
Oncotarget14415www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 12

Cross-platform comparison of independent datasets identifies 
an immune signature associated with improved survival in 
metastatic melanoma

Ricardo D. Lardone1, Seema B. Plaisier1, Marian S. Navarrete1, Jaime M. Shamonki2, 
John R. Jalas3, Peter A. Sieling1,*, Delphine J. Lee1,*

1 Department of Translational Immunology, Dirks/Dougherty Laboratory for Cancer Research, John Wayne Cancer Institute, 
Santa Monica, CA 90404, USA

2California Cryobank, Los Angeles, CA 90025, USA
3Department of Pathology at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
*These authors have contributed equally to this work

Correspondence to: Delphine J. Lee, e-mail: leedj@jwci.org
Ricardo D. Lardone, e-mail: rlardone@gmail.com

Keywords: metastatic melanoma, tumor immunology, bioinformatics, rank-rank hypergeometric overlap, B cells
Received: November 02, 2015    Accepted: January 29, 2016    Published: February 13, 2016

ABSTRACT

Platform and study differences in prognostic signatures from metastatic 
melanoma (MM) gene expression reports often hinder consensus arrival. We 
performed survival/outcome-based pairwise comparisons of three independent MM 
gene expression profiles using the threshold-free algorithm rank-rank hypergeometric 
overlap analysis (RRHO). We found statistically significant overlap for genes 
overexpressed in favorable outcome (FO) groups, but no overlap for poor outcome 
(PO) groups. This “favorable outcome signature” (FOS) of 228 genes coinciding on 
all three overlapping gene lists showed immune function predominated in FO MM. 
Surprisingly, specific cell signature-enrichment analysis showed B cell-associated 
genes enriched in FO MM, along with T cell-associated genes. Higher levels of B and T 
cells (p<0.05) and their relative proximity (p<0.05) were detected in FO-to-PO tumor 
comparisons from an independent MM patients cohort. Finally, expression of FOS in 
two independent Stage III MM tumor datasets correctly predicted clinical outcome 
in 12/14 and 44/70 patients using a weighted gene voting classifier (area under the 
curve values 0.96 and 0.75, respectively). This RRHO-based, cross-study analysis 
emphasizes the RRHO approach power, confirms T cells relevance for prolonged 
MM survival, supports a favorable role for B cells in anti-melanoma immunity, and 
suggests B cells potential as means of intervention in melanoma treatment.

INTRODUCTION

Melanoma incidence has been increasing for the last 
30 years, making it among the fastest growing cancers 
worldwide [1]. One of its most dangerous features is a 
high inherent metastatic potential: primary melanomas 
have up to 1000-times the inherent metastatic potential 
compared to most other cancers [2]. Before the age 
of checkpoint blockade, metastatic melanoma (MM) 
conferred poor median survival rates (<1yr), although 
some patients survive for many years after their diagnosis 
of metastatic disease [3]. These MM outcome differences 
can be due to a combination of diverse biological factors 

involving the tumor and its relationship to the host, 
including cells of the immune system [4]. The target for 
most of the current MM therapeutic approaches advised 
by the National Comprehensive Cancer Network (NCCN) 
Guidelines is innate and/or adaptive components of the 
immune system [5–8]. With the most effective therapy 
achieving only a response rate of 50% [5], there is still 
room for improvement [9].

Different gene expression microarray platforms 
have proliferated since the first array of cDNA fragments 
appeared in mid-90’s [10]. Although the comparison of 
independent high-throughput gene-expression experiments 
has proven to be useful to generate hypotheses from 
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gene-expression programs being active in particular 
biological conditions, a number of relevant variables 
in each platform still challenge these comparisons [11]. 
Often, the available methods to compare gene-expression 
profiles test for correlation, overlap or enrichment between 
sets of genes [12, 13]. To this end, lists with a continuous 
range of thousands of gene-expression differences are 
reduced to just a small fraction of top changing genes 
by applying thresholds for differential expression, while 
ignoring genes with small, yet reproducible changes. This 
problem can be resolved using rank-rank hypergeometric 
overlap (RRHO) analysis [14]. RRHO is a threshold-
free algorithm that can identify an overlapping gene set 
with greatest statistical significance when comparing two 
independent high-throughput gene expression profiles. 
The benefit of a threshold-free approach is that genes 
with slight but conserved gene expression changes are 
not excluded from downstream pathway analysis (to 
this regard, RRHO can be considered a two-dimensional 
analog of Gene Set Enrichment Analysis [15], another 
well-known rank-based approach).

A better knowledge of biological factors linked to 
MM long-term survival will improve therapy and survival 
We investigated common signatures comparing gene 
expression profiles of favorable outcome (FO) and poor 
outcome (PO) MM patients from three independent MM 
studies. Performing different combinations of RRHO, 
we found the most conserved gene expression patterns 
between these three independent MM patient cohorts. 
A gene signature consistently expressed in FO MM 
was obtained, from which we performed gene ontology 
analyses and additional bioinformatics and tissue labeling 
approaches. Besides inferring the tumor microenvironment 
status and the potential cell types determining an improved 
survival, the FO gene signature was also used to predict 
survival in other MM datasets.

RESULTS

In order to identify novel pathways associated 
with survival or death in MM, we used RRHO analysis. 
Three publicly available gene expression datasets from 
MM studies (GSE22153, “Set A”; GSE46517, “Set B”; 
GSE19234, “Set C”) were selected and annotated with 
clinical information for survival/outcome. Criteria used for 
sample selection are detailed in Materials and Methods 
section and Supplementary Figure S1. We then performed 
RRHO analyses on all three possible combinations of 
datasets, and consistently found a statistically significant 
overlap in genes exhibiting higher expression in the 
favorable outcome (FO) MM groups, compared to those 
with poor outcome or PO (lower left corner of RRHO 
heatmaps, Figure 1A). These RRHO analyses showed, for 
example, that genes before rank 1400 in the Set A ranked 
list and before rank 2100 in the Set B ranked gene list had 
the most statistically significant number of overlapping 

genes (n = 394 genes, -log hypergeometric overlap 
p-value = 19.1). RRHO of Set A and Set C presented 1423 
overlapping genes (max -log hypergeometric p-value = 
57.6) at the lower left area of map. Meanwhile, RRHO 
of Set B and Set C datasets exhibited 887 overlapping 
genes (max -log hypergeometric p-value = 89.1) at the 
bottom left region of map. Each pair of sets compared 
and overlapping genes are represented by Venn diagrams 
below heatmaps (Figure 1A; see legend for details). From 
these analyses we obtained three lists of overlapping 
genes having 228 genes in common, thus creating a 
gene set consistently associated with FO (“favorable 
outcome signature”, or FOS) across three different studies 
(Figure 1B and Supplementary Table S1). In contrast to 
genes from the FO groups, genes from the PO tumors in 
the three datasets did not exhibit a statistically significant 
overlap when evaluated using RRHO (Figure 1A). 
Moreover, dataset pair surveys using a simple cutoff 
criterion (fold-change greater than 1.5 and a p-value lower 
than 0.05) found no common genes simultaneously present 
in all three possible pairings (not shown).

Subcellular location for a protein determines its 
access to interacting partners, enabling their integration into 
functional biological networks. To determine the biological 
features of FOS genes relevant for survival in MM, we used 
Ingenuity Pathway Analysis (IPA) to define their subcellular 
locations (Figure 1C) and functions (Figure 1D). The 
multiplicity of locations and functions represented in these 
FOS genes confers them potential to influence multiple 
biological processes. This was further supported by gene 
ontology and pathway analyses using Gene Ontology 
Consortium database (GO), REduce and VIsualize Gene 
Ontology (REVIGO) web server and IPA. Strikingly, FOS 
was enriched in immune-related processes and pathways 
(Figure 2). GO analysis mapped 161 significantly enriched 
GO biological functions (B-H p<0.05, Supplementary 
Table S2). REVIGO analysis of these functions grouped 
many of them under immune system-related terms like 
“Immune response”, “leukocyte cell-cell adhesion” and 
“immune system process” (Figure 2A). Overall, more 
than 60% of GO terms in FOS were immune, compared 
to only 4% total in entire GO database. IPA identified 117 
significantly enriched canonical pathways (B-H p<0.05, 
Supplementary Table S3). Almost all (28/30) of the top 
30 canonical pathways were immune-related, including 
numerous immune cell-mediated cytotoxicity mechanisms 
as well as immune cell activation pathways (Figure 2B and 
Supplementary Table S3).

One of the challenges for gene-expression profiling 
from tumor biopsies is the presence of divergent cell types 
contributing their mRNA to the total gene expression 
readout. After finding a positive correlation between 
the increased expression of immune function-related 
genes and longer survival, we used the Gene Enrichment 
Profiler (GEP) database [16] (a curated and publicly 
available collection of expression intensities converted to 
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Figure 1: RRHO comparisons of three independent MM gene expression profile datasets identify a “favorable outcome 
signature” (FOS). A. Three complete gene expression profiles were devised by grouping patients from three datasets (“Set A”, “Set 
B” and “Set C”, see Materials and Methods) into favorable outcome (FO) and poor outcome (PO) groups, ordering genes according 
to the magnitude and direction of change between survival groups, and compared pairwise using the threshold-free RRHO algorithm. 
RRHO analysis showed statistically significant overlap between the genes with increased expression in the FO class (see Results). Venn 
diagrams below RRHO heatmaps represent each pair of datasets compared (with set diameters proportional to correspondent microarray 
platform sizes) and the corresponding number of overlapping genes. RRHO map signal scale of log10-transformed hypergeometric p-value 
is shown on the right of each heatmap. B. Venn diagram showing the number of overlapping genes in the FO class in the patient datasets 
being compared using RRHO analysis. C. Summary of the subcellular locations and D. functions of the proteins encoded by FOS genes. 
Supplementary Table S1 contains the full list of 228 overlapping genes common to the three RRHO analyses.
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Figure 2: Immune-related biological processes and pathways are enriched in “favorable outcome signature”. A. Most 
highly enriched Gene Ontology (GO) terms according to Gene Ontology Consortium and REVIGO algorithms (see Materials and Methods). 
GO terms are represented by tiles, grouped and colored according to semantic similarities to other GO terms. Tile areas are proportional to 
-log10  p-value for each term. B. 2-D heatmap view of top-30 canonical pathways and their genes identified by Ingenuity Pathway Analysis. 
Pathways are ranked by multiple hypothesis corrected p-values. Associations between FOS genes and each pathway are indicated with red; 
immune-related pathways are in red.
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enrichment scores) to define the cell types represented in 
the list of overlapping genes (see Materials and Methods). 
Figure 3A shows the top-10 cell types displaying the 
highest number of genes/probes with high enrichment 
score (>700). Along with genes from other well-known 
anti-tumor immunity mediators including T cells, B cell-
associated genes were enriched in melanoma biopsies 
from FO patients, suggesting B cells are enriched in FO 
MM. This was confirmed by immunolabeling of tumor 
sections from an independent set of MM (Figure 3B). 
Initial blinded semi-quantitative assessment of labeling 
by an experienced pathologist (JMS) suggested a trend 
for increased CD20 labeling on MM from FO patients. 
Scanning and software-assisted quantification of the 
labeling indicated higher levels of CD20+ cells on FO 
patients (p<0.05), supporting a favorable role for B 
cells in anti-melanoma immunity (Figure 3D). Similar 
to CD20, levels of the pan T cell marker (CD3) were 
increased significantly in FO MM (Figure 3C and 3E). 
Interestingly, Spearman’s rank correlation indicated a 
positive correlation between CD20 and CD3 levels in MM 
(Figure 3F; r2=0.5602; p<0.0001).

These findings suggest cooperation between B and T 
cells in the host response to MM. To identify relationships 
among B cells and T cells we used the Search Tool for 
the Retrieval of Interacting Genes/Proteins - STRING 
(to predict interactions), [13] and the GEP (to predict 
the cell type best represented by each node). Figure 4A 
illustrates integrative information from STRING and GEP 
for the FOS genes, including 15 interactions between 
“B cells” and “T cells” genes (red dashed edges). We 
hypothesized that B and T cells would be co-localized to a 
greater extent in FO versus PO tumors. Figure 4B shows 
a composite example of false-colored consecutive MM 
sections stained for CD20 (red) and CD3 (green), with 
areas of close proximity in yellow. Fractions of CD20-
labeled cells in close proximity to CD3-labeled cells 
(expressed as CD20yellow/CD20red) were higher in FO MM 
than in PO MM (p<0.05, Figure 4C). Using combined 
bioinformatics approaches and in situ immunochemical 
labeling we find the potential for B and T cell interactions 
in tumors from FO MM patients.

Finally, we wanted to evaluate if the expression 
profile of FOS could predict outcome in MM samples. 
Toward this effort, a weighted-gene voting (WGV) 
outcome classifier based on the FOS was built and used 
to classify stage III MM samples from two independent 
datasets (Set D and Set E, see Materials and Methods). 
Outcome was correctly predicted in 12/14 (85.7%) 
patients from Set D (Figure 5A) and in 46/70 (65.7%) 
patients from Set E (Figure 5B). In receiver-operating 
characteristic (ROC) plot, the area under the curve (AUC) 
values calculated for the performance of WGV were 0.96 
for Set D and 0.75 for Set E, indicating FOS has potential 
for outcome prediction (Figure 5C). Moreover, Kaplan-
Meier curves of Set E patients for survival proportions 

based on the WGV showed that patients scored in the 
poor outcome (negative) class had significantly reduced 
survival after tumor resection (p=0.0019, log-rank test) 
compared to those in favorable outcome (positive) class 
(Figure 5D).

DISCUSSION

The advent of the “omics” era in the new 
millennium has brought hope to manage cancer patients 
using prognostic strategies. However, prognostic 
signatures derived from gene expression studies in 
metastatic melanoma (MM) vary from study to study, 
with no unifying signature across them [17–19]. In the 
present study we used RRHO, a threshold-free algorithm, 
to perform pairwise comparisons of three independent 
MM gene expression profiles. We identified a favorable 
outcome signature (FOS), a set of genes consistently 
associated with favorable outcome (FO) MM. Multiple 
bioinformatics analyses of FOS showed enrichment in 
immune-related processes and pathways, and inferred the 
cell types associated with FO MM. Furthermore, increased 
presence of the primary cell types associated with FO 
MM was confirmed in situ for the pan T cell marker CD3 
and the B cell marker CD20, consistent with the work of 
others for a role of T cells [20], as well as B cells [21] in 
favorable outcomes. Lastly, this FOS correctly predicted 
patient outcomes in up to 85% of samples from two 
independent MM patient datasets.

An association between immune genes expression and 
improved survival in MM patients has been suggested by 
previous reports using gene expression microarrays [22, 23]. 
However, inter-study comparisons for prognosis prediction 
using standard cutoff criteria (e.g. fold-change > 1.5, p-value 
< 0.05) found no or only a limited number of genes (at best 
eight) [18, 19], making it difficult to design a predictive 
test. In the present study, RRHO detected overlap of 228 
genes (FOS) in all three pairwise comparisons conducted, 
demonstrating its power as a hypothesis-generating tool. 
In addition, the fact that no common pathways were found 
in poor outcome (PO) MM highlights the fact that while 
improved survival or outcome depends on a unifying theme-
-immunity--there is no unifying theme for poor survival. 
Recent hypotheses postulate a role for the amount of 
mutations (mutational load) in melanoma progression [24], 
although the nature of the datasets used in our study did 
not allow us to assess this contribution to survival. Further 
analysis of tumor vs. germline whole exome or whole 
exome sequencing data is warranted to investigate this idea.

The role of immunity in cancer aligns with the studies 
of William Coley on therapeutic consequences of streptococci 
bacteria on sarcomas [25]; with the concept of “cancer 
immunosurveillance” proposed by Burnet and Thomas 
[26]; and with the current era of successful immune-based 
therapies. Indeed, the role of T cells has been exhaustively 
examined in anti-melanoma responses [27] leading to the 
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ongoing revolution in cancer therapy designed to awaken 
T cell immunity against tumor [28]. Notwithstanding, the 
involvement of B cells in melanoma immunobiology has 
been relatively understudied. Using a cell profiling algorithm, 
we found that B cells were the second highest ranking cell 

type after (peripheral or thymic single positive) CD8 T cells. 
Although there were no probes to measure the pan B cell 
marker CD20 in any of the dataset platforms (and therefore 
no CD20 listed in FOS), CD19 (another well-established B 
cell marker) was indeed present in FOS.

Figure 3: B cells are enriched in FO MM group. A. Cell type profiling of FOS dataset. The enrichment score (ES) for each FOS probe 
was assessed in different cell/tissue types contained in “Gene Enrichment Profiler” database (see Materials and Methods). The likelihood of 
diverse specific cell types infiltrating the tumors was established by ranking the cell/tissue types according to their number of probes with high 
enrichment score. The top-10 cell/tissue types from the database are shown: T cells (blue), B cells (red), innate effector cells (orange), Tregs (light 
blue). B. Representative examples of CD20-IHC labeled FFPE sections from an independent group of MM showing more B cells infiltrates 
in FO patients compared to PO patients. C. Representative examples of CD3-IHC labeled FFPE sections from an independent group of MM 
showing more T cells infiltrates in FO patients compared to PO patients. D. Staining quantification using ImageScope (see Materials and 
Methods) indicated CD20 label was increased in the FO group (n=36, p<0.05). E. Staining quantification indicated CD3 label was increased in 
the FO group (n=36, p<0.05). F. correlation between CD20 and CD3 levels in MM (n=36, Spearman correlation, p<0.0001).
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Figure 4: Predicted interactions network from FOS connect cell types in FO MM. A. Circos plot depicting a network of 
experimentally observed or high-level-of-confidence predicted interactions was built with integrative information from STRING 9.1 (for 
interaction evidence) and the Gene Enrichment Profiler (for evidence on cells expressing those nodes/genes) databases. Chromosomal 
location is shown for each of the 228 overlapping genes. Gene symbols were colored based on the top-10 cell type from Figure 3A 
showing the highest expression for that gene: B cells (B cells CD19+); T cells (Peripheral CD8+ T cells, Thymic SP CD8+ T cells, T 
cells effector memory, T cells central memory, γδ T cells, T cells BAFF+); Regulatory T cells (Tregs). Edges represent curated interactions 
with experimental evidence or database score higher than 0.7 according to STRING 9.1: B cell-B cell (continuous bold red), B cell- T 
cells (dashed bold red), T cells- T cells (continuous blue), and T cells- Tregs (dotted blue). B. B cells show proximity to T cells in MM 
tissue. Relative proximity of B cells to T cells was revealed by false-color, fluorescent-like image composite (right) of consecutive MM 
sections individually stained for CD20 and CD3 markers (left). Additive red and green mixing yields yellow in areas of close proximity. 
C. Quantification of CD20yellow/CD20red ratio in fluorescent-like image composites of MM sections (using Fiji ImageJ, see Materials and 
Methods) showing higher ratios in FO patients compared to PO patients (n=34, p<0.05).
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Figure 5: Validation of FOS as outcome predictor in two independent melanoma datasets. Weighted gene voting (WGV) 
using the votes for FOS genes correctly predicted outcome in two independent melanoma stage III datasets. A. In Set D (see Materials 
and Methods), 6/7 (85.7%) patients of favorable outcome and 6/7 (85.7%) patients with poor outcome were correctly predicted. Positive 
predictive value (PPV): 0.857; negative predictive value (NPV): 0.857; specificity: 0.857; sensitivity: 0.857. B. In Set E, 26/42 (61.9%) 
patients of favorable outcome and 20/28 (71.4%) patients with poor outcome were correctly predicted. PPV: 0.765; NPV: 0.556; specificity: 
0.714; sensitivity: 0.619. C. Receiver-operating characteristic (ROC) plot showing the performance on both datasets of WGV using FOS 
genes. Area under the curve (AUC) values are indicated. Dotted diagonal line shows random chance. D. Kaplan-Meier curves of survival 
proportions for Set E patients based on the WGV prediction. Patients with negative class (predicted poor outcome) had significantly 
reduced survival (p=0.0019, log-rank test; survival times correspond to months after tumor resection). Survival information available for 
Set D patients (“alive” or “dead” by certain date) was insufficient to generate a Kaplan-Meier curve.
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Some reports indicate a negative role for B cells in 
melanoma [29]. However, B cells are prominent players in 
autoimmunity and tissue rejection [30], implying their role 
in breaking tolerance, a key event in successful anti-tumor 
immunity [31]. Consistent with these findings, animal 
models of B cell deficiency show more aggressive growth 
of B16F10 melanoma, which can be ameliorated with 
adoptive B cell transfer [32, 33]. In these models, B cells 
seem to promote T cell infiltration and cytokine production 
within the tumor. Interestingly, there is evidence for an 
association between Rituximab, an anti-CD20 monoclonal 
antibody used to treat human B-cell lymphomas or collagen 
vascular diseases, with more aggressive melanoma forms 
[34]. A positive role for tumor-infiltrating B cells in 
the antitumor immune response is also supported by a 
correlation between low numbers of CD20+ B lymphocytes 
and primary cutaneous melanoma progression [35]. Thus, 
our analysis of transcriptional data from multiple datasets 
supports earlier studies of animal models and primary 
stage melanomas to suggest a positive role for B cells in 
metastatic melanomas.

CD40-activated B cells pulsed with melanoma cell 
lysates potently stimulate peripheral autologous T cells 
specific to melanoma-associated antigens [36]. B cells 
can also facilitate expansion of CD8 and CD4 T cells 
specific for tumor-associated antigens [37], thanks to their 
ability to present (through MHC class II) or cross-present 
(through MHC class I) epitopes independent of their 
B-cell receptor (BCR) specificity [38].

Despite the computational and immunohistochemical 
evidence of B cells present in FO vs. PO samples, no 
immunoglobulin light- or immunoglobulin heavy-chain 
genes were in the FOS. This could be due to limitations 
of microarray platforms to detect the high variety of 
immunoglobulin chain genes across the different B 
cells that underwent diverse VDJC rearrangements. For 
example, the Illumina human-6 v2.0 expression beadchip 
platform for Set A lacks probes to detect heavy constant 
delta, mu, gamma and epsilon chains, as well as light 
constant kappa and lambda chains. It also has very few 
probes to cover all combinations of variable regions. 
Since the RRHO method collapses data to only genes 
present on all platforms, it removed most probes detecting 
immunoglobulin genes from the other platforms during 
analysis. A closer examination of individual datasets 
indicates immunoglobulin genes measured in Set B FO vs. 
PO samples showed no statistically significant differences 
in expression, whereas ~25% of immunoglobulin genes 
in Set C were comparatively increased in FO vs. PO. 
However, neither the master regulator for plasma cell 
driving (“PR domain containing 1” or PRDM1) nor its 
downstream transcription factor “X-box binding protein 
1” (XBP-1, essential for plasma cell differentiation) 
[39] were enriched in FOS. Although our computational 
analyses do not allow any clear conclusion about the role 
of antibodies expressed within tumoral tissue and survival, 

it is tempting to speculate that the beneficial role for 
tumor infiltrating B cells in MM may not be through the 
production of antibodies (i.e. not plasma cells).

Instead, B cells might contribute to antitumor 
immunity in melanoma by acting as antigen presenting 
cells (APCs) to T cells. Indeed, FOS contained numerous 
genes involved in B cell-T cell interactions and their 
downstream signaling events: Major histocompatibility 
complex class II (HLA-DMA, HLA-DOA, HLA-DOB, 
HLA-DPA1, HLA-DPB1, HLA-DQB1, HLA-DRA, 
HLA-DRB1); T cell receptor/co-receptor (CD3D, CD3E, 
CD3G, CD8A, CD8B ); cytokines/chemokines and their 
receptors (IL7, IL32, CCL4, CCL5, CXCL9, CXCL13, 
IL2RB, IL2RG, IL10RA, IL15RA, IL21R, CCR6, 
CXCR3, CXCR4, CXCR6); accessory and costimulatory 
molecules (CD74, CD19, CD40); tyrosine kinases 
(BTK, LCK, LRRK1, MAP4K1, PHKB, PIM1, PRKCB, 
PRKCH, RPS6KB1, SCYL3, SKAP1); transcription 
factors (BATF, BTAF1, FLI1, GMFG, IRF1, IRF8, MST1, 
NFKB1, NFX1, POU2AF1, SPIB, TAF7, TCF4, TFEB, 
VAV1); and transporters (ATP2A3, FAM117A, SIDT2, 
SLC27A2, SLC46A3, STAR, STX11, TAP2) (Figure 4A 
and Table S1). Several stimulatory immune checkpoint 
genes were associated with FO, either by their presence in 
FOS (CD27, CD40, IL2RB, TNFRSF9) or by enrichment 
of their signaling activity pathways (CD28, OX40, ICOS, 
see Figure 2B). The presence of the activation marker 
CD38 in FOS would also provide evidence for immune 
response promotion [40]. With regard to inhibitory 
immune checkpoint genes, LAG3 was the only inhibitory 
immune checkpoint molecule associated with the FOS 
gene signature (Figure 4A and Table S1). Notably, we 
found no significant difference for the Programmed 
Death 1 (PD-1) receptor in any of the sets (not shown), 
and no probe for ligand PD-L1 is present on any of 
the microarray platforms we studied here. The lack of 
association of PD-1 with either FO or PO in these datasets 
suggests the mere expression of this gene at the site of 
disease does not impact outcome. However, given all the 
new therapies now available, the expression of various 
immune checkpoint genes on the tumor or in the tumor 
microenvironment will likely be much more relevant since 
they may provide additional targets for therapy.

Human solid tumors often present a complex 
architecture of immune cells known as tertiary lymphoid 
structures (TLS) , that contribute to antitumor immunity 
through generation of tumor-controlling primary and /or 
secondary immune responses [41]. Our data indicated an 
increased proportion of B cells near T cells in FO MM 
tumors. In addition, FOS contained genes related to TLS. 
CXCL13, for example, is among the most potent B cell 
chemoattractants [42], and its administration can induce 
and maintain TLS in mouse models [43]. Moreover, the 
most enriched canonical pathway in FOS was “iCOS-
iCOSL signaling in T helper cells” (Figure 2B), which 
together with expression of CXCR4 and IL7 suggests the 
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presence of T follicular helper (TFH) cells [44, 45]. TFH 
and B cells within TLS correlate with survival in breast, 
colorectal, and lung cancers [42, 46, 47]. Although other 
TFH cells markers like BCL6 or CXCR5 did not appear 
enriched in FOS, this is reconciled by studies of T cell 
plasticity suggesting that TH1, TH2 and TH17 cells can 
substitute for TFH effector functions [48]. All these features 
can account for the increased presence of B cells in close 
proximity to T cells in FO MM, supporting their role in 
antitumor immunity and suggesting the presence of TLS 
in FO MM tumors.

The present cross-analysis of gene expression 
microarray sets is applicable to transcriptional studies 
on other cancers besides melanoma, thereby serving as a 
discovery engine. The RRHO approach is a powerful tool 
that unveiled a common signature of genes associated with 
prolonged MM survival. The FOS successfully predicted 
patient outcomes, providing a potential decision making 
tool for treatment of metastatic melanoma. Moreover, 
this FOS was strongly characterized by immune genes, 
in particular T and B cells. These findings could have 
numerous applications for melanoma and other tumors. 
For example, strategies utilizing gene-modified T 
cells [49] could include engineering them to express 
CXCL13, designed to induce B cell recruitment and 
TLS formation. In addition, targeting vaccine antigen 
to B cells might enhance current approaches for tumor 
vaccination therapies. Finally, autologous B cells could 
facilitate adoptive cell therapy indirectly, by substituting 
for heterologous APC during T cell expansion, or directly 
administering them in vivo with antitumor T cells.

MATERIALS AND METHODS

Gene expression microarray datasets and 
melanoma specimens

To identify common gene expression profiles, we 
searched for publicly available gene expression datasets 
from MM studies annotated with adequate clinical 
information for survival/outcome, and generated on 
well-characterized gene expression platforms. Thus, 
we selected three datasets: “Set A” (GSE22153), “Set 
B” (GSE46517) and “Set C” (GSE19234). To create 
uniformity within each dataset, we removed all samples 
with incomplete clinical information and chose to study 
samples within one stage per dataset. Thus, for Set A 
and Set B we kept all Stage IV samples only, whereas 
for Set C we kept all Stage III samples only. Survival 
information was used to distribute samples accordingly 
into favorable outcome (FO) and poor outcome (PO) 
groups. MM samples from Set A were divided into two 
groups: <1 year survival and >2 years survival. From 
published information on metastasis samples in the Set B 
and Set C studies, we devised analogous sample groups 
of patients that died from tumor burden and patients that 

lived at the study endpoint. We also limited our study to 
those samples that met our predefined FO and PO criteria 
(Supplementary Figure S1).

Only a minority of the patients from both outcome 
groups (0% to 30%, depending on the dataset) had 
received any non-surgical therapy prior to tumor biopsies. 
Original reports on these datasets (with samples from 
multiple institutions) described macro-dissection of 
specimens to ensure a majority of tumor cellularity in all 
cases. Considering that several samples originated from 
lymph node metastases, we decided to apply an additional 
“molecular filter” to avoid bias on gene expression caused 
by lymphoid tissue. Thus, for each dataset we determined 
the range of expression levels in the PO groups for each 
of the six genes/probes most enriched in normal lymph 
node tissue (as reported by “Gene enrichment profiler 
database”, see below). We then evaluated these “lymph 
node classifiers” in the FO samples. Those samples 
showing expression levels above the established range 
for three or more classifiers were excluded from analysis. 
Once sample groups were devised, we created a ranked 
gene expression profile using log-transformed Student’s 
t-test p-values that were signed either positive for higher 
average expression in FO sample group, or negative for 
higher average expression in PO sample group. This 
placed genes most significantly overexpressed in FO 
MM patients at the top of the gene list, and genes most 
significantly overexpressed in the PO MM patients at the 
bottom of the gene list. The ranked datasets were then 
subjected to RRHO analysis (see below).

For further validation of the FOS obtained from 
RRHO, we used gene expression profile and outcome 
information from two additional MM datasets: “Set D” 
(GSE46517, only Stage III) and “Set E” (GSE53118). 
For immunohistochemistry (see below), formalin-
fixed, paraffin-embedded (FFPE) tissues of MM lesions 
surgically resected from short-term and long-term survival 
MM patients were obtained from Providence-Saint John’s 
Health Center (Santa Monica, CA) under IRB exemption 
(Study ID LEEDJ-EXPR-08/12, Supplementary Table S4).

Rank-rank hypergeometric overlap (RRHO)

We compared outcome/survival of MM gene 
expression profiles using rank-rank hypergeometric 
overlap (RRHO) analysis [14]. In this algorithm, genes 
were ranked according to their differential expression 
between two samples groups, and then these ranked gene 
expression profiles were iteratively assessed for overlap. 
The final results were expressed as a heatmap colored by 
the log-transformed hypergeometric p-value assessing the 
significance of overlapping genes at each rank threshold 
pair, such that the highest point on the map identifies the 
most statistically significant set of overlapping genes. 
Genes overlapping at this optimal rank threshold pair in 
all of the three possible pairing combinations were listed 
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(“favorable outcome signature” or FOS) and analyzed 
further for involvement in specific biological properties 
and signaling pathways.

Gene ontology enrichment analysis

Enrichment analysis was performed for the FOS 
genes using the “Gene Ontology Consortium” enrichment 
analysis tool [50]. Output list was summarized and 
visualized using the semantic similarity-based treemap 
tool of REVIGO (“REduce and VIsualize Gene Ontology” 
web server) [51]. A p-value accounted for the probability 
that the linking of the FOS list to each GO term was 
explained by chance alone. GO terms within the same 
process were grouped and equally colored, and the 
area values were set proportionally to -log10 (multiple 
hypothesis corrected) p-value for each term.

Ingenuity pathway analysis

The FOS list of genes (with no observation values 
associated) was uploaded to Ingenuity Pathway Analysis 
(http://ingenuity.com). The canonical pathways most 
significantly represented in the FOS set were found using 
the “Core Analysis” function (pathways were ranked by 
multiple hypothesis corrected p-values).

Gene enrichment profiler database

To identify the cell subsets and tissues more likely to 
be represented in the FOS we used the “Gene Enrichment 
Profiler” database [16]. This tool surveys curated, publicly 
available gene expression data to retrieve the enrichment 
scores for each given gene in different cell types and 
tissues, and has been successfully applied in diverse 
experimental settings [16, 52, 53]. Probes with enrichment 
score values >700 were considered to be representative of 
a cell/tissue type, and a greater number of these probes for 
the same cell/tissue type, an indication for the presence of 
that cell type infiltrating the tumor.

Immunohistochemistry (IHC) of MM tissue

Formalin-fixed, paraffin-embedded (FFPE) tissues 
of MM lesions surgically resected from short- and long-
survival MM patients were obtained under IRB exemption 
(Study ID LEEDJ-EXPR-08/12). These samples were 
sectioned at 4 μm intervals, air-dried and deparaffinized by 
sequentially using xylene and ethanol. Following hydration 
and high-pH antigen retrieval, sections were blocked with 
either horse (for IgG2a mouse monoclonal anti-human 
CD20, clone L26, Dako, Carpinteria, CA) or goat (for 
polyclonal rabbit anti-human CD3, Dako, Carpinteria, 
CA) serum. After incubation with primary abs for 1h, the 
ABC Elite system (Vector Laboratories, Burlingame, CA) 
for anti-CD20, or HRP-conjugated anti-rabbit IgG (Dako, 
Carpinteria, CA) for anti-CD3 were used. Detection was 

achieved by addition of substrate (DAB peroxidase (HRP) 
substrate kit, Vector Laboratories, Burlingame, CA) 
for 5 minutes. Slides were counterstained with Mayer’s 
Hematoxylin (Lillie’s modification; Dako, Carpinteria, 
CA) and mounted in Cure Mount II (Electron Microscopy 
Sciences, Hatfield, PA).

Image scope

All IHC-stained slides were scanned at an apparent 
magnification of 20X [resolution of 0.494 μm/pixel 
(7,970,000 pix/in.)] using the Aperio ScanScope CS 
and XT systems (Aperio Technologies). The acquired 
digital images representing whole-tissue sections were 
viewed and analyzed using “ImageScope analysis 
software” (version 12; Aperio Technologies, Inc.). 
Tumor areas were blindly annotated with the assistance 
of a pathologist (JRJ), and staining was quantitated 
by applying the “Positive Pixel” algorithm package to 
IHC and histochemical staining. To allow comparisons 
between tumor samples of different size, the number of 
pixels with positive staining for DAB (CD20 or CD3) was 
expressed as relative to 100 pixels with positive staining 
for Hematoxylin (nuclei).

Fiji ImageJ

Whole-tissue sections with positive pixels 
annotated in ImageScope were exported as TIFF images, 
and matching sections were carefully aligned and 
assembled in Adobe Photoshop CS6 to generate pseudo-
colored, fluorescent-like composites. Resulting images 
presented different areas of red (CD20), green (CD3) and 
yellow (additive red and green mixing). Pixels displaying 
each color were sequentially selected and counted by 
changing the “Color Threshold” adjustment in “Fiji 
ImageJ”, an image-processing package distribution of 
ImageJ, ImageJ2, Java, Java3D and many plugins [54]. 
Ratios of measured yellow and red areas were calculated 
as an indication for the proximity of CD20-labeled cells 
to CD3-labeled cells.

STRING 9.1 interaction analyses

The list of FOS genes was uploaded into STRING 
9.1 (“Search Tool for the Retrieval of Interacting Genes/
Proteins”) database (http:string-db.org) [13] using the 
“multiple proteins” input form and selecting “Homo 
sapiens” as the organism. The output network was filtered 
to show only interactions with experimental evidence and 
databases scores higher than 0.7.

Weighted gene voting

We used weighted gene voting [55] to classify tumors 
from independent datasets as validation for our RRHO 
derived survival/outcome gene set. Each sample was 
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classified as follows: for each gene in our gene set, we used 
the signal-to-noise ratio between the two classes as a weight: 
(meanalive − meandead) / (stdevalive + stdevdead). This weight 
(W) was multiplied to the difference between the expression 
value in sample being classified (S) and the average of the 
mean expression values in the two classes: Vote = W (S − 
(meanalive − meandead) / 2). The votes for all 228 genes (FOS) 
in our survival/outcome gene set were summed to make a 
prediction: positive sums indicated prediction of “favorable 
outcome”, while negative sums indicated prediction of 
“poor outcome”. Furthermore, the sample being predicted 
was omitted when calculating the mean of the “alive” and 
“dead” groups for calculating the votes.

Statistical analyses

All statistical analyses were done using GraphPad 
Prism software version 6 (GraphPad Software, La Jolla, 
CA). When appropriate, data were analyzed using the 
Student’s t test (unless otherwise stated). P-values lower 
than 0.05 were considered statistically significant.
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