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ABSTRACT:
The transcription factor nuclear factor (erythroid-derived 2)-like 2, also known 

as NFE2L2 or NRF2, is a master regulator of the anti-oxidative stress response and 
positively controls the expression of a battery of anti-oxidative stress response 
proteins and enzymes implicated in detoxification and glutathione generation. 
Although its detoxifying activity is important in cancer prevention, it has recently 
been shown that cancer cells also exploit its protective functions to thrive and 
resist chemotherapy. NRF2 was also shown to the pentose phosphate pathway and 
glutaminolysis, which promotes purine synthesis for supporting rapid proliferation 
and glutathione for providing anti-oxidative stress protection. Evidence obtained from 
cancer patients and cell lines suggest that NRF2 is highly active in a variety of human 
cancers and is associated with aggressiveness.  p53 is a tumor suppressor that also 
promotes an anti-oxidative stress metabolic program and glutaminolysis. Here we 
will discuss the similarities between NRF2 and p53 and review evidence that p53 
might be exploited by cancer cells to gain protection against oxidative stress, as is 
the case for NRF2. We discuss findings of co-regulation between these transcription 
factors and propose possible therapeutic strategies that can be used for treatment 
of cancers that harbor WT p53 and express high levels of NRF2.  

INTRODUCTION

Reactive oxygen species (ROS) are an integral part 
of life and are a byproduct of respiration and exposure to 
the environment [1, 2]. When in excess, ROS can damage 
DNA, proteins and lipids and promote mutations that may 
contribute to onset of a wide spectrum of human diseases 
[3-5] particularly diseases that are associated with aging 
[6-8] such as neurodegeneration [9-12] and cancer [13-15]. 
To maintain redox and prevent aberrant ROS accumulation 
molecular-genetic mechanisms have evolved that sense 
and respond to oxidative stress. These genetic programs 
involve expression of proteins that directly detoxify ROS 
[16], or that are part of metabolic programs that generate 
anti-oxidants such as glutathione [16-24].

While these mechanisms are important to prevent 
disease onset, it is now becoming evident that the same 
mechanisms are being exploited by cancer cells in order 
to survive and thrive under oxidative stress insults and 

to armor themselves against therapeutic interventions 
that rely on oxidative stress as their mechanism of action 
[25-29]. Here we will review two transcription factors 
that promote transcriptional-metabolic anti-oxidative 
stress programs, NRF2 and p53. Both nrf2 and p53 
knockout mice show enhanced susceptibility to induced or 
spontaneous tumors, and are therefore tumor suppressors, 
but have now been implicated as cancer promoting in 
some pathological contexts. We will discuss evidence for 
crosstalk between these transcription factors and possible 
therapeutic strategies arising from these observations. 

The NRF2 anti-oxidative stress transcriptional 
program plays an important role in tumor 
prevention 

The NRF2-KEAP1 molecular system is a sensor of 
oxidative stress [30]. Under ambient conditions, NRF2 
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interacts with KEAP1, an adaptor molecules which directs 
its targets to the CUL3 E3 ligase [31] for ubiquitylation 
and subsequent degradation by the proteasome [32, 33]. 
This mechanism results in low basal NRF2 levels and 
activity. Under oxidative stress, specific KEAP1 cysteines 
become oxidized resulting in disruption of the KEAP1-
NRF2 complex, leading to a release of NRF2 from 
KEAP1 inhibition and promoting its stabilization [34, 35]. 
Newly synthesized NRF2 then translocate to the nucleus 
[36, 37] to transcribe genes encoding a battery of anti-
oxidant proteins [38] such as Heme Oxygenase (HMOX1) 
[39], NAD(P)H dehydrogenase (quinine; NQO1) [40] and 
key enzymes  in the glutathione biosynthesis/recycling 
pathway such as γ-glutamylcysteine ligase (GCL) [7, 41, 
42], collectively known as phase II detoxifying enzymes 
[43]. 

ROS can promote tumor initiation by damaging 
DNA that will lead to mutations and by augmenting 
signaling pathways that promote cell growth and 
proliferation [44]. It has long been observed that anti-
oxidants and some natural compounds can be beneficial 
in preventing cancer initiation [45].  It was hypothesized 
that the protective activity of these compounds may be 
linked to their ability to increase expression of endogenous 
anti-oxidants, more specifically, the phase II detoxifying 
enzymes [46]. This principal was demonstrated using 
genetic approach where the chemo-protectant oltipraz 
induced phase II detoxifying enzymes and reduced 
cancer incidents in Nrf2 WT but not KO mice treated 
with a chemical carcinogen [47]. These experiments also 
established NRF2 as an important factor in promoting the 
activity of cancer preventing compounds.  Similarly, other 
natural compounds and genetic models were shown to rely 
on NRF2 for their protective activity leading to the notion 
that activating NRF2 is an attractive strategy to prevent 
cancer and reduce oxidative damage [48-56]. 

The p53 anti-oxidative stress transcriptional 
program plays a role in preventing ROS induced 
DNA damage and cancer initiation

p53 is both a positive and negative regulator of ROS 
[57]. p53 protein levels in the cells are tightly regulated 
[58-60]. In resting conditions, p53 protein is maintained at 
low levels by MDM2 mediated proteasomal degradation 
[61-66] and at this low level of expression reduces ROS 
levels by inducing the expression of anti-oxidative stress 
proteins such as SESN1, SESN2 and GPX1 [67-70]. 
Using a p53 KO model, it was then demonstrated that 
lack of expression of these anti-oxidative stress proteins 
is associated with increased cellular ROS which leads to 
increases in DNA oxidation and in the mutation rate thus 
promoting tumorigenesis in p53 KO mice. Later, it was 
also shown that p53 regulates GLS2 expression promoting 
glutathione generation by increasing glutaminolysis [71, 

72], a metabolic process that promotes the conversion 
of glutamine to glutamate that is often active in cancer 
cells [73-77]. These findings raise the possibility that 
the tumor suppressor activity of p53 is related to its 
role in maintaining cellular redox by regulating cellular 
metabolism [78, 79] (Fig. 1).   

An important role for p53-mediated metabolic 
regulation to its tumor suppressor activity

p53 coordinates a large number of integrated 
transcriptional programs that result in divers biological 
outputs [80-84]. Deciphering the contribution of a specific 
aspect of p53 function to its tumor suppressor activity is 
one of the important questions in the p53 field [85-87]. p53 
is modified by a large number of different posttranslational 
modifications that play an important role in the regulation 
of the specific cellular program that will be activated by 
p53 [88-90]. Manipulation of these modifications is an 
attractive strategy when attempting to dissect the roles 
of specific p53 transcriptional programs in its biological 
functions and pharmacological reactivation of p53 activity 
in cancer is an active research field [91-98]. Among other 
modifications, p53 is acetylated on three lysines [99-101]. 
Giu and coworkers studied the role of lysine acetylation 
to the execution of discreet p53 cellular functions related 
to its tumor suppressor phenotype namely, apoptosis, 
cell cycle arrest, senescence and the anti-oxidative stress 
metabolic program [102-107]. Using p53 KO mice and 
cells that re-express p53 mutants, in which all three 
acetylated lysines were replaced by arginine (p53-3KR), 
they showed that, like the p53 KO mice, mice and cells 
expressing p53-3KR were defective in the execution of 
apoptosis, cell cycle arrest and senescence. Surprisingly, 
p53-3KR mice did not succumb to cancer, as did the 
p53 KO mice indicating that p53-3KR retained it tumor 
suppressor activity. Further examination of the p53-3KR 
mutants revealed that they did retain the WT function 
in executing a transcriptional metabolic program that 
resulted in reducing glucose uptake, reducing glycolysis 
and reducing ROS generation that were associated with 
induction of the p53 anti-oxidative stress targets GLS2 
[72] and TIGAR [108]. These findings underscore the 
importance of ROS regulation in the tumor suppressor 
activity of p53.  

Cancer cells and oncogenes hijack NRF2 for anti-
oxidative stress protection

Despite the established role of NRF2 in cancer 
prevention [55] recent genetic evidence obtained from 
human cancers points to possible pro-cancer activities 
of NRF2. In particular it was found that there are several 
cancer related genetic events that prevent the degradation 
of NRF2 through the KEAP1-CUL3 pathway that leads to 
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elevated NRF2 activity [33, 109]. These include somatic 
mutations in NRF2 that disrupt its interaction with KEAP1 
[110, 111] and somatic mutations in KEAP1 that disrupt 
its interaction with NRF2 [112-115]. It was also found 
that high NRF2 expression or nuclear localization and low 
KEAP1 expression were associated with poor prognosis 
[116].  These findings, and cell based experiments, point 
to a model that argues that NRF2 can be exploited by 
cancer cells in order to curb oxidative stress and perhaps 
to enhance their chemo-resistance [109, 111, 116-122] 

Aberrant proliferation is one of the hallmarks 
of cancer and oncogenes will often activate growth-
promoting pathways. In a provocative paper DeNocola 
and collaborators showed that oncogenic K-Ras(G12D), 
when expressed at physiological levels, reduces ROS by 
increasing NRF2 that in turn promotes the expression of 
the anti-oxidative stress response [123]. The increase in 
NRF2 was promoted by the activation of the RAF pathway 
leading to an increase in Jun activation that enhanced 
NRF2 gene expression. The authors demonstrated that 
NRF2 was important for K-Ras(G12V) tumorigenic 
functions using a murine model of mutant K-Ras driven 
lung and pancreatic cancer. Nrf2 KO mice showed reduced 
tumor occurrence, reduced proliferation in the tumors 
arising in these mice and increased overall survival [123]. 
These findings led to the concept of a new pro-cancer 
activity of NRF2 in which it supports oncogene-mediated 

oncogenesis in addition to its proposed chemoprotective 
role. In support of this premise, detailed global analysis of 
NRF2 target genes, under both resting and NRF2 induced 
conditions, revealed that a substantial proportion of NRF2 
targets are cell cycle promoting genes [124].

In order to support rapid proliferation, tumor cells 
rely on catabolic processes for generation of building 
blocks such as lipids, proteins and nucleic acids [125]. 
In a recent study, Mitsuishi et al, asked whether the 
increased levels of NRF2 observed in some cancer cells 
play a role in their rapid proliferation [126]. Using NRF2 
knock down in A549 lung cancer cells, that harbor a 
KEAP1 mutation and therefore express high levels of 
NRF2 [114], they found that NRF2 was indeed important 
for proliferation of these cells. In order to identify the 
mechanism by which NRF2 supports proliferation they 
used microarray analysis to identify NRF2 target genes. 
In addition to well-established NRF2 targets, several new 
target genes involved in the pentose phosphate pathway 
were identified suggesting that NRF2 promotes a distinct 
proliferation enhancing metabolic program. Indeed, high 
levels of NRF2 promoted the expression of proteins that 
support glucose flux through pentose phosphate pathway 
to generate purines, the building blocks of DNA and RNA, 
at the expense of the glycolytic pathway. Furthermore, 
metabolic analysis reveled that loss of NRF2 resulted 
in increase in cellular levels of glutamine and glutamate 

Figure 1: NRF2 and p53 regulate the expression of proteins involved in protection ageist oxidative stress. NRF2 and 
p53 target genes (red and blue) that are contributing to protection against oxidative stress directly or by promoting glutathione synthesis by 
facilitating glutaminolysis, through direct synthesis or by facilitating NADPH production.   NRF2, nuclear factor (erythroid-derived 2)-like 
2; HMOX1, Heme Oxygenase 1; GCL, γ-glutamylcysteine ligase; GPX, glutathione peroxidase; NQO1, NAD(P)H quinine dehydrogenase; 
SENS, sestrins; GLS 1/2, glutaminase 1/2; GLH, reduced glutathione; NAPDH, Nicotinamide adenine dinucleotide phosphate.
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suggesting that NRF2 was important for catabolizing 
these amino acids. The authors then used a tracer study to 
show that NRF2 promotes glutaminolysis, the conversion 
of glutamine to glutamate, and directs glutamate into 
two metabolic pathways. One pathway is governed by 
up regulation of GCL that utilizes glutamate to generate 
glutathione. This finding is in accord with previous reports 
that NRF2 is important for glutathione generation [7, 41, 
42]. The second pathway is induced by up regulation of 
ME1, where glutamate is utilized for the generation of 
another anti-oxidant-reducing agent, NADPH. Therefore, 
NRF2 induces a metabolic program that supplies building 
blocks to support proliferation and anti-oxidants that 
can protect these cancer cells from oxidative stress 
(Figure 1). This particular NRF2-driven pro-proliferation 
metabolic program was shown to be dependent on the 
hyperactivation of the PI3K-AKT pathway, a pathway 
that is typically deregulated in cancer [127, 128] providing 
further support to the premise that cancer cells and their 
oncogenic pathways utilize NRF2 to their own advantage. 

p53 in the service of cancer 

The tumor suppressor activity of p53 is well 
documented [82, 129-132]. This activity is achieved by the 
employment of different pathways, spanning from gene 
and microRNA regulation to protein-protein interaction 
[130, 133-137]. However, genetic evidence obtained by 
analyzing patient data indicates, that in specific breast 
cancer sub types, WT p53 status predicts poor response 
to aggressive therapy [138]. One possible explanation for 
this observation is that WT p53 will promote cell cycle 
arrest and help tumor cells resists chemotherapy which 
targets dividing cells [139, 140]. Indeed, it was recently 
shown that tumors bearing WT p53 resist chemotherapy 
by inducing a senescence program that leads to cell cycle 
arrest and production of cytokines that in turn encourage 
the growth of drug resistant cells within the tumors [141]. 
These findings together with the fact that p53 promotes an 
anti-oxidative stress metabolic program, raise the question 
whether tumor cells might also use p53 in order to battle 
oxidative stress to gain chemo resistance, as is the case for 
NRF2. Indeed, p53 was shown to protect A549 cells used 
in the NRF2 study discussed above [126], from toxicity 
and radio sensitization using the metabolic inhibitor 
2-Deoxy-glucose (2DG), by increasing anti-oxidative 
stress response and promoting oxidative phosphorylation 
[142, 143]. These observations, and the recent appreciation 
that p53 promotes a metabolic program that results in 
increased levels of cellular anti-oxidants [78], raise the 
concern that in specific pathological contexts,  p53 may 
be exploited by cancer cells in order increase anti-oxidants 
to gain chemo resistance, much like NRF2.

Cross talk between p53 and NRF2 

It is becoming more evident that, at the functional 
level, p53 and NRF2 play similar roles and are both 
providing cells with enhanced capacity to mitigate 
oxidative stress. Interestingly, recent findings from the 
Zhang lab indicate that p21, a p53 target gene [144, 145], 
stabilizes NRF2 by binding to KEAP1 and interfering with 
its ability to promote NRF2 ubiquitylaton and proteasomal 
degradation [146]. On the other hand, previous findings 
from the Shaul lab indicate that NQO1, an NRF2 target, 
interacts with p53 [147] and blocks its degradation by 
the 20S proteasome [148], a degradation process that 
is independent of MDM2 and ubiquitin [59, 149] (Fig. 
2). These findings support the premise of an interesting 
cross talk between these two transcription factors and 
raise the question of whether there is a positive feedback 
loop between NRF2 and p53 and whether cancer cells 
enhance their resistance to oxidative stress by utilizing 
this putative positive feedback loop (Fig. 2). Indeed, 
p53 deficient HCT116 colon carcinoma cells exhibited 
reduced induction of NRF2 target genes as compared 
with p53 proficient HCT116 cells following challenge 
with oxidative stress [150] suggesting that p53 may be 
important for NRF2 activation in cancer cells. However, 
this model may not be complete, as it was recently shown 
that MDM2 is a transcriptional target of NRF2 through 
which NRF2 negatively regulates p53 [151] (Fig.2). 
In another study it was also shown that p53 binds to 
promoter elements activated by NRF2 and is therefore 
a transcriptional repressor of NRF2 target genes [152] 
(Fig. 2). The apparent discrepancies between these reports 
suggest that the relationship between NRF2 and p53 may 
well be dependent on the cellular and biological context. 

Targeting anti-oxidative stress proteins as possible 
anti-cancer therapy

Stabilization or reactivation of p53 throughout the 
use of small molecules is a promising therapeutic strategy 
[96, 98, 153-157]. However, we believe that alternative 
approaches should be explored in order to win the war 
against cancer [158-163].  

In light of the model that NRF2 and p53 synergize 
in enhancing the cellular anti-oxidative stress mechanisms, 
we reason that cancer cells that exhibit high NRF2 levels 
and harbor WT p53 will be more dependent on these 
pathways to sustain chemo resistance. It is therefore 
tempting to speculate that targeting the anti-oxidative 
stress modules, that are promoted by NRF2 and p53, in 
combination with chemotherapeutic that will increase 
ROS, such as Doxorubicin [164], is a rational approach 
for treating such cases. Some of potential drugable targets 
would be the glutaminolysis pathway, the glutathione 
generating pathway, anti-oxidative stress proteins and 



Oncotarget 2012; 3: 1272-12831276www.impactjournals.com/oncotarget

NRF2. As discussed above, p53 and NRF2 promote 
glutaminolysis that supplies the glutamate and NADPH 
to generate glutathione to battle oxidative stress (Fig. 
1). Targeting Kidney type Glutaminase (KGA), an 
essential enzyme in glutaminolysis, using an inhibitor 
such as BPTES, could inhibit glutaminolysis [165-167]. 
Indeed, this compound was shown to inhibit growth of 
MYC transformed P493 cells in vivo by increasing ROS 
and reducing glutathione levels in these cells [166]. 
Another strategy to reduce glutathione is by targeting 
γ-glutaminase, a rate limiting enzyme in the generation of 
glutathione, using BSO, a compound that has been shown 
to be well tolerated in man [168]. 

Piperlongumine has been shown to be selectively 
toxic to cancer cells and its mechanism of action was 
proposed to involve enhancing ROS in cancer cells by 
binding to a wide number of anti-oxidative stress proteins 
[169]. It is therefore plausible that piperlongumine could 

be useful in treating cancers that rely on anti-oxidative 
stress proteins that are induced by NRF2 and p53. Using 
80 piperlongumine analogs it was recently demonstrated 
that the toxic effect of piperlongumine is due to its activity 
in crosslinking glutathione to proteins and depletion of 
cellular glutathione [170]. 

A more direct approach could be the targeting 
of NRF2 itself using brusatol, a natural compound that 
was shown to inhibit NRF2 by promoting its degradation 
[171]. The same study showed that brusatol synergized 
with chemotherapeutic agents in vitro and in xenograft 
models and to induce death in tumors that have acquired 
drug resistance through NRF2. 

It is now clear that the cancer cells will utilize 
endogenous protective mechanisms to evolve 
chemoresistance [172-174]. It is therefore important 
that we take a close look at what we believe are tumor 
suppressor proteins and pathways as they might 

Figure 2: Positive and negative (up or down) co-regulation between p53 and NRF2. Top to bottom. KEAP1 interacts with 
NRF2 and forms a complex with the E3 ligase CUL3 that results in NRF2 ubiquitylation and degradation by the proteasome (depicted 
as a blue X).  The p53 target gene, p21, interacts with KEAP1 and inhibits NRF2 ubiquitylation and degradation. p53 is degraded by the 
proteasome in a ubiquitin n dependent manner. The NFR2 target, NQO1, interacts with p53 and protects it from degradation. NRF2 target 
gene, MDM2, promotes p53 ubiquitylation and degradation by the proteasome. P53 is a transcriptional repressor of NRF2. NRF2, nuclear 
factor (erythroid-derived 2)-like 2NQO1, NAD(P)H quinine dehydrogenase; mdm2, mouse double minute 2.
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paradoxically be hijacked by cancer cells to promote their 
growth and survival.  NRF2 and p53 may well be the two-
faced Januses of cancer.
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