; CI, confidence interval.
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in GSE11969, and the survival analysis in this cohort was 
therefore conducted with the remaining 21 module genes. 
Meta-analysis was conducted to assess the correlation 
between individual genes and patients’ OS in four datasets 

(training and testing cohorts) using both a fixed and a 
random effect model; these two widely used methods 
pooled the effect sizes of the individual studies into an 
overall effect size (Figure 7B-7C, the value of CDK1 in 

Figure 6: Survival analysis of the significant 22-gene module in three independent testing cohorts. A. The heatmap of 
these 22 genes in the TCGA data. Rows represent 22 module genes, which were clustered using an unsupervised clustering algorithm, 
while columns represent samples, which are divided into two groups according to their corresponding EM value. B. Kaplan-Meier survival 
analysis of these 22 genes in the TCGA data, in which patients are divided into two EM-assigned groups. C.-D. The heatmap and survival 
analysis of these module genes in the GSE37745 dataset. E.-F. The heatmap and survival analysis of these module genes in the GSE11969 
dataset. 
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GSE11969 was imputed with the R package “impute”). 
The Cox proportional hazards regression model was used 
to evaluate the independence of the prognostic factors in a 
stepwise manner (Table 2). In each testing cohort, samples 
for which OS, age, sex and American Joint Committee 
on Cancer (AJCC) stage information were known were 
used to perform the analysis. The expression of these 22 
module genes was confirmed as an independent prognostic 
factor in predicting patients’ OS (Table 2), suggesting a 
potential clinical application.

DISCUSSION

MacDonald proposed the concept of biological 
predeterminism of human cancers, suggesting that 
clinical outcome can be determined by the intrinsic or 
destined natural history of cancer [19]. An investigation 
of a mammary intraepithelial neoplasia outgrowth mouse 
model indicated that precancerous cells possess malignant 
potential for latency and metastasis, independent of the 
accumulation of additional genetic alterations [20]. 

Figure 7: Forest plots of the association between the 22-gene module and overall survival. A. The significant module 
composed of 22 genes found using a greedy searching algorithm, including 8 Cycle UP and 14 Immune DOWN genes. Node sized 
represents gene prognostic score, while edge width represents differential co-expression score. B. Forest plot of these 22 module genes 
with data from the training and three testing cohorts using a fixed effect model. The forest plot shows each gene’s official symbol, HR, and 
p value, calculated by pooling all four effect sizes obtained from both the training and testing cohorts. C. Forest plot using a random effect 
model.
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Additionally, invasive behavior was discovered in 
precancerous cells, indicating that cancer dissemination 
may precede tumor formation [21]. These observations 
suggest that cancer cells may acquire the ability to 
proliferate and invade largely during precancerous stages. 
Similarly, our study of colorectal cancer [22] indicated 
that most differentiated genes in cancer may already be 
consistently differentiated in precancerous stages.

Consistent DEG analysis indicated that precancerous 
and cancer samples manifest similar differential gene 
expression patterns during carcinogenesis (Figure 2G-2J). 
Thus, DEGs activated or suppressed in both precancerous 
and cancer stages are likely involved in key regulatory 
abnormalities that occur during carcinogenesis. GO 
analysis indicated that consistent DEGs were involved 
in immune response and cell cycle processes. Tumor-
associated cell cycle defects may induce aberrant 
proliferation as well as genomic and chromosomal 
instability, which are often mediated by alterations in 
cyclin-dependent kinase (CDK) activity [23]. Infection 
and chronic inflammation contribute to an estimated 25% 
of all cancers worldwide [24]. In developmental biology, 
the fetus, which in many ways behaves like an allogenic 
transplant, also evades maternal immune-surveillance 
through mechanisms similar to those observed in 
tumors [25]. Indeed, excessive proliferation (activation 
of cell cycle genes) and immune-surveillance evasion 
(suppression of immune genes) allow tumors to obtain 
territorial expansion advantages compared to normal cells. 

The association between embryonic development 
and carcinogenesis [26, 27] makes developmental models 
useful for studying cancer, in part because they help 
circumvent potentially misleading complexity caused by 
tumor heterogeneity [28-30]. Many cellular processes, 
including epithelial-to-mesenchymal transition (EMT) 
[31], mesenchymal-to-epithelial transition (MET) [32], 
and immune-surveillance evasion [25] occur during both 
embryonic development and carcinogenesis. Currently, 
there are two theories explaining these similarities. 
First, cancers may be capable of excessive territorial 
expansion, migration, and invasion because of genetic 
or epigenetic changes, both of which also play important 
roles during normal development [33-35]. Second, 
tumors may originate from either tissue stem cells or their 
immediate progeny by diverging from tightly-regulated 
normal development pathways such that they share 
characteristics with embryonic cells [36]. The existence of 
cancer stem cells has been demonstrated, especially in the 
hematopoietic and colorectal systems [37, 38]. Regardless 
of the underlying causes, certain pivotal genes are 
differentially expressed in both embryonic development 
and carcinogenesis. For example, the activity of ENAH, a 
very important molecule in breast cancer transformation 
and invasiveness, decreases during mammary gland 
development, but increases in breast tumors [39]. 
Additionally, VICKZ is thought to be essential for 

generating and stabilizing the transformed cell phenotype. 
VICKZ expression typically ceases in virtually all tissues 
soon after birth; however, it is expressed or amplified in at 
least 12 different kinds of cancer [40]. Therefore, Immune 
DOWN and Cycle UP genes, which were up-regulated 
or down-regulated in both cancer and developmental 
tissues, likely represent core genes that promote the tumor 
formation.

Notably, Immune DOWN genes were 
underexpressed in both embryonic development and 
cancer samples in comparison to normal tissues; Cycle 
UP genes were overexpressed in both, and in lung 
adenocarcinoma as well [41]. These findings suggest that 
cancer spreads by hijacking cellular programs essential for 
embryonic development. During carcinogenesis, Immune 
DOWN and Cycle UP genes were drastically differentiated 
in the precancerous stage. However, after the time point 
P1, their expression was relatively stable, indicating 
that most gene expression differentiation occurred in the 
precancerous stage. Additionally, the Pearson correlation 
pattern was severely disrupted from development to 
carcinogenesis (Figure 4C-4F), reflecting the gradual 
deterioration of gene-to-gene regulatory relationships.

The largest connected component composed of 
Immune DOWN and Cycle UP genes (Figure 5) showed 
that these two groups of genes separately formed compact 
regulatory interactions, and that many regulations existed 
between the two gene groups. This network described 
regulatory interactions between two functionally pivotal 
gene groups that are altered in cancer; dynamic modularity 
analysis based on this network might help identify core 
events during carcinogenesis and genes that predict 
prognosis [42]. 

Genes in the network were weighted with 
corresponding prognostic correlation, and interactions 
were weighted with the differentiation of co-expression, 
similar to a previous study [43]. In this way, significant 
modules identified by a greedy searching algorithm [44] 
contained specific genes that were correlated with OS 
and affected by co-expression differentiation during 
carcinogenesis. A module was identified (n = 22, Figure 
7A) in which expression was significantly correlated 
with patients’ OS in three testing cohorts (Figure 6). This 
module, containing 8 Cycle UP genes and 14 Immune 
DOWN genes subject to strong expression alterations and 
co-expression differentiation, may represent an important 
mechanism of tumor initiation. The individual prognostic 
ability of these 22 genes was further illustrated through 
meta-analysis. Fixed and random-effect models are 
the most commonly used methods in conducting these 
meta-analyses, and both use different strategies to pool 
effect sizes obtained from the individual studies into an 
overall effect size. The fixed-effect model assumes that 
differences between the studies are important enough that, 
during the effect-size pooling process, individual effect 
sizes should be retained; on the contrary, the random-
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effect model assumes that individual trial effect sizes are 
“random” quantities [45, 46].

In summary, expression profiles of human lung 
embryonic development, precancerous progression, and 
LSQC samples were analyzed to identify genes with 
prognostic value. Consistent DEGs differentiated in both 
precancerous and cancer samples were identified. Up-
regulated consistent DEGs were primarily related to cell 
cycle processes, while down-regulated consistent DEGs 
were primarily related to immune responses. Furthermore, 
a significant gene module was identified using a network-
based greedy searching algorithm, and the expression of 
its 22 genes was significantly associated with patients’ OS. 

MATERIALS AND METHODS

Ethics statement

Informed consent was obtained from all donors. 
This study was conducted in accordance with the ethical 
standards of the Declaration of Helsinki. The use of 
human tissue samples and the experimental procedures 
for this study were reviewed and approved by the Ethics 
Committee of the Cancer Institute and Hospital, Chinese 
Academy of Medical Sciences. All experiments were 
performed in accordance with relevant national and 
international guidelines.

Patients and samples

The human developing lung [including whole 
embryos (WE, n = 10) and early (EEL, n = 10) and middle 
embryonic lung (MEL, n = 9)] and adult normal lung (NL, 
n = 15) samples were used in our previous investigation 
(National Center for Biotechnology Information Gene 
Expression Omnibus (GEO) accession number GSE43767) 
[41]. Precancerous progression and LSQC cancer samples 
were collected from 62 patients through bronchoscopy in 
the Department of Endoscopy, Cancer Hospital, Chinese 
Academy of Medical Sciences. The biopsy samples 
included 23 precancerous progression cases [5 cases 
with mild or moderate dysplasia (P1) and 18 cases with 
carcinoma in situ (P2)] and 39 lung squamous carcinoma 
cases (11 Stage I, 13 Stage II, 8 Stage III, and 7 Stage 
IV cases). Sixty-nine LSQC samples with OS information 
were obtained via surgical excision at the Cancer Institute 
and Hospital, Chinese Academy of Medical Sciences 
(Table 1). All tissue samples were snap-frozen in liquid 
nitrogen immediately after biopsy or surgery and stored 
at -80°C. A portion of the samples was subjected to 
pathological analysis performed by two independent 
and experienced pathologists blind to the experimental 
purpose. Samples that satisfied the diagnostic criteria for 
precancerous and neoplastic histology (abnormal cells > 

80%) were enrolled. If more than one biopsy sample was 
taken from the same patient, these samples were pooled.

RNA isolation and microarray expression 
profiling

Total RNA was extracted from frozen tissues using 
TRIzol RNA isolation reagent (Invitrogen, Carlsbad, CA, 
USA) according to the manufacturer’s specifications. RNA 
integrity was evaluated using a 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, USA). If the RNA integrity 
number was ≥ 6.5, the total RNA was further purified 
using the RNeasy Mini Kit (Cat No.74106, Qiagen, 
Germany). RNA concentrations were determined with 
a NanoDrop ND-1000 Spectrophotometer (NanoDrop 
Technologies, Wilmington, USA).

After histopathological evaluation and RNA 
integrity analysis, all samples were purified and analyzed 
using Agilent microarrays. Total RNA samples from 
human developmental tissues and cancer samples with OS 
information were labeled and hybridized to Agilent 4*44K 
Whole Human Genome Oligo Microarrays (G4112F); 
precancerous and cancer samples were analyzed using 
an Agilent SurePrint G3Human GE 8*60K Microarray 
(G4851B).

Data preprocessing and normalization

Normalized expression data were extracted with the 
R package “limma” using the cyclic loess method, and 
the ComBat algorithm was utilized to eliminate potential 
batch effects of the 40,894 common probes shared by 
these two Agilent platforms, as in Clarke et al.’s study 
[47]. The expression levels of 18,453 genes were defined 
as the median value of all probes mapping to a particular 
gene. The raw and processed data are available in the GEO 
database with the series accession numbers GSE73402 
(precancerous and cancer biopsy samples) and GSE73403 
(surgically excised cancer samples with OS information).

The mRNA sequencing (RNAseq, n = 552) level 3 
data for lung squamous carcinoma were retrieved from 
the Cancer Genome Atlas (TCGA) database (https://tcga-
data.nci.nih.gov/tcga/). Fifty-two pairs of RNAseq data 
were used for GSEA anlaysis. Cancer samples with OS 
information (n = 483) were used for prognostic evaluation. 
Datasets with OS information (GSE37745 and GSE11969, 
only LSQC samples were included) were downloaded 
from the GEO database and used as a testing cohort for 
prognostic evaluation in conjunction with data from 483 
TCGA samples.
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Identification of consistent differentially expressed 
genes in precancerous progression and cancer 
samples

Since the majority of differentiated genes in cancer 
are already consistently differentiated in precancerous 
stages, consistent DEGs in precancerous and cancer 
samples were identified to reduce signal noise. An 
unpaired t-test was conducted to identify DEGs between 
both precancerous progression samples (including P1 
and P2, n = 23) and normal tissues (n = 15), and between 
cancer samples (n = 39) and normal tissues (FDR < 0.01, 
fold change > 1.5). Genes that were up-regulated or down-
regulated in both progression and cancer samples (as 
compared to normal samples) were regarded as consistent 
differential DEGs, and were analyzed further. 

Establishing a merged prior knowledge-based 
biological network

The protein-protein interaction network was 
downloaded from the Human Protein Reference Database 
(HPRD), and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) network was constructed with 
the Bioconductor package “KEGGgraph”. The gene 
regulatory network was established by merging the HPRD 
and KEGG networks, which included 10,340 nodes and 
60,642 edges after self-loops and duplicated edges were 
eliminated. 

Searching for significant modules

In a given connected biological network, gene i was 
first weighted with zi as follows:

 
1(1 )i iz p−= Φ −  (1)

where pi represented the significance of the 
correlation between the expression value of gene i 
and patients’ prognosis, calculated by univariate Cox 
regression, and Φ-1 denoted the inverse standard normal 
cumulative distribution function (CDF) [48, 49]. Thus, 
zi monotonically increased along with prognostic 
significance of gene i, and followed a standard normal 
distribution.

Next, the edge between a gene pair (gene x and 
y) was weighted to represent the differentiation of co-
expression between precancerous progression and cancer 
stage. Pearson correlation coefficient (r) was calculated in 
each of the two stages and then transformed into a z-score 
value (zr) using Fisher’s z transformation.
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Then, the differentiation of co-expression (∆) 

between the gene pair during carcinogenesis was 
calculated using the following formula [50]:
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In this formula, krPz  and krCz  represented the 
transformed Pearson correlation in the progression 
and cancer stages, respectively; np and nc represented 
the progression and cancer stage sample numbers, 
respectively. The score s of a candidate module, denoted 
as g = (V, E), was determined using the following formula 
[51]:
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where m represented the number of nodes (V) and n 
represented the number of edges (E) in module g.

Identifying the maximal-scoring connected module 
can be difficult [49]. In this study, a greedy search was 
performed to identify modules within the connected 
biological network for which scores were locally maximal 
[44, 52]. Candidate modules were seeded with each gene 
in the connected network and iteratively expanded. In each 
iteration, the module recruited a neighboring gene within 
a specified network distance d (d = 2 in this study, as in 
Chuang et al.’s study [44]) from the seed. The addition 
that yielded the maximal score increase was adopted; the 
search stopped when further additions did not increase the 
score by more than a specified improvement rate r (r = 
0.1 in this study) [44]. Modules that overlapped by more 
than 80% in comparison to their sizes were also merged 
[53, 54].

To determine the statistical significance of a 
candidate module M (including m genes), 10,000 random 
modules with m connected genes were sampled, and the 
10,000 module scores were used as the null distribution. 
Modules with p value < 0.1 were considered significant 
[50].

Survival analysis

We calculated the eigengene of the module (EM) 
using first principal component across the expression 
profile of cancer patients. Kaplan-Meier survival analysis 
and the log-rank test were used to evaluate prognostic 
differences between the two EM-assigned groups [15, 
55-57]. The Cox proportional hazards regression model 
was used to evaluate the independence of the prognostic 
factors in a stepwise manner. Samples in each dataset 
with complete patient age, sex, stage, and OS information 
were used for Cox analysis, and a value of p < 0.05 was 
regarded as significant.
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