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ABSTRACT:

The Skp2 (S-phase kinase associated protein 2) oncoprotein is often highly
expressed in various types of human cancers. However, the mechanistic basis of
its oncogenic function, as well as the upstream regulatory pathway(s) that control
Skp2 activities remains not fully understood. Recently, we reported that p300
acetylates Skp2 at two conserved lysine residues K68 and K71 within its NLS (Nuclear
localization signal). This modification leads to increased Skp2 stability and cytoplasmic
translocation, thus contributing to elevated Skp2 oncogenic potential. Moreover, we
found that the SIRT3 tumor suppressor serves as the physiological deacetylase that
antagonizes p300-mediated Skp2 acetylation. Furthermore, we showed that Skp2
governs E-cadherin ubiquitination and degradation in the cytosol. Consistent with
this, we observed an inverse correlation between Skp2 and E-cadherin expression
in clinical breast tumor samples. Therefore, our work elucidates a novel acetylation-

dependent regulatory mechanism for Skp2 oncogenic functions.

INTRODUCTION

The Skp2 F-box protein is a substrate recognizing
component of the SCF (Skp1-Cullin 1-F-box) type of E3
ubiquitin-ligase complex [1]. It is known that the SCF
complex consists of four crucial components including
the invariable component Skpl, Rbx1 and Cullinl, and
the interchangeable substrate-recruiting module, the
F-box protein [1]. Among 70 putative F-box proteins,
Skp2 is one of the best characterized F-box protein and
has been shown to be involved in governing many cellular
processes such as cell cycle regulation, cell proliferation,
apoptosis, differentiation, and survival, in part through
promoting the degradation of its substrate proteins [2,
3]. For example, Skp2 plays an important role in driving
the cell cycle through the G1/S transition by promoting
the destruction of the p27 tumor suppressor protein, an
inhibitor of the CDK (Cyclin-dependent kinase) family
of kinases [4, 5]. In addition to p27 [6], recent studies
have identified numerous downstream Skp2 substrates

including p21, p57, p130, c-Myc, FOXO1 (Forkhead box
protein O1) [7-10], and Tob1[11] (Figure 1).

The fact that many Skp2 substrates are negative cell
cycle regulators is consistent with the notion that Skp2
mainly functions as a proto-oncogene. Indeed, Skp2 has
been found to be frequently overexpressed in a variety
of human cancers including lymphomas [12], prostate
cancer [13], melanoma [14], nasopharyngeal carcinoma
[15], pancreatic cancer [16], and breast carcinomas [17,
18]. More importantly, in support of an oncogenic role for
Skp2 in tumor progression, Skp2-- mice has been found to
be resistant to tumor development induced by loss of either
the p53 or the PTEN tumor suppressor [19]. Although
multiple signaling pathways such as phosphatidylinositol
3-kinase (PI3K)/Akt [20], AR (Androgen receptor) [21],
PTEN (Phosphatase and tensin homolog) [13] and STAT1
(Signal transducers and activators of transcription) [22]
have been reported to cross-talk with the Skp2 sinaling
pathway and subsequently lead to tumorigenesis, the
underlying mechanism(s) by which Skp2 is regulated
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in vivo remains largely elusive. Here, we will discuss
the recent advances in our understanding of how
Skp2 oncogenic role is governed in vivo by the novel
acetylation-dependent mechanism, which is antagonized
by the SIRT3 deacetylase.

Skp2 is acetylated by p300

Multiple studies have shown that phosphorylation
of Skp2 by Akt at Ser72 protects Skp2 from APC
(Anaphase-promoting complex)/Cdh1-mediated
proteolysis [23, 24]. However, Ser72 is only present in
human and large mammals, but not conserved in mice,
suggesting that Akt-mediated Skp2 phosphorylation
might be a regulatory mechanism acquired late during
the evolution. This implies that additional mechanisms
might exist to regulate Skp2 activity. It is noteworthy
that besides protein phosphorylation, protein acetylation
has been recently demonstrated to emerge as another
important type of post-translational modification that
modulates many pathways involved in oncogenesis [25,
26]. More interestingly, while PI3K/Akt phosphorylates
and activates acetyl-transferase p300 [27], Skp2 binds,
but inhibits p300 to block p53-induced apoptosis [28].
Consistently, we found that interaction between p300 and
Skp2 under both ectopic overexpression and endogenous
co-immunoprecipitation conditions can readily be detected
[29]. Furthermore, acetylation of Skp2 is detected using
a specific acetyl-lysine antibody after ectopic expression
of p300 [29]. Notably, we found that p300 acetylates
the Skp2 oncoprotein at both K68 and K71 within its
nuclear localization signal (NLS) region, just adjacent to
the identified Ser72 Akt site [29]. Moreover, we found
that p300-mediated Skp2 acetylation promotes Skp2
dimerization, suggesting that dimerization might affect
the Skp2 substrate spectrum. To our knowledge, this is
the first example demonstrating acetylation of an F-box
protein, thereby suggesting the possibility of acetylation-
dependent regulation of F-box protein(s) other than
Skp2. In keeping with this note, recent large-scale mass
spectrometry analyses have shown that a significant
number of cellular proteins are acetylated [30, 31],
although it is largely unclear how acetylation functions as
a signaling mechanism to modulate downstream signaling
and cellular physiology. Therefore, further studies are
warranted to explore how analogous to phosphorylation-
dependent regulation mechanism, acetylation could be
utilized to govern the physiological functions of various
F-box proteins.

Interestingly, Akt activates p300 acetyl-transferase
activity to influence the Skp2 acetylation. However,
p300 exerts its function independent of the Akt-Ser72-
Skp2 pathway [29]. Therefore it is critical to further
understand the possible redundancy or -cross-talks
between these two upstream regulatory pathways,
Akt-mediated phosphorylation of Ser72 versus p300-

mediated acetylation of Skp2, in terms of promoting
Skp2 oncogenic signaling. It is possible that p300 and Akt
are activated in response to distinct upstream signals to
modulate Skp2 activity in specific settings. Alternatively,
they share redundant functions with the p300 pathway
being the ancestral mechanism of regulation, and Akt-
mediated regulation acquired later in evolution. Obviously
additional studies will be required to fully dissect the
potential intercommunication between the p300 and Akt
signal transduction pathways that modulate Skp2 activity.

Skp2 is deacetylated by the SIRT3 tumor
suppressor

The Sirtuin (SIRT) family of deacetylases have
recently gained tremendous amount of attention due to
their critical roles in many cellular functions [9]. The
Sirtuins play important roles in a variety of cellular
processes including aging, cellular metabolism and
tumorigenesis [32]. Interestingly, Sirtuins are located in
different cellular compartments, which may dictate the
specific cellular function of each Sirtuin protein through
promoting the deacetylation of various target proteins such
as FOXO03a [33, 34], PPARy (Peroxisome proliferators-
activated receptor gamma) [35] and p53 [36]. For example,
SIRT1, the best-characterized member of the mammalian
Sirtuins, is located predominately in the nucleus [37, 38],
whereas SIRT?2 is found in the cytosol [39, 40]. SIRT3,
SIRT4 and SIRTS, on the other hand, are localized mainly
in the mitochondria [41, 42], [43].

Recent studies have also shown that SIRT3 has
seemingly dichotomous role as either tumor promoter or
tumor suppressor in cancer biology. For example, SIRT3
expression was found significantly higher in oral cancer
cell lines and human oral cancer samples than in normal
control [10]. In contrast, SIRT3 was reported to suppress
tumor growth via induction of growth arrest and apoptosis
in colorectal carcinoma, osteosarcoma cells, ovarian
cancer, prostate cancer, suggesting that SIRT3 is tumor
suppressor in these cancers [9]. Several published papers
demonstrated a tumor suppressor role for SIRT3 via the
ability of SIRT3 to negatively regulate ROS (reactive
oxygen species) and HIF1-a (hypoxia inducible factor-1
o) [44, 45]. However, the exact mechanisms how SIRT3
is involved in cancer are largely unclear.

Our recent study showed that SIRT3 interacts with
Skp2 and subsequently deacetylates Skp2 to suppress
tumorigenesis [29]. Specifically, only SIRT3 and SIRT4
specifically interact with Skp2 among the various Sirtuin
family members [29]. As SIRT3 is a tumor suppressor
protein [45, 46], we further examined a potential role for
SIRT3 in regulation of Skp2 acetylation. We detected a
specific interaction between ectopically expressed as well
as endogenous Skp2 and SIRT3. Moreover, depletion of
SIRT3 caused an increase in endogenous Skp2 acetylation
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[29]. Additionally, depletion of SIRT3 also leads to a
moderate increase in Skp2 abundance, which correlates
with decreased expression of the Skp2 substrates p27 and
p21. More importantly, the inverse correlation between
Skp2 and SIRT3 immunohistochemical staining was
observed in breast cancer tissues [29]. As SIRT3 has been
implicated to possess tumor suppressor function [45, 46],
this result suggests that loss of SIRT3 may lead to elevated
Skp2 expression in breast cancers. In support of a tumor
suppressor function for SIRT3, it has also been reported
previously that SIRT3” cells displayed elevated ability to
form tumors in a xenograft model and loss of SIRT3 has
been identified as a frequent event in breast cancer cases
[45, 46]. Using the xenograft model, we further showed
that depletion of Skp2 retarded the in vivo tumorigenesis
of SIRT3" cells [29]. Altogether, our results suggest that in
our experimental settings, SIRT3 inhibited tumor growth
mainly through deacetylation of Skp2 oncoprotein. Future
study is directed to mechanistically understand how
and whether SIRT3 exerts its tumor suppressor function
by inactivating the Skp2 oncogenic pathway solely in a
deacetylase-dependent manner.

Skp2 acetylation governs its oncogenic function

The regulation of proteins by acetylation/
deacetylation is considered as a significant post-
translational regulatory mechanism to modify the specific
enzyme’s activity [47]. Hence, we intended to examine
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whether acetylation of Skp2 controls its oncogenic
functions. Notably, we found that acetylation of Skp2
positively regulates its oncogenic activity partly through
modulating its stability [29]. Moreover, acetylation
of Skp2 exerts its function through promoting the
destruction of its downstream targets such as p21 and
FOXOL1. To further support the role of Skp2 acetylation
in tumorigenesis, depletion of endogenous SIRT3, which
leads to increased acetylation of Skp2, promotes cell
growth [29].

A canonical NLS was identified at the Skp2 amino
terminus, and its function is highlighted by the fact that
over-expression of an active Akt allele relocalizes a pool
of Skp2 to the cytoplasm [23, 24]. Acetylation of lysines
within an NLS has been reported to influence cellular
localization [48-51]. Therefore, we detected whether
acetylation of Skp2 NLS influences its localization.
Consistent with the fact that Skp2 acetylation sites are
found within its NLS, p300 promotes Skp2 cytoplasmic
localization [29]. Interestingly, p300-induced Skp2
cellular localization is independent of Akt-mediated Skp2
phosphorylation [29]. In support of this notion, Skp2
cytoplasmic localization has been observed in many
clinical tumor samples and is correlated with aggressive
malignancy and poor diagnosis [17, 52-54]. Taken
together, our results demonstrate that p300-mediated
acetylation of Skp2 affects its stability and cytoplasmic
localization, which in turn can influence its oncogenic
activity. These results suggest that acetylation-mediated
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Figure 1: Illustrated pathway of Skp2-mediated degradation of its substrates. The SCF (Skp1-Cullin 1-F-box) complex
consists of four components: Skpl, Rbx1, Cullinl, and the F-box protein. While Skp2 recognizes its downstream substrates, cullin1-Rbx1
complex catalyzes the ubiquitin transfers from E2 to the substrates for targeted degradation by 26S-proteasome. The multiple substrates
including p21, p27, p57, p130, Tob1l, FOXO1, E-cadherin, and c-Myc have been identified.
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post-translational modifications might also control the
function of other F-box proteins.

Skp2 regulates cell migration through promoting
E-cadherin destruction

It has been well accepted that enhanced cell
migration is a critical phenotype required for cancer
progression that leads to invasion and ultimately metastatic
dissemination of tumor cells. In addition to controlling cell
cycle progression, Skp2 has also been implicated in the
regulation of cell migration. For example, a study showed
that ectopic expression of Skp2 fused with an extra copy
of an NES rescues the deficiency of cell motility in Skp2--
MEFs, in the absence of p27 degradation [23], indicating
that cytoplasmic Skp2 may have a distinct function
related to cell migration, independent of its major role
in cell cycle regulation. Indeed, a correlation between
elevated Skp2 protein expression and tumor metastasis
has been noted in multiple tumors, including melanoma,
lymphoma and breast carcinoma [55-57]. Furthermore,
several studies have demonstrated that cytosolic Skp2 can
positively regulate cell migration, although the molecular
mechanisms are largely unknown [23]. As we have shown

Crsoo RECR w2
(ams) —i(xcpe)

that acetylation promotes cytosolic localization, it became
increasingly necessary to explore whether acetylation
could influence Skp2-governed cellular migration.

To this end, E-cadherin is considered as a major
player in EMT (epithelial to mesenchymal transition)
[58]. It is accepted that after EMT, cells lose epithelial
features including down-regulation of E-cadherin and
gain mesenchymal characteristics such as upregulation
of N-cadherin, fibronectin, and vimentin, leading to
enhanced cell migration, invasion and metastasis [44,
59, 60]. Consistent with this notion, loss of E-cadherin is
frequently observed in high-grade breast tumor samples
[61-63]. However, it remains unclear whether enhanced
proteolysis of E-cadherin also contributes to the reduced
E-cadherin abundance in high-grade breast tumors. On the
other hand, Skp2 is found to be frequently overexpressed
in various types of cancers including breast cancer [1]. We
therefore propose that aberrant Skp2 signaling may lead
to elevated E-cadherin destruction that in turn profoundly
affects cell migration and potentially EMT. In keeping with
this hypothesis, our study indicates that Skp2 promotes
cellular migration partly through promotion of E-cadherin
destruction [29]. Furthermore, we observed an inverse
correlation between Skp2 and E-cadherin expression in an
array of breast cancer clinical samples [29]. Interestingly,
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Figure 2: Proposed model for how Skp2 oncogenic role is regulated by p300 and SIRT3. A. Skp2 is acetylated by the
p300 acetyl-transferase at both K68 and K71, leading to increased Skp2 stability and its oncogenic functions partly through promoting
its cytoplasmic localization. Moreover, Skp2 promotes tumor cell migration via governing E-cadherin degradation. Furthermore, SIRT3
interacts with and deacetylates Skp2 to antagonize the acetylation by p300. B. Schematic illustration of how p300-dependent acetylation of
Skp2, a process that can be antagonized by the SIRT3 deacetylase, leads to elevated Skp2 oncogenic functions in part by stabilizing Skp2
as well as promoting Skp2 cytoplasmic localization.
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we found that although ectopic expression of Skp2 in
LNCaP cells leads to decreased expression of E-cadherin
and a-E-catenin, other molecular markers for EMT were
not significantly altered [29]. These results argue that
cytoplasmic Skp2 preferentially promotes E-cadherin
destruction to regulate cellular migration, but has nominal
effects on other cell adhesion proteins, implying that
additional oncogenic signaling, which is not currently
fully underscored, is required for promoting full EMT.
Therefore, additional studies are required to pinpoint these
genetic alterations that might synergize with elevated Skp2
oncogenic signaling in facilitating cellular transformation
and metastasis.

CONCLUSION

In conclusion, Skp2 plays an oncogenic role in the
development and progression of human cancers through
degradation of its downstream target proteins that control
a variety of cellular processes such as cell proliferation,
apoptosis, migration, invasion and metastasis. More
importantly, we recently identified that Skp?2 is acetylated
by p300, resulting in its cytoplasmic localization and
enhanced stability. We further demonstrate that the SIRT3
tumor suppressor interacts with and deacetylates Skp2
(Figure 2), suggesting that targeting Skp2 or the p300/
SIRT3 axis could be a novel approach for the treatment
of human cancers, especially those with up-regulation of
Skp2. However, we recognize that although these studies
provide the molecular basis for targeting Skp2 as novel
anti-cancer therapeutic options, further in-depth studies
are required to provide further insights to guide the design
of effective therapeutics targeting Skp2 acetylation events
to combat human cancers.
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