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ABSTRACT

Glioblastoma (GBM) is the most common malignant adult brain tumor generally 
associated with high level of cellular heterogeneity and a dismal prognosis. Long 
noncoding RNAs (lncRNAs) are emerging as novel mediators of tumorigenesis. 
Recently developed single-cell RNA-seq provides an unprecedented way for analysis 
of the cell-to-cell variability in lncRNA expression profiles. Here we comprehensively 
examined the expression patterns of 2,003 lncRNAs in 380 cells from five primary 
GBMs and two glioblastoma stem-like cell (GSC) lines. Employing the self-organizing 
maps, we displayed the landscape of the lncRNA expression dynamics for individual 
cells. Further analyses revealed heterogeneous nature of lncRNA in abundance 
and splicing patterns. Moreover, lncRNA expression variation is also ubiquitously 
present in the established GSC lines composed of seemingly identical cells. Through 
comparative analysis of GSC and corresponding differentiated cell cultures, we defined 
a stemness signature by the set of 31 differentially expressed lncRNAs, which can 
disclose stemness gradients in five tumors. Additionally, based on known classifier 
lncRNAs for molecular subtypes, each tumor was found to comprise individual cells 
representing four subtypes. Our systematic characterization of lncRNA expression 
heterogeneity lays the foundation for future efforts to further understand the function 
of lncRNA, develop valuable biomarkers, and enhance knowledge of GBM biology.

INTRODUCTION

Glioblastoma (GBM), the most common and 
aggressive form of primary malignant brain tumor in adults, 
is one of the most lethal human cancers [1]. Despite the 
advance of clinical standard treatment usually comprising 
surgery, radiation and chemotherapy over past decades, the 
median survival for patients with glioblastoma has remained 
less than two years [2]. It is believed that the dismal prognosis 
is, at least partially, attributed to tumor heterogeneity that 
was first demonstrated by histopathological discoveries [3]. 
GBM is found to be highly cytologically pleomorphic. Its 
constituent cells not only possess a high degree of variation 

in size and shape but also usually have large bizarre nuclei 
or are multinucleated [4].

GBM has now manifested its heterogeneous nature in 
many ways. It is, however, becoming increasingly clear that 
intratumoral genetic heterogeneity is central to GBM biology, 
potentially posing a great challenge to effective treatment [5]. 
Originally, intratumoral heterogeneity has been verified via 
the analysis of bulk tumors revealing regional copy number 
variation (in EGFR, PDGFRA and PTEN), heterogeneous 
somatic mutations (in TP53) or gene expression difference 
(in MGMT) [6, 7]. Further supportive evidence comes from 
the observation that spatially distinct fragments sampled from 
the same tumor corresponded to different GBM molecular 
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subtypes [7]. These findings represent an important step 
toward understanding intratumoral heterogeneity, but they 
deserve closer scrutiny at higher resolution because each 
cell within a single tumor possibly possesses a unique gene 
expression signature under specific conditions.

Single-cell analysis allows an accurate recapitulation 
of cell-to-cell variations instead of the stochastic average 
masked by bulk measurements [8, 9]. Recently developed 
single-cell RNA-sequencing (RNA-seq) has enabled 
highly parallel transcriptome-wide analysis of hundreds of 
thousands of cells, providing the high-resolution landscape 
of the heterogeneity of single cells within a population 
[10]. Using the method, a systematic profiling of a large 
number of individual cells from five primary GBM tumors 
revealed deep insights into cell-to-cell variability in 
expression of diverse transcriptional programs [11].

The above-mentioned studies mainly focused 
on the analysis of protein-coding transcripts, probably 
because most of their translated proteins are important 
signaling molecules. Indeed, a new class of transcripts, 
long noncoding RNAs (lncRNAs) can exert their effects 
through mechanisms such as chromatin remodeling, cis 
regulation at enhancers and post-transcriptional regulation 
of mRNA processing [12]. Thus, they have been proposed 
as key mediators of diverse biological processes including 
cell pluripotency and tumorigenesis [12-14]. Currently, 
accumulated evidence demonstrates that some lncRNAs, 
often aberrantly expressed in GBM, have been implicated in 
histological/molecular subtypes and malignant phenotypes, 
thereby possessing potentials as biomarkers for diagnosis 
and prognosis, and as therapeutic targets [15-21].

Obviously, the cell-to-cell variability of lncRNAs 
merits deeply exploration to further uncover the 
transcriptional heterogeneity in cancer. Here we used a large 
set of publicly available single-cell transcriptome data from 
five primary GBMs and two glioblastoma stem-like cell 
(GSC) lines to comprehensively interrogate the expression 
profiles of 2,003 lncRNAs in 380 cells. By utilizing the 
self-organizing maps (SOMs), we extracted and visualized 
the lncRNA expression dynamics of individual cells from 
each tumor and from each cell line. Based on lncRNAs 
generating multiple splice variants and those involved with 
stemness and molecular subtypes, detailed analysis of their 
expression patterns epitomized the fundamental properties 
of lncRNAs’ cell-to-cell expression heterogeneity, providing 
a new starting point for further understanding the role of 
lncRNAs in gliomagenesis, developing valuable biomarkers 
and identifying novel treatment targets.

RESULTS

Identification of lncRNAs in single cells from 
GBM tumors and GSC lines

We reanalyzed a previously reported transcriptome 
dataset that profiled 576 single cells isolated from 

five primary GBMs (MGH26, 28, 29, 30, 31), 96 
resequenced MGH30 cells (MGH30L), 192 single 
cells from two GSC lines (GBM6 and GBM8) 
and 11 population samples (five controls for each 
tumor, three GSC cultures and their corresponding 
differentiated tumor cell cultures) [11]. We discarded 
poor-quality cells and transcripts with low coverage, 
focusing on 2,003 lncRNAs quantified in 262 cells 
from five tumors, 118 cells from two GSC lines 
and population samples (Supplementary Table S1). 
Percentages of these lncRNAs expressed in each of 
the single cells from five tumors and two GSC lines 
were shown in Figure 1A. Frequency distribution of 
individual lncRNAs in each tumor was indicated in 
Supplementary Figure S1. Individual cells showed 
the highest correlation with each other within the 
same tumor or GSC line (Supplementary Figure S2). 
The two GSC lines were also highly correlated to 
each other. Additionally, the correlation coefficients 
between individual cells from the same primary tumor 
or GSC line were within a wide range (Figure 1B, 1C), 
suggestive of intratumoral heterogeneity. To analyze 
lncRNA transcriptional interrelationships among the 
selected cells, we performed principal component 
analysis (PCA). The PCA revealed that despite most 
cells clustered by tumor of origin, some of the cells 
from one tumor interspersed among the transcriptional 
space of other tumors (Figure 1D). Moreover, the 
transcriptional diversity within each tumor was clearly 
higher than that observed in the two established GSC 
lines (Figure 1D).

Overall characterization of lncRNA expression 
patterns

To obtain an overview of lncRNA expression 
dynamics, we compiled lncRNA expression data of the 
tumor samples and GSC lines, and normalized them 
for constructing the SOM that is capable of exhibiting 
similarity relationships in a two-dimensional heat map 
in which spatial neighborhood reflects expression pattern 
similarity [22]. We mapped 2,003 lncRNAs onto a SOM 
to evaluate lncRNAs’ cell-to-cell variation. LncRNAs 
with most similar expression patterns were clustered 
as one set, which was symbolized by a hexagonal unit 
of the SOM. Individual units were located in the same 
fixed positions across all single-cell components. A 
component of the SOM represented one visualized 
single-cell lncRNA transcriptome (Figure 2A).

We next examined single-cell lncRNA expression 
profiles using a hierarchical clustering analysis based on 
113 lncRNAs from a union of five sets of the 50 most 
abundant lncRNAs in individual population controls. As 
shown in Figure 2B, there existed extensive cell-to-cell 
variability at the lncRNA transcriptional level regardless 
of primary tumors or GSC lines.
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Coordinate expression of lncRNAs and  
protein-coding genes

Because the SOM can define sets of coordinately 
expressed genes and has been used for inferring possible 
functions of lncRNAs clustered with annotated protein-
coding genes [22], we determined 5,145 protein-coding 
genes and mapped them with 2,003 lncRNAs onto a new 
SOM (Figure 3). The Molecular Signatures Database 
(MSigDB) [23] was used to determine the enriched 
annotations for clustered genes (Supplementary Table 
S2). Typically, Cluster 8 composed of three sets contained 
VEGFA and numerous hypoxia-related genes, including 
PAM, ADM, and ATF3, which was significantly enriched 
for the MSigDB’s gene set “HALLMARK_HYPOXIA” 
(FDR q-value: 2.91×10−11). Fifteen lncRNAs were 
coordinately expressed with these genes, suggesting 
their possible involvement in the hypoxia signaling 
pathways. In Cluster 2, five lncRNAs were grouped 
with 16 genes that were significantly enriched for 

the gene sets “LEIN_NEURON_MARKERS” and 
“BRIDEAU_IMPRINTED_GENES” (FDR q-value: 
6.35×10−5 and 3.73×10−3, respectively). Of these, lnc-
DLK1-4 (often called MEG3, a well-characterized tumor 
suppressor) could be annotated to these two gene sets, 
supporting the utility of this SOM analysis on initial 
prediction for potential roles of unknown lncRNAs.

Cell-to-cell variation in splicing patterns of 
lncRNAs

To examine whether single-cell heterogeneity is 
also present in splicing events of lncRNAs, we mapped 
32 MGH30L resequenced data with long reads to the 
reference transcriptome to call splice variants and estimate 
their relative abundances. Subsequently, 31 lncRNA genes 
having at least 10 variants were selected to determine 
expression patterns of their variants in each cell. After 
filtering those variants without expression levels, 552 
splice events of lncRNAs were detected among individual 

Figure 1: Characterization and correlation between single cell profiles of selected lncRNAs. A. Percentages of 2,003 selected 
lncRNAs expressed in each of the single cells from five tumors and two GSC lines. B. Scatter plot of normalized lncRNA gene expression 
values for two randomly selected cells in MGH31 (Pcell, left) and GBM8 (Gcell, right). C. Distribution of correlation coefficients for all 
single cell pairs from the same primary tumor (Pcell, r~0.40-0.65) or GSC line (Gcell, r~0.45-0.75). D. Principal component analysis (PCA) 
of 380 single-cell lncRNA transcriptomes using 500 lncRNAs with the greatest variance among the libraries.
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cells (Figure 4A). We observed that these lncRNAs tended 
to express multiple variants simultaneously, and alternative 
variants from the same lncRNA were not always expressed 
at similar levels across individual cells. We also found that 
one variant dominated in a small fraction of single cells, 
and 15 of the 31 lncRNAs had more than two dominant 
variants (Supplementary Figure S3).

As an exemplar of alternative splicing of lncRNAs, 
lnc-DLK1-4 expressed 33 variants and displayed 
different splicing patterns across the 32 individual 
cells (Figure 4B, Supplementary Figure S4). There 
were four dominant variants expressed in the single 
cells. Obviously, lnc-DLK1-4:21 and lnc-DLK1-4:12 
displayed almost mutually exclusive expression patterns. 
By contrast, lnc-DLK1-4:50 and lnc-DLK1-4:51 were 

preferentially co-expressed with each other. As shown 
in Figure 4C, some variants occurred more frequently 
than others. In particular, 6 variants (lnc-DLK1-4:3, 
-4:20, -4:34, -4:48, -4:55, and -4:56) were observed only 
once, whereas variant lnc-DLK1-4:39 was observed 
17 times and variant lnc-DLK1-4:51 was observed 
18 times. In addition, only one single cell expressed a 
variant and the remaining 31 individual cells expressed 
two to 11 variants (Figure 4D). Taken together, these 
observations suggested that the changes in the frequency 
and proportion among variants directly reflected the 
cell-to-cell heterogeneous nature of splicing patterns, 
which might alter lncRNAs’ functions and interactions 
with their partners, and thus probably contribute to 
gliomagenesis.

Figure 2: Overview of lncRNA expression dynamics at single-cell level. A. The self-organizing map (SOM) was used for 
analysis of lncRNA transcriptome. A SOM component represents one visualized single-cell lncRNA transcriptome. Five representative 
SOM components are shown for each tumor sample and each GSC line. B. Hierarchical clustering of 113 lncRNAs across five tumor 
samples and two GSC lines. These lncRNAs were derived from a union of five sets of the 50 most abundant lncRNAs in individual 
population controls.
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Analysis of stemness-specific lncRNAs and their 
heterogeneous expression

GBM is one of the first solid tumors that are 
experimentally confirmed to possess cancer stem cells 
(CSCs) [24]. There have been some initial studies that 

strongly suggested the highly dysregulated expression of 
lncRNA in GSCs, which might have decisive effects on the 
formation of certain malignant phenotypes in GBM [14]. 
Using six population-level sequencing data of GSC and 
corresponding differentiated glioma cell (DGC) cultures 
from three tumors (MGH26, 28 and 31), we identified 

Figure 3: Analysis of coordinately expressed lncRNAs and protein-coding genes. The self-organizing map (SOM) was used 
for analysis of transcriptome composed of 2,003 lncRNAs and 5,145 protein-coding genes. Single-cell transcriptomes were depicted as 
individual components of the SOM. Five representative SOM components are shown for each tumor sample. A large-scale SOM (top) was 
constructed based on average of expression z-scores across all 262 cells from five primary tumors. Eight clusters are outlined in black. 
Significantly enriched Molecular Signatures Database (MSigDB) gene sets for indicated clusters are shown (FDR q-value).
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a consensus set of 31 differentially expressed lncRNAs 
standing for a stemness signature (Supplementary Table 
S3). These lncRNAs were found to be significantly 
upregulated in GSCs when compared to DGCs. The most 
striking upregulation was observed for lnc-SCYL1-1, lnc-
C1orf35-2, and lnc-NDUFS6-6 (p-value < 0.01).

We next displayed the expression patterns of 
stemness signature across single cells within each tumor 
sample (Figure 5A, Supplementary Figure S5). Notably, 
the high expression of lnc-MEF2D-2, lnc-SCYL1-1, lnc-
SOX2-1 and lnc-NDUFS6-6 was concurrently observed 
in a large fraction of cells. To further characterize tumor 
cells with stemlike or differentiated phenotypes, we 
plotted a graph of the stemness-differentiation gradient 
to assess cell-state hierarchies of the five individual 
primary tumors (Figure 5B). Obviously, stemness axis 
was occupied continuously, reflecting a continuum of 
intermediate cellular states within a primary tumor, 
which resulted from the dynamic regulatory program 
involved with the stemness.

Heterogeneous expression of known  
subtype-specific lncRNAs

In GBM, some of the lncRNAs have been identified 
as being clinically relevant by means of integrative 
analysis for genomic data sets and clinical information 
[16]. We obtained one lncRNA list specific to molecular 
subtypes. After removing those lncRNAs not in our 2,003 
lncRNA library, 31 lncRNAs with greatest variance were 
used to construct heat maps for subtypes (Supplementary 
Table S4).

The classification scheme established by The Cancer 
Genome Atlas (TCGA) defines four GBM subtypes: 
proneural, neural, classical and mesenchymal [25]. 
Therefore, four corresponding classifier lncRNA sets 
(Supplementary Table S4) extracted from the subtype-
specific lncRNA list were used to examine whether 
individual cells in a tumor vary in their classification. A 
previous report has confirmed that the tumors in this study 
are classified as proneural (MGH26), classical (MGH30), 

Figure 4: Variation in splicing patterns of lncRNAs in single cells. A. Heatmap depicts the within-gene relative abundances of 
552 splice variants corresponding to the selected 31 lncRNA genes among the 32 individual cells from MGH30 tumor sample. B. Heatmap 
displays the obvious heterogeneity in the splicing patterns of lnc-DLK1-4 (MEG3) across the 32 individual cells within MGH30. C. The 
frequency distribution of 33 lnc-DLK1-4 variants in the single cells from MGH30 is indicated. D. The number of individual lnc-DLK1-4 
splice variants expressed by each cell from MGH30 is shown.
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or mesenchymal (MGH28 and MGH29) subtypes [11]. 
Nevertheless, Figure 6A showed that all five primary 
tumors were hybrid and comprise individual cells 
representing different subtypes regardless of the dominant 
subtype of the tumor. Interestingly, in each tumor, there 
were some cells that conformed to a proneural subtype. 
Moreover, more than one subtype can coexist in a fraction 
of cells within individual tumors (Figure 6B). We also 
revealed that the classification determined by lncRNAs for 
all 262 individual cells had the average ~77% consistency 
with that by protein-coding genes.

DISCUSSION

GBM, as an archetypal example of a heterogeneous 
cancer, is well worthy of being considered for full 
assessment of expression changes in lncRNAs at the 
single-cell level. This is because compelling evidence 
shows many lncRNAs play an essential role in 
gliomagenesis [17, 21] and in addition, there exist copious 
single-cell RNA-seq transcriptome data [11]. Through 
deeply mining these public data, we demonstrated that the 

expression of lncRNAs was very heterogeneous across 
all GBM single cells. The heterogeneous behavior of 
lncRNAs was further confirmed to occur at different levels 
of tumor pathogenesis and manifestations, including RNA 
splicing patterns, cell stemness, and molecular subtypes, 
and was reminiscent of the high variability between 
individual cells in terms of genetic and expression changes 
in signaling and regulatory pathways [11, 26].

A powerful exploratory tool is the prerequisite to 
extract the maximum information from global expression 
analysis and to display the dynamic changes of lncRNA 
expression across different single cells. The SOM has 
been proven successfully in the analysis of lncRNAs’ 
cell-to-cell variation during somatic cell reprogramming 
[22]. It is also noteworthy that many studies have long 
demonstrated the efficacy of SOM as a useful approach 
for gene expression clustering [27-31]. Moreover, the 
SOM outperforms classic two-way hierarchical clustering 
and even k-means under certain conditions (e.g. for larger 
numbers of clusters) [32]. As an unsupervised learning 
neural network paradigm, the SOM can project high-
dimensional data to a lower dimension representation 

Figure 5: Transcriptional features of stemness-specific lncRNAs in single cells. A. Heatmap depicts expression of the 31 
lncRNAs representing the stemness signature in differentiated glioma cell (DGC) cultures (left columns), glioblastoma stem-like cell 
(GSC) cultures (right columns) derived from three tumors (MGH26, 28 and 31), and in 35 individual cells from MGH31 (middle). B. 
Plot depicts stemness score (y axis) calculated from expression levels of the 31 stemness-specific lncRNAs in individual cells from each 
tumor (x axis) ordered by score. Bar graphs show the overall variance (y axis, SD) in the stemness score (red) and the average variance of 
simulated control lncRNA sets (blue), demonstrating the significance of the stemness-gradient.
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scheme while preserving essential information [33]. As 
such, based on expression similarity, lncRNAs could be 
parsed into individual sets, each of which was visualized 
as one unit of the SOM (Figure 2A). This allows capture 
of unique gene expression patterns for all single cells at 
specific states and thus makes it easy to unveil and observe 
inherent intratumoral heterogeneity through comparing 
dynamic transcriptional changes between featured gene 
sets, namely the most visually prominent units within 
SOMs.

The majority of the lncRNAs used in our analysis 
are still not functionally annotated. LncRNAs interact 
extensively with protein-coding genes through various 
ways such as direct binding and miRNA-mediated 
competing endogenous RNA (ceRNA) cross-talk to 
construct regulatory networks [34, 35], in which the 
expressions of genes acting in synergy are often highly 
correlated to each other. A great variety of single-cell 
transcriptomes from a population in a sense provide the 
opportunity for more finely examining the correlation 
between coordinately expressed genes. It has been 
confirmed that gene clusters defined by the SOM can 
effectively group coordinately expressed lncRNAs and 
protein-coding genes in the context of analysis of single-
cell RNA-seq data [22]. These clusters contain protein-
coding genes that tend to be significantly enriched for 
known functional categories, which are further utilized 
for inferring potential functions of unannotated lncRNAs 
in the same cluster [22]. Therefore, we built a larger SOM 
to curate 7,148 genes including all 2,003 lncRNAs into 
different clusters. As a result, some of them were identified 
to significantly correlate with specific functional roles or 
critical signaling pathways for GBM. In particular, there 

were three clusters that enriched genes linked to hypoxia, 
KRAS and MYC pathway signatures respectively. Of note, 
further studies are needed to determine the meaningfulness 
of lncRNAs to different signatures.

Alternative splicing in cancer leads to the 
production of antagonistic variants that can contribute 
to tumor cell survival, growth, invasion, and metastasis 
[36]. Although lncRNA genes tend to have fewer 
exons than protein-coding genes [12], considerable 
splicing events were observed for the selected lncRNAs 
across single cells within a given tumor (Figure 4A). 
Moreover, splicing patterns of lncRNAs displayed 
many basic characteristics, which were consistent with 
the previous observation for protein-coding genes [37]. 
Because cancer-specific splice variants are likely to 
be considered as potentially versatile biomarkers as 
well as therapeutic targets [38, 39], identification of 
splicing events for lncRNA is of practical importance. 
A recent study has shown that a transcript variant of 
lnc-IRX3-4 (often called CRNDE), most significantly 
upregulated in gliomas, promotes tumor cell growth 
and invasion, indicating that it may serve as a novel 
therapeutic target [40]. Nevertheless, our analysis 
clearly disclosed that different splicing variants of 
lncRNAs including lnc-DLK1-4 were heterogeneously 
expressed across individual tumor cells (Figure 4). 
These findings suggest that cell-to-cell variation in 
splicing patterns should be taken into account when 
accurately identifying the function of lncRNAs and 
efficiently screening and selecting reliable biomarkers 
or therapeutic targets.

The origin of cellular heterogeneity in GBM is 
believed to occur partly from differentiation of GSCs, a 

Figure 6: Expression patterns of GBM subtype-specific lncRNAs in individual tumors. A. Heatmap depicts average 
expression of classifier lncRNAs for each subtype (rows) across all single cells grouped by tumor (columns). PN: proneural; N: neural; 
MES: mesenchymal; CL: classical. Each tumor is in a hybrid state, containing some cells representing different subtypes. B. Bar graphs 
depict the number of single cells possessing different quantity of subtypes in each of the five tumors.
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small subpopulation of the cancer cells that represent 
a reservoir for the drug resistance and tumor recurrence 
[6, 41]. Our study confirmed that the 31 lncRNAs were 
significantly upregulated in GSCs relative to DGCs. Some 
of the lncRNAs have been reported to be stemness-specific 
in other types of tumors [17, 42]. Notably, lnc-SCYL1-1, 
often called MALAT1, is a crucial factor for enhancing stem 
cell-like phenotypes in pancreatic cancer [43]. Although 
the role of lnc-SCYL1-1 in GSCs has yet to be examined, 
its expression positively correlates with the malignant 
status and poor prognosis of glioma [17]. In addition, lnc-
SOX2-1, also called SOX2-OT, can positively promote the 
transcription of SOX2 gene (one of the major regulators of 
pluripotency) and is dysregulated in esophageal squamous 
cell carcinoma, lung squamous cell carcinoma, and breast 
cancer [42]. These studies have important implication that 
the newly identified lncRNAs most probably contribute to 
the stemness of glioblastoma cells.

Currently, the four subtypes defined by TCGA 
have extensively been applied to investigating cellular 
composition of GBM, because they have specific 
differentiation characteristics linking to alternative 
cells of origin that is critical for establishing effective 
treatment regimens [25]. The subtype-specific lncRNAs 
can classify most of the individual cells within a single 
tumor, which is highly consistent with the observation 
on the basis of the expression patterns of protein-coding 
genes. Indeed, lncRNA expression is more tissue and 
cell type specific than that of protein-coding genes in 
cancer [44], supportive of a special research reclassifying 
glioma into three novel subtypes only depending on 
lncRNA profiles [45]. In our study, some of the single 
cells were revealed to possess more than one subtype, 
indicating they were in the hybrid states. It not only at 
least partly reflects aberrant developmental programs 
or interconversion between phenotypic states [11], but 
also provides the crucial information on the diversity 
of transcriptional subtypes within a tumor. These will 
be very useful for the selection of lncRNAs as specific 
biomarkers in early detection and diagnosis, and for the 
evaluation of prognosis of cancer.

In conclusion, our systematic characterization of 
lncRNA expression patterns at the single-cell level lays 
the foundation for future efforts to better understand the 
function of lncRNA, develop valuable biomarkers, select 
therapeutic targets, and enhance knowledge of GBM 
biology.

MATERIALS AND METHODS

Single-cell RNA-seq dataset

RNA expression datasets and the corresponding 
sample information were downloaded from NCBI GEO 
DataSets websites (http://www.ncbi.nlm.nih.gov/gds/) 
with accession no. GSE57872.

Processing of RNA-seq data

The transcriptome used for mapping contains 80,216 
high-confidence lncRNA transcripts corresponding to 
48,028 lncRNA genes from LNCipedia 3.0 [46] and all 
protein-coding genes of Ensembl (version 74) [47]. Bowtie 
(version 1.1.1) [48] was used to map paired-end 25-bp reads 
with parameters -n 0 -e 99999999 -l 25 -I 1 -X 2000 -a -m 
15. Only uniquely mapped reads were retained and utilized 
for estimating expression levels of all transcripts by RSEM 
(version 1.2.19, with default parameters) [49]. TPM values 
as defined by RSEM were added a value of 1 to avoid 
zeros and then log2-transformed. The most abundant 7,148 
genes including 2,003 lncRNAs were selected according 
to two strategies, either average log2 (TPM+1)>2 across 
all cells or average log2 (TPM+1)>4 in at least one tumor. 
Consequently, 380 single cell transcriptomes expressing 
at least half of these 7,148 genes were retained. Finally, to 
examine relative expression levels of the genes across cells, 
normalization was performed by subtracting the average 
expression (log2 (TPM+1)) of each gene and dividing 
by its standard deviation. For splicing pattern analysis, 
relative expression abundances of all lncRNAs’ variants in 
MGH30L were estimated by RSEM using only reads with 
no more than one mismatch.

Principal component analysis and  
self-organizing maps

Principal component analysis (PCA) was performed 
with R function prcomp and visualized with the R package 
‘scatterplot3d’. For SOM construction, the 500 lncRNA 
genes (from 2,003 lncRNAs) or 2,383 genes (from 7,148 
genes) with the greatest variance among the samples 
were first used for training a SOM. Subsequently, all of 
the 2,003 lncRNAs or 7,148 genes were mapped to the 
SOM to display expression patterns. The SOMs were 
constructed with function som in the R package ‘kohonen’ 
(version 2.0.19, with parameters -toroidal T) [50]. A 
heuristic value 5 × sqrt (N) was used to set total number 
of map units, where N is the number of genes. The map 
grid was initialized with the top 10 ranked principal 
components of the data vectors. Training lasted for 200 
iterations with the decline of learning rate vector linearly 
from 0.05 to 0.01 over updates. The radius was adapted 
toward the winning unit decreased linearly from d to 2 
units, where d is a value that covers 2/3 of all unit-to-unit 
distances. The average relative expression of lncRNAs in 
each unit was assigned to hexagons for visualization with 
R function polygon. Clusters were seeded by the local 
minimum value of the u-matrix. Other neighbor units were 
then assigned to clusters according to the minimum vector 
distance to a seed unit. The lists of clustered genes were 
submitted to the Gene Set Enrichment Analysis server [23] 
(GSEA, http://www.broadinstitute.org/gsea/index.jsp) in 
order to determine enriched terms.
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Stemness-differentiation gradient

Stemness signature was defined as the set of 
lncRNAs whose expression was higher in GSC cultures 
compared with the corresponding differentiated glioma 
cell (DGC) cultures from three tumors (MGH26, 28 and 
31). Paired t-test was used to call differentially expressed 
lncRNAs with a p-value threshold of 0.05 in each of the 
tumor-derived pairs, resulting in 31 stemness signature 
lncRNAs. We used the average relative expression of 
those lncRNAs minus the average relative expression 
of 2,003 lncRNAs to define a stemness score for each 
single cell from the tumors. Subsequently, we randomly 
sampled a hundred sets of lncRNAs with the same size 
as the stemness signature and used these random lncRNA 
sets to score stemness. Finally, we compared the standard 
deviation of stemness gradient (defined as the stemness-
score profile of individual single cells within one tumor 
population) with the random lncRNA sets.

Subtype analysis

The list of subtype identifier lncRNAs was collected 
from [16]. Thirty-one lncRNAs with the greatest variance 
among all single cells were used for subtype analysis. We 
used the average relative expression of each set of subtype 
predictor lncRNAs minus the average relative expression 
of 2,003 lncRNAs to assign an initial subtype score for 
each cell. To estimate the significance of the subtype 
scores, we randomly sampled a hundred sets of genes with 
the same size as each subtype predictor and used these 
random sets with the same procedure to define a 1% cutoff 
for the expected subtype scores. Finally, we classified the 
single cells based on the identity of the subtypes for which 
they passed the 1% threshold.
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