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ABSTRACT
Proteomics analysis of paired cancer and control tissue can be applied to 

investigate pathological processes in tumors. Advancements in data-independent 
acquisition mass spectrometry allow for highly reproducible quantitative analysis 
of complex proteomic patterns. Optimized sample preparation workflows enable 
integrative multi-omics studies from the same tissue specimens.

We performed ion mobility enhanced, data-independent acquisition MS to 
characterize the proteome of 21 lung tumor tissues including adenocarcinoma and 
squamous cell carcinoma (SCC) as compared to control lung tissues of the same 
patient each. Transcriptomic data were generated for the same specimens. The 
quantitative proteomic patterns and mRNA abundances were subsequently analyzed 
using systems biology approaches. 

We report a significantly (p = 0.0001) larger repertoire of proteins in cancer 
tissues. 12 proteins were higher in all tumor tissues as compared to matching control 
tissues. Three proteins, CAV1, CAV2, and RAGE, were vice versa higher in all controls. 
We also identified characteristic SCC and adenocarcinoma protein patterns. Principal 
Component Analysis provided evidence that not only cancer from control tissue but 
also tissue from adenocarcinoma and SCC can be differentiated. Transcriptomic levels 
of key proteins measured from the same matched tissue samples correlated with the 
observed protein patterns. 

The applied study set-up with paired lung tissue specimens of which different 
omics are measured, is generally suited for an integrated multi-omics analysis. 

INTRODUCTION

Lung cancer is among the leading cause of cancer 
related deaths worldwide. In the United States alone, 
almost 225,000 lung cancer diagnoses are estimated 
per year, causing 159,260 deaths [1]. Squamous cell 

carcinoma and adenocarcinoma are routinely differentiated 
by histological means. Tumor pathologic diagnosis is 
initially based on bronchoscopic biopsy and can differ 
from the diagnosis of surgically removed specimens. 
Although patients with squamous cell carcinoma that 
mostly develops in smokers show a poorer prognosis 
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than adenocarcinoma patients, prognostic differences 
in histological types are not considered by the latest 
TNM classification. Differences in transcriptomic and/
or proteomic pattern bear the potential to improve the 
classification in tumor subtypes. 

Recent advances in quantitative mass spectrometry 
(MS) and the integrative analysis of transcript as well 
as proteomic levels of tumor samples may support the 
discovery of disease mechanisms in a systematic manner. 
A substantial part of MS studies follows a case-control 
study set-up, where two cohorts of different individuals 
are compared to each other. Discovery of biomarkers can 
be enhanced by measuring paired samples, including for 
example study set ups where both case and control tissue 
from the same individuals are obtained or samples of the 
same patient are measured over time. 

We explored the number and relative abundance of 
proteins in adenocarcinoma and squamous cell carcinoma 
and matched control tissue from the same patients using 
MS. Respective MS based approaches have become an 
indispensable tool for molecular and cellular biology and 
have enhanced the understanding of the complex and 
dynamic nature of proteomes [2, 3]. Besides applications 
in metabolomics, MS enables the identification and 
quantification of several hundreds to thousands of 
proteins from different sample types, culminating in the 
first draft of the complete human proteome [4, 5]. The 
afore-mentioned improvements resulted in a paradigm 
shift from mere protein profiling and identification 
towards high-throughput protein quantification. Label-free 
quantification approaches have emerged as the method of 
choice for larger sample cohorts, with data-independent 
acquisition approaches gaining popularity [6, 7].

The complex profiles obtained by quantitative 
proteomic analyses are frequently used for discovering 
novel biomarkers [8]. Using gel-based and liquid 
chromatography-mass spectrometry-based proteomics, 
even the brain proteome of the 5,300 year old copper age 
mummy “Ötzi”, the Tyrolean Iceman, was successfully 
characterized [9]. Beyond different tissues, MS has also 
been applied to investigate body fluids such as serum [10] 
or bronchoalveolar lavage fluid [11, 12]. A recent study by 
McArdle and colleagues explored the value of combining 
different protein discovery platforms for the development 
of a multiplexed protein biomarker panel using label-free 
approaches [13].

Here, we focused on NSCLC as the most common 
type of lung cancer with squamous cell lung carcinoma 
(SCC, 25–30%) and adenocarcinomas (40%) as the 
predominant sub-forms. The detailed grading of the 
analyzed tumors is provided in Table 1. In an initial step, 
we assessed the technical reproducibility of the employed 
MS approach for cancer and control tissues in a paired 
study set up and estimated the effect sizes. In a second 
stage, we then explored the lung tissue proteomes of 
18 pairs of lung tumor tissue and matched normal lung 

tissue from the same individuals. The tumor type and 
TNM classification of samples included in our study 
are presented in Table 1. Extending our proteomic 
characterization, we also provide evidence that the 
applied sample preparation workflow is well suited for an 
integrative transcriptomic and proteomic analysis.

RESULTS

Technical reproducibility and variations between 
individuals in ion mobility enhanced MS

For the discovery of protein-based biomarkers, 
especially for complex marker patterns, a high technical 
reproducibility of the proteomic workflow is essential. 
We first explored how accurately technical replicates for 
paired lung cancer and control tissue can be generated. 
Three pairs of tumor and respective control tissue were 
measured in technical triplicates. For the 18 proteome 
datasets between 1,845 and 2,366 proteins were identified 
(mean: 2,175; standard deviation: 146). We calculated 
all 18 × 17/2 = 153 pair-wise Pearson correlations. The 
respective correlation matrix is presented in Figure 1 
where the upper triangle matrix shows the correlation 
coefficient and the lower triangle matrix contains 
thumbnails of scatter plots. Most important for this 
initial analysis are the technical replicates, highlighted 
for the three individuals in orange, blue and green. The 
solid rectangles correspond to tumor samples, the dashed 
ones belong to the paired control tissues. On average 
we achieved Pearson correlation of 0.96 for technical 
replicates at standard deviation of 0.02. All other Pearson 
correlation coefficients were on average 0.77 with standard 
deviation of 0.10. The set up of the proof-of-concept 
measurements allowed us to estimate different other group 
similarities: we can split the values in the correlation 
matrix in six groups: (tumor / tumor) pairs of the same 
individual, (control / control) pairs of the same individual, 
(tumor / control) pairs of the same individual, (tumor / 
tumor) pairs of different individuals, (control / control) 
pairs of different individuals and (tumor / control) pairs of 
different individuals. Only the first two groups represent 
technical replicates. The average Pearson correlation of 
each group is presented in Supplementary Figure 1. Best 
Pearson correlation was obtained for technical replicates 
of control tissue (0.97) followed by technical replicates of  
tumor tissue (0.96). The third highest value was 
reached for control / control measurements of different  
individuals (0.88). For tumor / tumor replicates of different 
individuals, average correlation dropped to 0.78. These 
findings indicate a higher inter-individual heterogeneity in 
cancer tissue compared to normal lung tissue. For tumor/
control correlation of tissue specimen derived from the 
same individual, we calculated an average value of 0.74 
and the lowest correlation was reached for tumor /control 
pairs derived from different individuals (0.70). 
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Based on these results we carried out a power 
calculation. According to the preliminary data we observed 
effect sizes exceeding 1. Assuming a matched analysis 
study set up and aiming at an alpha error probability of 
0.01 and a statistical power (1- beta error probability) 
of 0.9 we calculated an approximate cohort size of 18 
paired individuals. We thus processed further 9 SCC and 
9 adenocarcinoma tissue biopsies and normal healthy lung 
tissue from the same individual. All subsequent analyses 
have been carried out on the second cohort of samples.

Number of proteins per tissue

First, we asked how many different proteins 
were discovered per sample. On average, we observed 
2,661 human proteins per sample (standard deviation of 
187 proteins), ranging from 2,090 up to 2,916 proteins. 
In total, 3,328 different proteins were identified across all 
18 tissue pairs (36 samples) analyzed. These are presented 
in Supplemental Table 1 along with selected performance 
characteristics of the respective features. By comparing 
the number of detectable proteins in cancer tissue relative 
to the matched control tissue we discovered an increased 
complexity of the proteome in the cancer tissue (average 
protein number in cancer tissue: 2,783, average protein 
number in control tissue: 2,540). Supplemental Figure 2 

shows a scatter plot, where each data point represents 
a pair of tumor / control tissue. In one of 18 cases the 
numbers for both tissues matched well, in one case the 
control tissue showed more proteins and in 16 cases the 
tumor tissue had a larger repertoire of proteins, which 
may be indicative of tissue dedifferentiation. A two-
tailed paired t-test indicated that the differences between 
both tissues were significant (p = 0.0001). Between 
adenocarcinoma and SCC we did not found significantly 
changed alterations in the number of detectable proteins.

In a similar fashion we investigated how 
many proteins were detected in the four groups of 
adenocarcinoma, controls of adenocarcinoma, SCC, and 
controls of SCC. The result is provided as Venn diagram 
in Supplemental Figure 3. In brief, 2,824 proteins were 
present in all tissue groups. 37 proteins were only found 
in adenocarcinoma tissue, 10 only in SCC, 6 and 3 in 
the respective controls. An additional 73 proteins were 
discovered only in adenocarcinoma and SCC tissue while 
not in controls. 

Quantitative analysis of protein abundance in 
tumors and controls

Since already the proteome diversity varied 
significantly between cancer and control tissue we asked 

Table 1: Patient details
Tumor Type TNM

Adeno-Ca T2aN1

Adeno-Ca T2aN1

Adeno-Ca T1bN0

Adeno-Ca T2aN0

Adeno-Ca T3N0

Adeno-Ca T2aN0

Adeno-Ca T2aN1

Adeno-Ca T3N1

Adeno-Ca T3N2

SCC T1aN0

SCC T1bN0

SCC T2bN0

SCC T2aN0

SCC T2bN1

SCC T3N0

SCC T2aN1

SCC T3N0

SCC T4N2
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whether specific proteins are higher or lower abundant in 
tumor relative to control tissue. Paired two-tailed t-tests 
that have been carried out for each protein separately and 
adjusted for multiple testing using Benjamini-Hochberg 
adjustment. This analysis revealed as many as 1,736 
proteins with adjusted p-values below 0.05. Of these, 
404 (23%) were higher abundant in control tissue while 
1,332 proteins (77%) showed higher abundance in cancer 
tissue. Three proteins, CAV1, CAV2, and RAGE, were 
higher in all control tissues as compared to corresponding 
cancer tissues. Vice versa, 12 proteins were higher in all 
tumor tissues as compared to the corresponding cancer 
tissues (ROA1, ELOB, ALDOA, PP14B, HNRPC, RLA2, 
SRSF9, CALU, SC61B, FHL2, G3BP1 and PABP4). The 
protein showing highest up-regulation in tumor tissue 
was HEM6 with raw and adjusted p-value of 6 × 10–10 
and 1.3 × 10–8. The other extreme, being most significantly 
down-regulated in lung cancer, was CATA with raw and 
adjusted p-value of 7.7 × 10–10 and 1.3 × 10–8. The top-20 
proteins with respect to adjusted t-test significance values 
are represented graphically as heat map in Figure 2A. In 
this heat map all tumor samples cluster at the right hand 
side and all controls at the left hand side. As described in 
the Methods section we tested different values for the k 
most variable proteins. In general, this parameter had a 

limited influence, as Figure 2B demonstrates. Here, the 
top 50 proteins are presented, and still an almost perfect 
clustering in both groups is obtained. The expression of 
each protein in both groups with raw and adjusted p-values 
and the area under the receiver operator characteristics 
curve are presented in Supplemental Table 2. 

Differences in the mRNA levels of corresponding 
genes

Since one aim of our study was to investigate 
the gene expression level of transcripts from the same 
biopsies we investigated expression patterns of genes 
encoding for the 20 proteins from Figure 2A described in 
the last paragraph. The set contains 5 proteins with lower 
abundance in cancer. For all of them we found significantly 
lower gene expression in cancer, confirming the proteomic 
data on transcriptome level. Four of them were significant 
after adjustment for multiple testing with p-values of 
7 × 10–6 or lower. For the remaining 15 proteins with higher 
expression levels in cancer, we could observed elevated 
transcript levels in 11 cases. Although the transcriptomic 
measurements could be used generally as surrogate for the 
protein measurements due to the high concordance we also 

Figure 1: Pair-wise correlation of three tumor (T1-T3) / tissue pairs (C1-C3) that have been measured in technical 
triplicates. Triplicates of tumors are enclosed in solid boxes and of control tissue in dashed boxes. Upper triangle matrix presents the 
Pearson correlation coefficient, lower triangle matrix thumbnail scatter plots.
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Figure 2B: Cluster heat map of 50 most differentially abundant proteins. Only one cancer sample clusters with the controls.

Figure 2A: Cluster heat map of 20 most differentially abundant proteins. The heat map shows a clear separation of lung cancer 
samples on the right hand side and control samples on the left side. 
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found counterexamples. An interesting case is the gene/
protein DDX5. This gene is significantly down-regulated 
in tumor tissues on mRNA level but significantly up-
regulated on the protein level. The same holds for SFRS3. 
The best matching example, CAV1, as well as DDX5 are 
presented as box plots for proteomic and transcriptomic 
expression in Figure 3. Table 2 summarizes the normalized 
mRNA expression values for the 20 proteins together with 
the direction of regulation. 

Differences in proteomics patterns of different 
grades

We also compared the protein pattern in T1 and 
T2 tumors versus the abundance in T3 versus T4 tumors 
(details on the T stages are provided in Table 1). Although 
several proteins showed substantial fold changes, none of 
them remained significant after adjustment for multiple 
testing, which may however be due to the limited cohort 
size for this comparison. Among the most altered proteins 
were HNRPL and RBBP4 (p = 0.0002 and p = 0.0004, 
respectively). Interestingly, we observed a generally lower 
protein abundance in T3 and T4 tumors as compared to T1 
and T2 tumors. Among the top 20 proteins none was more 
abundant in T3 or T4 tumors. Especially three proteins 
were not detected in T3 and T4 proteins while we found 
hits in T1 and T2 tumors (CPSF7, IF1AY and CJ118). 

Differences in protein abundance between 
adenocarcinoma and SCC

In comparing adenocarcinoma and squamous cell 
lung cancer proteomes we observed 37 proteins only 
present in adenocarcinoma and 10 only present in SCC. 
The volcano plots in Figure 4, showing the fold change 
(log base 2) versus the negative decimal logarithm 
of the significance value for the paired comparisons 
demonstrate a different behavior. For adenocarcinoma, 
the majority of proteins was higher abundant in cancer 
tissue compared to controls (red data points in Figure 4). 
For SCC, proteins more equally scatter between up- and 
down-regulated markers, but still the protein levels are 
overall higher in cancer samples. Figure 5 compares 
up- and down-regulated proteins in adenocarcinoma and 
SCC in a Venn diagram. 452 proteins were up-regulated 
in SCC and adenocarcinoma, 119 were down-regulated 
in both types of lung cancer. We however also observed 
one protein that was down-regulated in SCC while up-
regulated in adenocarcinoma (VWA8) and vice versa 7 
proteins showing the opposite behavior (FAK2, PMM2, 
K2C5, SMCA5, FAD1, DTX3L and CLU). To further 
support the hypothesis that not only cancer tissue differs 
from control tissue but also differences between SCC 
and adenocarcinoma exist, we performed unsupervised 
hierarchical clustering of the 50 most variable proteins and 

Figure 3: Box-plots for mRNA expression and protein abundance in cancer and controls for CAV1 and DDX5. 
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principal component analysis. The result of the clustering 
is presented in Figure 6A as heat map with dendrograms 
on top (samples) and left (proteins). As dendrogram 
and heat map clearly demonstrate, adenocarcinoma and 
controls from adenocarcinoma patients have a tendency 
to cluster together. While all adenocarcinoma samples 
cluster perfectly, the respective controls scatter on the left 
and right hand side. Besides one SCC control sample that 
matches to the adenocarcinoma controls, we observed a 
perfect clustering in adenocarcinoma patients and SCC 
patients. The SCC samples and the respective control 
tissues showed a higher proximity to each other, with clear 
distinction between both groups. Only one control sample 
clustered with the SCC tissues. To determine the number 
of clusters we applied different scores relying e.g. on sum-
of-squares clustering or the Silhouette Score. We found an 
optimal number of 2 clusters in the samples. The average 
Silhouette Scores were 0.53 and 0.47, respectively. Scores 
for all samples are presented in Supplemental Figure 4. 
The clustering also highlighted a set of proteins that was 
almost solely present in control tissue of adenocarcinoma 

patients, including FANCJ, CCAR2, AGRIN, and LAMC1 
(Figure 6A). Since the results of the clustering are based 
on the 50 most variable proteins, we also generated a 2D 
scatterplot of the high-dimensional proteomics patterns 
using principal component analysis (PCA). In Figure 6B, 
the first versus the second principal component are 
presented. Importantly, the first principal component 
almost perfectly separates control tissues on the right 
hand side from cancer biopsies on the left. Focusing 
on the second principal component we can detect that 
here SCC and matched SCC control tissue are located 
on top while adenocarcinoma and matched controls are 
located on bottom of the scatter plot. Control tissues have 
generally a lower variance as compared to cancer tissues 
and are clustered closer to each other as compared to the 
cancer tissues. In sum we can distinguish the four groups 
in the principal component analysis: adenocarcinoma and 
adenocarcinoma control tissue as well as SCC and SCC 
control tissue. 

The comparison of adenocarcinoma and SCC requires 
an unpaired analysis. On proteome level, we observed 17 

Table 2: Comparison of mRNA and protein abundance of selected genes/proteins

Gene Protein
Protein 

Deregulation in 
cancer

median 
mRNA 
Control

median 
mRNA 
Cancer

t-Test raw 
p-Value

t-Test 
adjusted 
p-Value

AUC

CAT CATA down 6880 2978 1.24E-09 4.40E-07 0.02

CAV1 CAV1 down 8984 2999 1.87E-10 1.27E-07 0.00

AGER RAGE down 3165 242 6.92E-08 6.98E-06 0.01

SELENBP1 SBP1 down 4319 739 3.52E-09 8.53E-07 0.00

STBD1 STBD1 down 351 282 9.48E-01 9.74E-01 0.28

CALR CALR up 1176 1689 7.20E-05 1.12E-03 0.84

DDX5 DDX5 up 12153 10661 9.90E-03 4.48E-02 0.21

EIF3B EIF3B up 2769 3903 9.46E-05 1.37E-03 0.89

PRKCSH GLU2B up 754 1039 8.31E-05 1.24E-03 0.87

HSPA5 GRP78 up 1894 1490 4.18E-02 1.30E-01 0.28

CPOX HEM6 up 1312 1947 1.24E-04 1.67E-03 0.87

HNRNPK HNRPK up 2353 2537 8.12E-02 2.09E-01 0.65

EIF4H IF4H up 5356 5592 8.36E-02 2.14E-01 0.61

HNRNPA1 ROA1 up 211 292 1.52E-03 1.09E-02 0.80

HNRNPA3 ROA3 up 594 778 6.89E-04 6.01E-03 0.92

RPS7 RS7 up 348 424 1.04E-03 8.22E-03 0.81

SFRS1 SRSF1 up 4697 5513 3.83E-02 1.22E-01 0.76

SFRS2 SRSF2 up 6500 6947 7.33E-02 1.94E-01 0.69

SFRS3 SRSF3 up 1154 923 8.29E-04 6.93E-03 0.20

TPT1 TCTP up 10058 9029 2.12E-02 7.86E-02 0.29
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Figure 4: Volcano plots for adenocarcinoma and SCC. The plots present log2 of the fold change versus negative decimal logarithm 
of the p-value. Red data points correspond to up-regulated and green data points to down regulated proteins. 

Figure 5: Venn diagram of proteins that are up and down-regulated in SCC and adenocarcinoma. Seven proteins were 
up-regulated in SCC and down in adenocarcinoma. One protein was down-regulated in SCC but up-regulated in adenocarcinoma. 
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Figure 6A: Unsupervised cluster analysis of the 50 most variable proteins for the four groups (adenocarcinoma and 
paired controls, SCCand paired controls). The dendrogram indicates that SCC and adenocarcinoma tend to cluster together. Inside 
of both clusters, cancer tissue clusters apart from control tissue. Especially four proteins that are solely expressed in adenocarcinoma 
samples are exemplarily highlighted by a dashed box.

Figure 6B: Principal component analysis of all samples represented by a scatter plot of the first versus second principal 
component. The first PC distinguishes cancer from controls, the second PC adenocarcinoma from SCC. 
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differentially expressed proteins, which remained 
significant following adjustment for multiple testing. 
Of these, 10 were more abundant in adenocarcinoma 
tissues (AAKB1, ACPM, FA49A, K1C9, MYL9, PPM1F, 
RMXL3, SH3L1, SYAP1 and PAPS2). The remaining 7 
were measured at a higher amount in SCC tissue biopsies 
(ATG2B, CTNA3, NID2, RBBP7, SF3B1, TNPO1, UBA1). 
As for the general lung cancer proteins presented above we 
asked for the expression of genes that are translated into the 
respective proteins. While we found significantly aberrant 
expression in this previous case we here generally observed 
non-significant differential regulation of mRNAs. For one 
up- and down-regulated protein we obtained significant 
p-values prior to multiple hypothesis testing adjustment 
on mRNA level. RBBP7, which was down-regulated on 
proteome level in adenocarcinoma had also significantly 
lower gene expression in adenocarcinoma tissues. PAPS2, 
which was higher abundant in adenocarcinoma was 
likewise significantly up-regulated in the transcriptome 

of adenocarcinoma tissues. For the remaining proteins 
the direction of regulation frequently matched, however, 
significance values were above the alpha level. One 
examples is MYL9, which is higher expressed in 
adenocarcinoma on transcriptomic and proteomic level, 
but while the protein expression was significantly different, 
the mRNA significance value not significant (p = 0.1). For 
RBBP7 the gene and protein expression compared to each 
other in the four groups (adenocarcinoma, adenocarcinoma 
control, SCC and SCC control tissue) is presented in 
Figure 6C.

DISCUSSION

In the present study we investigated the proteome 
from paired cancer and control samples and matched 
mRNA to protein abundance. 

Analyzing paired lung cancer and control lung tissues 
we observed an increased repertoire of proteins in cancer 

Figure 6C: Expression of RBB7 in adenocarcinoma, SCC and respective controls in mRNA and proteins are presented. 
For mRNA and protein expression, SCC have the highest levels among the four groups.
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tissues as compared to the matched controls. It remains to be 
seen if and to what extend the increased complexity of the 
proteome is related to the process of de-differentiation of the 
highly specialized lung epithelium during carcinogenesis. 
Transcriptomic alterations that occur during lung cancer 
development include over-expressed cell cycle related genes 
like E2F3, BUB3, CDK4, MCM2, MCM3, and MCM7 
as summarized by Powell and Borczuk [14]. Analyzing 
the abundance for the respective proteins, we observed a 
significant over-expression (adjusted t-test p-values of the 
proteins: BUB3 – 4 × 10–6; MCM2 – 0.004; MCM7 – 0.004; 
MCM3 – 0.007). MCM6 was found to be over-expressed 
with a p-value of 0.014. For NTF2, which is known to be 
increased during the transition from adenoma to carcinoma, 
we observed an up-regulation of the protein but only with 
a p-value of 0.06. Although smoking has been described as 
important confounding variable for gene expression in lung 
cancer [15]. we did not include the smoking status in our 
study due to the lack of comprehensive information on the 
smoking history of our patients. 

Interpreting the profiles we observed also 
differences in controls of adenocarcinoma as well as SCC 
controls. Besides biological reasons, batch effects could 
also confound the pattern. We did however not found 
different complexity of the proteome of adenocarcinoma 
and SCC patients, arguing against a respective bias. These 
differences may again be due to effects in the measurement 
procedure. Also pre-malignant changes in tissue could be a 
reasonable source for the observed variability [16]. 

The most up- or down-regulated proteins in this 
study are correlated to lung cancer in the literature. 
Reduced SBP1 levels are correlated to poor outcome in 
adenocarcinoma [17]. CAV1 is lower expressed in lung 
adenocarcinomas and has likewise prognostic potential 
[18]. The anti-apoptotic protein TCTP is known to be up-
regulated in lung cancer cells [19]. GRP78 is known as 
key player in lung cancer development and progression 
[20, 21]. In addition to the de-regulated proteins we 
also investigated the proteins, which were most equally 
expressed in our study, i.e. proteins that showed the 
least difference in their abundance between lung cancer 
tissues and controls. However, several of these proteins 
have previously been associated with lung cancer. For 
example, TIMP3 was reported to be down regulated on 
the transcriptomic level of pulmonary adenocarcinomas 
[22]. Likewise, CD59, which our analysis identified 
with equal abundance in lung cancer and controls, was 
previously identified as over-expressed in NSCLC [23]. 
Also ICAM1, which also showed an equal abundance 
in lung cancer and controls in our study, was previously 
discussed as important for lung cancer [24]. However, it 
is also important to indicate that in the aforementioned 
comparisons between our study and the studies of others, 
we found concordant results for several proteins including 
caveolin 1 and caveolin 2, both of which were reported 
as down-regulated markers in lung cancer [22] and both 

of which were also among the most substantially down-
regulated proteins in our study.

As for the results that are not or not fully concordant 
between our data and the studies by others there are 
several possible explanations including i) a lack of 
comparability (studies are done on cell lines versus studies 
on tissues, expression analysis is performed on only the 
transcriptomic or the proteomic level), ii) experimental 
bias in the protein measurement in our study, and iii) 
biological variability, especially in the light of the small 
cohorts typically investigated in high-throughput studies. 

For the majority of proteins we calculated likewise 
significantly de-regulated mRNA levels. Exceptions are 
DDX5 or SFRS3, where protein and gene expression did 
not matched. Although it is known that mRNA expression 
is not always a perfect surrogate for protein abundance 
[25] aberrations between cancer and control samples may 
indicate a pathological change in the regulation of the two 
proteins.

In summary, we measured protein abundance in 
a stable and reproducible manner indicating that even 
single protein measurement bears diagnostic potential. We 
also demonstrate that marker signatures differentiate not 
between lung cancer and matched control tissue but also 
between tissue from adenocarcinoma and SCC. Prospective 
studies with independently measured cohorts will be 
required to further strengthen the conclusion of our results.

CONCLUSIONS

We performed an integrative multi-omics study 
containing proteomics and transcriptomics data from 
the same tissues. Lung cancer tissue and control lung 
tissue were obtained from the same individuals, allowing 
for paired data analysis. Our results indicate that data-
independent acquisition workflows can be applied 
to discover tumor- and/or tissue specific biomarkers. 
Bioinformatics analyses demonstrate that the quantitative 
proteome profiles enable to distinguish between lung 
cancer tissues and matched normal tissues, as well as 
between different lung cancer subtypes. There is a general 
change in the proteome of lung tumor tissue as shown by 
a broader proteome variety in tumor versus control tissues. 
Cluster analysis revealed tumor-type specific subsets of 
potential biomarkers. Transcriptomic measurements of 
the same tissue samples showed a large concordance to 
the proteomics pattern. The study design is to allow an 
integrated multi-omics analysis. 

METHODS

Patients and tissue collection

Tissue specimens were obtained with patient 
informed consent from SHG clinic, Völklingen, Heart 
Center during lung cancer resection. The study was 
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approved by the local ethics committee (Ärztekammer des 
Saarlandes, 01/08). After resection, tissue specimen were 
subsequently transferred into RNAlater TissueProtect Tubes 
(Qiagen) and incubated over night at 4°C. The next day, 
RNAlater solution was removed and the tissue specimen 
were transferred into –80°C freezer for long-term storage. 

In total, we obtained lung cancer and normal 
healthy lung tissue from 21 patients, including 11 patients 
suffering from adenocarcinoma and 10 patients suffering 
from squamous cell lung carcinoma. The patient details 
are provided in Table 1. In this study, the control tissues 
and cancer tissues have been obtained in each case from 
the same patient, allowing for a paired data analysis. 

Quantitative proteomic analyses

To obtain proteins and RNA from the same piece 
of tissue, the tissue sample was transferred into 1 ml 
Qiazol lysis reagent and disrupted using 7 mm stainless 
steel beads for 5 min 50 Hz. Then 200 µl chloroform was 
added, vigorously vortexed and incubated for 3 min at 
room temperature. After centrifugation for 15 min, 14.000 
rpm and 4°C, the aqueous phase was subsequently used 
for RNA isolation with the miRNeasy Mini Kit (Qiagen) 
and the organic phase was stored at –80°C until shipping 
on dry ice to the Forschungszentrum Immunologie 
(Mainz, Germany) for protein isolation and quantitative 
proteomic analyses. Protein containing organic phase 
fractions of RNA preparations were lyophilized and 
re-solubilized in lysis buffer (7 M urea, 2 M thiourea, 
5 mM DTT, 2% CHAPS) by sonication for 10 min at 
4°C. After resolubilization, protein concentrations were 
determined using a 660 nm assay (Thermo) according to 
manufacturers instructions. 20 µg of total protein were 
used for tryptic digestion by applying a modified FASP 
protocol [26]. After digestion, tryptic peptides were 
lyophilized and dissolved in 0.1% formic acid and spiked 
with 20 fmol/µL of yeast enolase 1 MassPREPTM protein 
digestion standard (Waters) prior to LC-MS analysis.

Tryptic peptides (300 ng / injection) were analyzed 
using a nanoscale UPLC system (nanoAcquityUPLC 
(Waters)) coupled online to a Synapt G2-S HDMS 
mass spectrometer (Waters). Peptides were separated 
on a HSS-T3 1.7 μm, 75 μm × 250 mm reversed-phase 
column (Waters) using direct injection mode. Water 
(UPLC grade, Roth) containing 0.1% formic acid (Fisher 
Scientific) was used as mobile phase A and acetonitrile 
(UPLC grade, Roth) containing 0.1% formic acid as 
mobile phase B. Peptides were eluted with a gradient 
of 5–40% mobile phase B over 90 min at a flow rate of 
300 nL/min and a temperature of 55°C. Afterwards, the 
column was rinsed with 90% mobile phase B for 10 min 
and re-equilibrated resulting in a total analysis time 
of 120 min. Analysis was performed in positive mode  
ESI-MS using MSE in combination with on-line ion-
mobility separation (UDMSE) as described in detail by 
Distler et al. [26]. The data were post-acquisition lock 

mass corrected using [Glu1]-Fibrinopeptide B. LC-MS 
data were processed using ProteinLynxGlobalSERVER 
version 3.0.2 (PLGS, Waters Corporation) searching 
against the UniprotKB/Swissprot human database 
(UniProtKB release 2014_02, 20,266 entries), which 
was concatenated to a reversed decoy database, using 
the following search criteria for peptide identification: i) 
trypsin as digestion enzyme ii) up to two missed cleavages 
allowed iii) fixed carbamidomethylcysteine and variable 
methionine oxidation as modifications, iv) minimum three 
identified fragment ions. Precursor and fragment ion mass 
tolerances were automatically determined by PLGS3.0.2 
during database search, resulting in mass tolerances below 
5 ppm (3.3 ppm RMS) for precursor and below 10 ppm for 
fragment ions. The initial false discovery rate (FDR) for 
protein identification was set to 1% in PLGS. Data post-
processing was performed using the software package 
ISOQuant, including retention time alignment, exact-
mass-retention-time and ion-mobility clustering, signal 
annotation, normalization and protein isoform/homology 
filtering as described in [27]. Absolute in-sample amounts 
were calculated in ISOQuant for each protein based on the 
TOP3 approach [28].

To minimize potential batch effects we alternated 
measurements between cancer and control tissue and did 
not measured batches of cancer and controls. 

mRNA analysis

From the same tissue specimens, RNA has been 
isolated and transcriptomic patterns have been measured. As 
profiling technique HumanHT-12 v4 Expression BeadChip 
Kit (Illumina) has been applied according to manufacturers 
instructions. Raw data have bee generated by the HiScan 
system and averaged expression intensity as well as 
detection p-values have been extracted. Prior to further 
processing quantile normalization has been applied. Gene 
and protein IDs were matched using publicly available data 
from GeneCards (http://www.genecards.org/). 

Bioinformatics analysis

In a first stage, we analyzed three pairs of tumor 
tissue / control tissue in technical triplicates to assess 
technical variations and to estimate the required cohort 
size. Here, pair-wise Pearson correlation coefficients were 
calculated. From these, an a-priori power calculation was 
carried out to estimate the required cohort size of the actual 
study. The downstream analysis of proteomics pattern 
has been performed in R (version 3.0.2). Significance 
values were calculated by two-tailed paired t-tests unless 
mentioned explicitly. Additionally, the area under the 
receiver characteristic curve (AUC) was assessed. For the 
AUC, expression of individual proteins / mRNAs has been 
considered. The closer AUC values to 0.5 were, the less 
differentially regulated the respective proteins / mRNAs 
are. The closer the AUC to 1 the more up-regulated, 



Oncotarget14869www.impactjournals.com/oncotarget

the closer the AUC to 0 the more down-regulated are 
the markers. For hierarchical clustering the R “hclust“ 
function has been applied with the Euclidian distance 
as distance measure. To calculate the optimal number 
of clusters in the data the “NbClust” package was used. 
Silhouette Scores were calculated and visualized with the 
“cluster” R package. Additionally, different clustering 
using the k most variables have been tested (k = 10, 20, 50, 
100, 150, 200, 250, 500) and representative examples were 
included in the manuscript. To make protein expression 
levels comparable to each other, for this analysis the 
z-score of each proteins abundance level was calculated. 
Principal component analysis (PCA) has been performed 
using the R “pca” function. All p-values through the study 
were adjusted for multiple testing using the Benjamini-
Hochberg approach if not mentioned explicitly.
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