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ABSTRACT
Resistance to human epidermal growth factor receptor 2 (HER2)-targeted 

therapies in the treatment of HER2-positive breast cancer is a major clinical problem. 
To identify pathways linked to resistance, we generated HER2-positive breast 
cancer cell lines which are resistant to either lapatinib or AZD8931, two pan-HER 
family kinase inhibitors. Resistance was HER2 independent and was associated with 
epithelial-to-mesenchymal transition (EMT), resulting in increased proliferation and 
migration of the resistant cells. Using a global proteomics approach, we identified 
a novel set of EMT-associated proteins linked to HER2-independent resistance. We 
demonstrate that a subset of these EMT-associated genes is predictive of prognosis 
within the ERBB2 subtype of human breast cancers. Furthermore, targeting the EMT-
associated kinases Src and Axl potently inhibited proliferation of the resistant cells, 
and inhibitors to these kinases may provide additional options for the treatment of 
HER2-independent resistance in tumors.

INTRODUCTION

The outlook for HER2-positive breast cancer 
patients has been revolutionized by the introduction of 
HER2-targeted agents, such as trastuzumab, pertuzumab 
and lapatinib [1]. However, both inherent and acquired 
resistance to these agents is a major clinical problem [2, 3]. 
Evidence from the Neo-ALTTO trial suggests that combined 
trastuzumab and lapatinib treatment is superior to use of 
either drug alone [4], and this, coupled with the almost 
universal development of acquired resistance, has driven 
efforts to develop novel therapies targeting this pathway. 
One approach has been the development of tyrosine kinase 
inhibitors that provide more effective inhibition of HER 
family signaling. One such drug is AZD8931, which is 
an equipotent, reversible inhibitor of signaling by EGFR, 

HER2 and HER3, having a unique and more potent profile 
of activity than lapatinib [5].

Numerous different mechanisms of acquired 
resistance to HER2-directed therapy have been identified. 
They frequently involve changes in HER2 expression or 
structure, but the development of HER2-independent 
strategies for activating survival pathways have also been 
widely reported [2, 3]. These pathways likely represent 
clinically relevant resistance mechanisms and suggest that 
novel methods of targeting the HER receptor family alone 
may not be sufficient to overcome resistance. 

Using AZD8931- and lapatinib-resistant HER2-
over-expressing breast cancer cell lines, we have identified 
that an epithelial-to-mesenchymal transition (EMT) 
is commonly associated with resistance. EMT is the 
name given to an evolutionarily conserved process in 
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which epithelial cells lose cell-cell contacts and acquire 
a migratory mesenchymal phenotype accompanied by 
distinct changes in gene expression [6]. EMT has been 
linked to both chemo- and radio-resistance and resistance 
to targeted agents [7, 8]. In this study, we identified a 
common set of EMT-associated proteins that were linked 
to HER2-independent mechanisms of resistance to the 
HER2-directed drugs, and we provide evidence that 
targeting EMT-associated kinases Src and Axl may provide 
additional options for the treatment of resistant tumors.

RESULTS

Generation of AZD8931- and lapatinib-resistant 
breast cancer cell lines

We generated SKBR3 and BT474 cell lines that 
were resistant to AZD8931 or lapatinib by maintenance in 
increasing concentrations of either drug. Three AZD8931-
resistant SKBR3 clones (SKBR3-AZDRa, SKBR3-
AZDRb and SKBR3-AZDRc), two lapatinib-resistant 
SKBR3 clones (SKBR3-LAPRa and SKBR3-LAPRb) 
and two lapatinib-resistant BT474 clones (BT474-LAPRa 
and BT474-LAPRb) were selected. Despite increasing 
the maximum concentration of AZD8931 or lapatinib to 
20 µM, the IC50 of the drugs in the respective resistant 
cell lines was not reached (Table 1). In addition, short-
term treatment of the lapatinib-resistant cell lines with 
AZD8931 had no effect on their proliferation, and short-
term treatment of the AZD8931-resistant cell lines with 
lapatinib had no effect on their proliferation, demonstrating 
cross-resistance between the two drugs (Table 1).

Resistance to both lapatinib and AZD8931 was 
associated with reduced expression and phosphorylation 
of HER2 and HER3 (Figure 1A). Both parental cell lines 
expressed very low levels of EGFR, and resistance to 
AZD8931 was associated with increased EGFR expression, 
which was not observed in the lapatinib-resistant cell 
lines. Furthermore, increased expression of EGFR in 
the AZD8931-resistant cell lines was not associated 
with increased phosphorylation on Tyr992, a recognized 
autophosphorylation site (Figure 1A).

Activation of the phosphatidylinositol 3-kinase 
(PI3K)/Akt and mitogen-activated protein kinase 
(MAPK) pathways are major downstream read-outs of 
HER family activity. Although HER family signaling 
was compromised in the resistant cell lines, there was a 
marked increase in Akt signaling in the AZD8931- and 
lapatinib-resistant cell lines, while more modest and varied 
effects were seen on MAPK signaling in the different cell 
lines (Figure 1B). Treatment with AZD8931 or lapatinib 
inhibited the activation of Akt in the parental cells, but 
sustained activation of the pathway was seen in the 
respective resistant cell lines, even at high concentrations 
of either AZD8931 or lapatinib (Figure 1C). Thus, the 
resistant cells have acquired the ability to activate the 
PI3K/Akt pathway in a HER family-independent manner. 

Multiple signaling pathways are altered in 
HER2-targeted drug-resistant cells

To explore further the signaling changes associated 
with the development of resistance, we carried out reverse 
phase protein array (RPPA) analysis on the parental and 
resistant cells using a panel of antibodies covering a 
number of signaling pathways linked to cancer phenotypes 
(Supplementary Table S1). This revealed several changes 
in protein expression and phosphorylation in the resistant 
cell lines (Figure 2). Most notably, there was a striking 
reduction in expression of PTEN, Stat3 and survivin in 
all the resistant cell lines, with more modest and varied 
reductions in PLC-γ1 Tyr783 phosphorylation and Cdc25c 
Ser216 phosphorylation. There were also both cell line-
specific and drug-specific changes in the resistant cells. 
For example, a reduction in phosphorylation of GSK3-β, 
p70 S6 kinase and S6 ribosomal protein was only seen in 
the lapatinib-resistant BT474 lines and not the lapatinib-
resistant SKBR3 lines. In contrast, lapatinib resistance 
was associated with decreased expression of Bim and 
Met, while moderate increases in both these proteins were 
observed in the AZD8931-resistant cells. In addition, up-
regulation of Stat5 and PKC Ser660 phosphorylation in the 
lapatinib-resistant cells was accompanied by slight down-
regulation in the AZD8931-resistant cells. Such analysis 
provides insights into the complexities of signaling pathway 
deregulation in the resistant cells but also highlights 
common changes such as loss of PTEN, indicating that, 
as previously described, the PI3K/Akt pathway may be a 
common driver in resistance to HER2-targeted therapies.

Resistance to AZD8931 and lapatinib is 
associated with an epithelial-to-mesenchymal 
transition

One striking feature of both the AZD8931- and 
lapatinib-resistant cells was their distinctive mesenchymal 
appearance. The resistant cells had lost cell-cell contacts 
and acquired a spindle-like morphology (Figure 3A). 
In support of the resistant cells having undergone an 
EMT, we saw expression of the mesenchymal markers 
N-cadherin and vimentin in the AZD8931- and lapatinib-
resistant SKBR3 cells but not the parental SKBR3 cells 
(Figure 3B). Loss of E-cadherin is also considered a 
hallmark of EMT, but SKBR3 cells contain a genetic 
deletion in CDH1, the E-cadherin-encoding gene, 
resulting in absent expression. In the BT474 cells, 
however, lapatinib resistance was associated with a 
loss of E-cadherin and concomitant expression of both 
N-cadherin and vimentin (Figure 3B). To understand 
potential drivers of the EMT phenotype, we analyzed the 
expression of key transcriptional regulators of EMT, Slug 
and Zeb1. Slug was over-expressed only in the AZD8931-
resistant SKBR3 cells, whereas Zeb1 was expressed in all 
the AZD8931- and lapatinib-resistant BT474 and SKBR3 
cells (Figure 3C). Thus, increased expression of Zeb1 
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provides a potential common mechanism whereby EMT 
is induced in the resistant cells.

The phenotypic change in the resistant cells was 
accompanied by a dramatic acceleration in the growth rate 
of the resistant cell lines compared to the parental line. The 
cell doubling time was significantly longer in the parental 
SKBR3 cell line compared to all three AZD8931-resistant 
cell lines. A similar reduction in doubling time was seen in 
the lapatinib-resistant SKBR3 and BT474 lines (Figure 3D).

Induction of EMT is associated with a more motile 
phenotype, and cell migration assays revealed that the 
distance travelled by individual cells was increased in 
all three AZD8931-resistant cell lines, with SKBR3-
AZDRa being the most motile of the resistant cell lines 
(Figure 3E, 3F). Persistence of cell migration was reduced 
in the resistant cell lines, although this only reached 
statistical significance for SKBR3-AZDRb cells, suggesting 
a less directional mode of migration than the parental cells 
(Figure 3F).

Global proteomic analysis identifies regulators of 
EMT in AZD8931-resistant cells

To identify possible regulators and markers of EMT 
that may be linked to resistance, we carried out label-
free quantitative mass spectrometry (MS) analysis of 
parental and AZD8931-resistant SKBR3 cell lysates. We 
quantified 615 proteins (with at least two peptides) that 
were significantly differentially regulated between cell 
lines (p < 0.05) (Supplementary Table S2). Comparisons 
of the measured protein abundances showed a high 
positive correlation between all three biological replicates 

(ρ ≥ 0.99), indicating reproducible protein quantification 
by MS (Supplementary Figure S1). To interrogate the 
functional landscape of protein expression in parental 
and resistant cells, we analyzed the enrichment of cellular 
functions associated with the differentially regulated 
proteins (Supplementary Table S3). Over-represented 
gene ontology (GO) terms describing biological 
processes were mapped onto a functional network that 
connected and clustered biological processes associated 
with shared proteins (Figure 4). The network revealed 
several clusters of GO terms over-represented in the set 
of proteins up-regulated in resistant cells. A proteolysis-
related cluster contained a number of resistant-enriched 
terms and included sequestersome 1 (SQSTM1) and the 
E3 ubiquitin ligase NEDD4 (Figure 4, Supplementary 
Table S3), proteins that are known to play roles in EMT 
[9, 10]. A large number of clusters contained parental-
enriched terms, such as an actin polymerization cluster, 
which included LIM domain and actin binding 1 (LIMA1; 
EPLIN), whose down-regulation leads to EMT [11] 
(Figure 4, Supplementary Table S3).

Of the identified actin polymerization-associated 
proteins, 17 (59%) have been previously implicated in 
EMT (Figure 5A). Seven out of the eight proteins reported 
to be down-regulated in EMT were enriched in parental 
cells, whereas eight out of the nine proteins reported to 
be up-regulated in EMT were enriched in resistant cells, 
suggesting a link between EMT and AZD8931 resistance. 
Further analysis of the proteins most enriched in resistant 
cells showed that many of these (56% of proteins up-
regulated by at least four-fold; p < 0.05) have previously 
been linked to EMT (Figure 5B). Interaction network 

Table 1: Generation of AZD8931- and lapatinib-resistant SKBR3 and BT474 cell lines

Cell line
IC

50
 (µM)

AZD8931 Lapatinib

SKBR3 0.46 0.07

SKBR3-AZDRa > 20 > 20

SKBR3-AZDRb > 20 > 20

SKBR3-AZDRc > 20 > 20

SKBR3-LAPRa > 20 > 20

SKBR3-LAPRb > 20 > 20

BT474 0.36 0.06

BT474-LAPRa > 20 > 20

BT474-LAPRb > 20 > 20

AlamarBlue cell viability assays were used to generate IC50 values for AZD8931 and lapatinib following treatment of cells 
with escalating drug concentrations for 72 hours.
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analysis revealed that, of these resistant-enriched proteins, 
a highly interconnected core subnetwork was composed 
predominantly of EMT-associated proteins (Figure 5C). 
Importantly, western blotting confirmed up-regulation 
of a number of these proteins in both the AZD8931- and 
lapatinib-resistant SKBR3 and BT474 cell lines, including 
vimentin (VIM; Figure 3B), BAG3, YAP1, galectin-1 
(LGALS1), fascin-1 (FSCN1), fibronectin (FN1) and 
CLIC4 (Figure 5D).

Expression of EMT markers is associated with 
poor prognosis in HER2-positive tumors

Although we were not able to assess whether the 
EMT-associated proteins over-expressed in the resistant 
cells represent markers of resistance for patients, we 
found that high gene expression of BAG3 and YAP1, but 
not LGALS1, were significantly associated with poor 
prognosis in ERBB2-subtype tumors (Figure 6A). The 

Figure 1: Loss of HER family signaling in AZD8931- and lapatinib-resistant cell lines. (A and B) Whole cell lysates 
from untreated SKBR3 and BT474 parental and resistant cells were immunoblotted as indicated. Tubulin was used as a loading control. 
(C) Parental and resistant cells were treated for 12 hours with increasing concentrations of AZD8931 or lapatinib and then whole cell lysates 
were prepared and immunoblotted for phospho-Akt and Akt.
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expression of these genes was correlated across samples, 
and we found the sum of the three genes to be a predictor 
(Figure 6B). These samples were collected at diagnosis, so 
it seems that these EMT markers may identify a subset of 
patients whose tumors have de novo resistance to HER2-
targeted therapy. Although LGALS1 gene expression 
alone was not significantly associated with prognosis, 
immunohistochemical analysis of galectin-1 expression in 
human breast cancer has shown that it is expressed in both 
tumor cells and tumor-associated fibroblasts [12]. Further 
analysis of tumor cell-associated galectin-1 expression in 
ERBB2 tumors is therefore required to determine whether 
this is associated with poor prognosis.

Targeting EMT-associated drug resistance

Although our proteomic analysis identified potential 
markers of resistance, it did not identify actionable kinases 
that could provide potential treatment options for the 
resistant cells. However, we have previously reported 
increased expression and/or activity of a number of EMT-
associated tyrosine kinases, including Src and Axl, in both 
lapatinib- and AZD8931-resistant cells [2]. As both Src 
and Axl inhibitors are under clinical development, we 
asked whether these kinases were important for the EMT-
associated drug resistance. Treatment with the Src family 
kinase inhibitor dasatinib potently inhibited the proliferation 

Figure 2: Signaling changes in AZD8931- and lapatinib-resistant cell lines. Levels of signaling proteins and phosphoproteins in 
whole cell lysates from SKBR3 and BT474 parental and resistant cells were determined by RPPA. Normalized intensity values were scaled 
to respective parental intensity values and subjected to hierarchical clustering analysis. Heat map displays the protein or phosphoprotein 
enrichment in each resistant cell line relative to the respective parental cell line (red, up-regulated in parental cells; blue, up-regulated in 
resistant cells; log2 transformed). Relevant signaling pathways are annotated with a color bar (right).
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Figure 3: Resistance to AZD8931 is associated with an epithelial-to-mesenchymal transition. (A) Phase-contrast images of 
parental and resistant SKBR3 and BT474 cell lines. Scale bar, 50 µm. (B) Whole cell lysates from parental and resistant SKBR3 and BT474 
cell lines were immunoblotted for E-cadherin, N-cadherin and vimentin. Tubulin was used as a loading control. (C) Whole cell lysates from 
parental and resistant SKBR3 and BT474 cell lines were immunoblotted for Slug and Zeb1. GAPDH was used as a loading control. (D) 
Cell doubling times for the parental and resistant SKBR3 and BT474 cell lines. Results are mean ± s.d. (n = 3). (E and F) SKBR3 cells were 
seeded into six-well plates and, 24 hours later, images were recorded every 15 minutes for 16 hours. Representative images of individual 
tracks of parental (SKBR3; left) and AZD8931-resistant (SKBR3-AZDRa; right) cells are plotted (E). Total path length (accumulated 
distance; left), net displacement (Euclidean distance; middle) and directional persistence of migration (net displacement/total path length; 
right) were determined for parental and AZD8931-resistant SKBR3 cell lines (F). Box-and-whisker plots show the median (line), 25th and 
75th percentiles (box) and 5th and 95th percentiles (whiskers) (n = 9) and are representative of three independent experiments. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001; one-way ANOVA with Tukey’s post hoc correction (D), Kruskal–Wallis test with Dunn’s post 
hoc correction versus parental cells (F).
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of the AZD8931-resistant but not the parental SKBR3 
cells (Table 2). We also used eCF506, which is a highly 
selective Src family inhibitor with selectivity over other 
kinases such as c-Abl, PDGFRα and c-Kit (Footnote 1). 
eCF506 inhibited the growth of the resistant but not the 
parental SKBR3 cells (Table 2). Treatment with the Axl 
inhibitor foretinib also potently inhibited the proliferation 
of the resistant but not the parental SKBR3 cells (Table 3). 
Thus, both Src and Axl kinase activities are important for 
the EMT-associated drug resistance, and inhibitors to these 
kinases may provide alternative treatment options in tumors 
that are resistant to HER2-targeted therapies that have 
undergone EMT. 

DISCUSSION

Resistance to HER2-targeted therapies is a major 
clinical problem, and understanding the mechanism 
driving resistance is required to provide new treatment 
options. In our models of acquired resistance to both 
lapatinib and AZD8931, we found reduced HER2 
signaling accompanied by activation of Akt. However, 
other studies have shown persistent HER2 signaling 
following the development of HER2-targeted therapy 
resistance, with activation of PI3K signaling, loss of 
PTEN, increased IGF1R expression and enhanced Src 
activity all having been linked to resistance. These 

Figure 4: Proteomic analysis of parental and AZD8931-resistant SKBR3 cells. Functional enrichment network analysis of 
proteins significantly differentially expressed between parental SKBR3 and AZD8931-resistant SKBR3-AZDRc cells (p < 0.05, one-way 
ANOVA), as determined by label-free quantitative MS. Nodes (circles) represent over-represented functional categories (GO biological 
processes; p < 0.05, hypergeometric test with Benjamini–Hochberg post hoc correction). Node border color intensity (blue) indicates 
significance of over-representation in resistant cells; node center color intensity (red) indicates significance of over-representation in 
parental cells. Nodes with blue borders and red centers represent functional categories over-represented in both parental and resistant cells. 
Node size indicates the number of differentially expressed proteins assigned to a given functional category. Edges (gray lines) connect GO 
biological processes with proteins in common; edge weight indicates degree of overlap between functional categories.
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Figure 5: Changes in expression of EMT-associated proteins in AZD8931- and lapatinib-resistant cells. (A) Interaction 
network analysis of proteins associated with over-represented actin polymerization-related functional categories (actin polymerization 
cluster, Figure 4). Nodes (circles) represent proteins; thick black node border indicates proteins reported to be up-regulated in EMT; thick 
gray node border indicates proteins reported to be down-regulated in EMT. Node color indicates log2-transformed protein fold enrichment 
(parental/resistant). Edges (lines) indicate various types of reported interactions. The network was clustered on the basis of the connectivity 
of the nodes. (B) Heat map generated from proteomic data from parental SKBR3 and AZD8931-resistant SKBR3-AZDRc cell lines, 
displaying proteins most up-regulated in resistant cells (by at least four fold; blue) alongside the significance of their enrichment (all 
p < 0.05, one-way ANOVA; rainbow). Gray boxes indicate proteins reported to be up-regulated during EMT; light gray box indicates a 
paralog associated with EMT. (C) Interaction network analysis of proteins enriched in AZD8931-resistant cells by at least four fold. Nodes 
represent proteins; thick black node borders indicate proteins associated with EMT; thick gray node border indicates a paralog associated 
with EMT. Edges indicate various types of reported interactions. Node color indicates number of interactions (degree) within the network; 
the network was clustered on the basis of the connectivity of the nodes. (D) Whole cell lysates from parental and resistant SKBR3 and 
BT474 cells were immunoblotted as indicated. GAPDH was used as a loading control.
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same pathways are active in our resistant cell lines [2], 
suggesting that certain signaling pathways are activated 
following the development of resistance, irrespective of 
the primary effects on HER2 signaling. To date, clinical 
approaches to overcome resistance have predominantly 
focused on utilizing different strategies to target HER2 
signaling, yet this overlap of HER2-dependent and HER2-
independent resistance mechanisms may explain why, 
although frequently initially effective, novel methods of 
targeting HER2 have had limited longer-term efficacy, 
with the development of resistance still remaining 
inevitable. 

We also identified several potential novel markers 
of AZD8931 and lapatinib resistance, including reduced 
phosphorylation of PLCɣ. The SH2 domain of PLCɣ is 
phosphorylated on Tyr783 by EGFR [13], and therefore 
phosphorylation of PLCɣ at this site can be used as a 
biological readout of EGFR activity. This is consistent 
with the reduction in EGFR autophosphorylation in the 
resistant cells identified by western blotting. We also 
observed a significant reduction in STAT3 expression in 
our AZD8931- and lapatinib-resistant cell lines, although 
previous reports have suggested that an active STAT3 
feedback loop is important for driving drug resistance 

[14]. The activation status of STAT3 was not determined 
in our analysis. 

Cells which have undergone EMT are widely 
reported to be resistant to conventional anti-cancer 
therapies, including chemotherapy, radiotherapy and 
targeted therapies including HER2-targeted therapies 
[15]. In preclinical in vitro models, genetic modulation 
of transcriptional EMT drivers and the reversion to an 
epithelial phenotype can restore sensitivity to HER2-
targeted agents [16–18]. Here, we show that expression of 
a transcriptional regulator of EMT, Zeb1, is substantially 
increased in all the resistant cell lines, consistent with a 
Zeb1-mediated induction of EMT in the resistant cells. 
Induction of EMT is also linked to the acquisition of stem 
cell properties [19], and resistance to trastuzumab has been 
associated with expansion of a cancer stem cell population 
with EMT properties [18, 20]. Moreover, induction of EMT 
in HER2-driven tumors via expression of an activating 
PI3K mutation has been associated with increased 
expression of cancer stem cell markers and resistance to 
trastuzumab and lapatinib [21].

We have identified that over-expression of BAG3, 
YAP1 and LGALS1 was associated with poor prognosis in 
HER2-positive breast cancers. However, further work is 

Figure 6: Expression of BAG3, YAP1 and galectin-1 is associated with poor prognosis. (A and B) Kaplan–Meier analyses of 
289 human breast cancers of the ERBB2 subtype. Time to recurrence is plotted in tertiles for high (purple, n = 96), intermediate (intermed.; 
black, n = 97) and low (gold, n = 96) expressors of BAG3 (left), YAP1 (middle) and LGALS1 (right) (A). Patients with the highest (purple) 
and lowest (gold) sum of mean-centered gene expression of BAG3, YAP1 and LGALS1 have the worst and best prognosis, respectively (B). 
Significance was determined by log-rank test.
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required to identify whether such EMT gene signatures in 
clinical samples associate with resistance to HER2-targeted 
therapies. Induction of EMT in both in vitro and in vivo 
models is also associated with de novo resistance to HER2-
targeted therapies [18, 21], and it is possible that these 
EMT gene signatures may also provide potential prognostic 
biomarkers to aid the stratification of patient treatment.

Targeting EMT-associated resistance may also be a 
useful therapeutic approach. For example, small molecule 
inhibitors of Axl have activity in lapatinib-resistant breast 
cancer models [22], and our data show that both AZD8931- 
and lapatinib-resistant cells are more sensitive than the 
parental cells to foretinib, which inhibits Axl tyrosine 
kinase activity. We also show that the resistant cells are 
more sensitive to Src kinase inhibitors, which suggests 
that Axl and Src inhibitors, both of which are in clinical 
development, may have utility in the treatment of resistant 
tumors in which the Axl and Src signaling pathways are 
up-regulated. Importantly, this provides further treatment 
options for tumors that have developed HER2-independent 
mechanisms of resistance that would not benefit from further 
HER2-directed therapies, as is current clinical practice. 
As it is rarely mandatory to re-biopsy tumors at the time 
of entry into clinical trials, patients who have developed 

resistance and whose tumors no longer express HER2 risk 
being exposed to the toxicity of treatments that might not 
be anticipated to be effective. Moving forward, it will be 
important to identify the most clinically relevant markers 
linked with EMT-associated resistance and determine their 
expression upon relapse to HER2-targeted therapies to guide 
future treatment.

MATERIALS AND METHODS

Cell culture

Human breast cancer cell lines SKBR3 and 
BT474 were purchased from the American Type Culture 
Collection. SKBR3 cells were grown in Dulbecco’s 
modified Eagle’s medium (DMEM) supplemented with 
2 mM L-glutamine, 1% penicillin-streptomycin and 
10% FCS (all Thermo Fisher Scientific). BT474 cells 
were grown in RPMI-1640 supplemented with 2 mM 
L-glutamine, 1% penicillin-streptomycin and 10% FCS. 
Cells were maintained at 37°C in a humidified atmosphere 
containing 5% CO2. A Leica DM IL LED microscope 
in conjunction with a QImaging Retiga EXi Fast 1394 
camera was used to capture phase-contrast images of cells.

Table 2: Increased sensitivity of resistant cells to Src inhibitors

Cell line
IC

50
 (µM)

Dasatinib eCF506

SKBR3 > 20 > 20

SKBR3-AZDRa 0.042 0.212

SKBR3-AZDRb 0.062 0.799

SKBR3-AZDRc 0.029 0.639

PrestoBlue cell viability assays were used to generate IC50 values for dasatinib and eCF506 following treatment of cells with 
escalating drug concentrations for 72 hours.

Table 3: Increased sensitivity of resistant cells to Axl inhibitors

Cell line
IC

50
 (µM)

Foretinib

SKBR3 > 20
SKBR3-AZDRc 2.01

BT474 > 20
BT474-LAPRb 0.43

AlamarBlue cell viability assays were used to generate IC50 values for foretinib following treatment of cells with escalating 
drug concentrations for 72 hours.
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Generation of resistant cell lines

Lapatinib-resistant cells were established by culturing 
cells in complete medium supplemented with escalating 
concentrations of lapatinib (0.04–5 µM; SelleckChem). 
Cells were then maintained in 5 µM lapatinib. AZD8931-
resistant cells were established by culturing cells 
in complete medium supplemented with escalating 
concentrations of AZD8931 (0.0067–0.67 µM; provided by 
AstraZeneca) and maintained in 0.67 µM AZD8931. Prior 
to drug treatment studies, the cells were grown for one week 
in the absence of drug.

Cell viability assays

Cells were seeded in 96-well plates and allowed to 
attach for 24 hours. Escalating doses of lapatinib, AZD8931, 
dasatinib (Synkinase), foretinib (SelleckChem) or eCF506 
(Footnote 1) prepared in DMSO were then added. After 72 
hours, alamarBlue or PrestoBlue (Thermo Fisher Scientific) 
cell viability reagent was added and fluorescence measured 
after a further 60 minutes. Mean values were calculated 
from six replicate wells and normalized against the mean 
value of the vehicle (DMSO)-treated wells, and IC50 values 
were generated using Prism (GraphPad).

Western blotting

Cells were washed with PBS and then lysed in RIPA 
buffer supplemented with cOmplete ULTRA protease 
inhibitor and PhosSTOP phosphatase inhibitor cocktails 
(Roche). Cleared lysates were resolved by SDS-PAGE. 
Primary antibodies used for western blotting were as 
follows: phospho-HER2/EGFR (phospho-tyrosine (pTyr)-
1248/1273), phospho-HER2 (pTyr1221/1222), HER2, 
phospho-HER3 (pTyr1289), HER3, phospho-EGFR 
(pTyr992), EGFR, phospho-Akt (phospho-serine (pSer)-
473), Akt, phospho-p44/42 MAPK (phospho-threonine 
(pThr)-202, pTyr204), p44/42 MAPK, E-cadherin, Slug, 
vimentin, YAP1 (all 1:1000; Cell Signaling Technologies), 
BAG3, CLIC4, fibronectin (all 1:1000; Abcam), Zeb1 
(1:2000; Abcam), galectin-1, N-cadherin (all 1:1000; BD 
Biosciences), fascin-1 (1:1000; Santa Cruz Biotechnology), 
α-tubulin (1:3000; Sigma-Aldrich), GAPDH (1:2500; 
Thermo Fisher Scientific).

RPPA analysis

Cells, in biological triplicate, were washed with PBS 
and lysed in 1% Triton X-100, 50 mM HEPES (pH 7.4), 
150 mM sodium chloride, 1.5 mM magnesium chloride, 
1 mM EGTA, 100 mM sodium fluoride, 10 mM sodium 
pyrophosphate, 1 mM sodium vanadate, 10% glycerol, 
supplemented with cOmplete ULTRA protease inhibitor and 
PhosSTOP phosphatase inhibitor cocktails. Cleared lysates 
were serially diluted to produce a dilution series comprising 

four serial two-fold dilutions of each sample, which were 
spotted onto nitrocellulose-coated slides (Grace Bio-Labs) 
in technical triplicate under conditions of constant 70% 
humidity using the Aushon 2470 array platform (Aushon 
Biosystems). Slides were hydrated in blocking buffer 
(Thermo Fisher Scientific) and then incubated with validated 
primary antibodies (all 1:250; Supplementary Table S1). 
Bound antibodies were detected by incubation with anti-
rabbit DyLight 800-conjugated secondary antibody (New 
England BioLabs). An InnoScan 710-IR scanner (Innopsys) 
was used to read the slides, and images were acquired at the 
highest gain without saturation of the fluorescence signal. 
The relative fluorescence intensity of each sample spot was 
quantified using Mapix software (Innopsys).

The linear fit of the dilution series of each sample 
was determined for each primary antibody, from which 
median relative fluorescence intensities were calculated. 
Signal intensities were normalized by global sample 
median normalization [23]. Only primary antibodies with 
normalized signal intensities at least 1.5 times the value of 
the secondary antibody alone in at least one sample were 
included in the analysis to exclude data derived from weak 
or non-specific signals.

MS analysis

Parental SKBR3 and AZD8931-resistant SKBR3-
AZDRc cell pellets (1 mg protein equivalent), in biological 
triplicate, were reconstituted in 8 M urea, 25 mM 
ammonium bicarbonate, 20 mM dithiothreitol to denature 
and reduce the samples (30 minutes), followed by alkylation 
with 50 mM iodoacetamide (1 hour). Samples were digested 
with 10 µg trypsin overnight at room temperature. Peptide 
extracts were then cleaned on an SPE reverse-phase Bond 
Elut LMS cartridge (Agilent) and evaporated to dryness. 
Peptides were re-suspended in 2.5% acetonitrile, 0.1% 
formic acid in water to give a final concentration of 1 µg/µL.

Peptides (4 µg) were subjected to nano-scale high-
performance liquid chromatography (HPLC)-MS using 
a nano-pump (Dionex Ultimate 3000; Thermo Fisher 
Scientific) with a 300 µm × 5 mm pre-column (5 µm particle 
size, Acclaim PepMap; Thermo Fisher Scientific) connected 
to a 75 µm × 50 cm column (3 µm particle size, Acclaim 
PepMap; Thermo Fisher Scientific). HPLC was coupled on-
line to a Q Exactive instrument (Thermo Fisher Scientific) 
controlled by Xcalibur (Thermo Fisher Scientific; version 
3.0.63) using Tune (version 2.3, build 1765). Samples were 
analyzed on a two-hour gradient using data-dependent 
analysis with one 70 k-resolution survey scan followed by 
the top five MS/MS scans at 17.5 k resolution.

Peak lists were generated using MSConvert 
(ProteoWizard; version 3.0.4462). MS data were 
searched against the National Center for Biotechnology 
Information (NCBI) protein database (Homo sapiens; 
34,284 sequences; downloaded 12 January 2011) using 
Mascot software (version 2.4; Matrix Science). Up to two 
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missed tryptic cleavage sites per peptide were permitted. 
Variable methionine oxidation and fixed cysteine 
carbamidomethylation modifications were allowed. 
Precursor and product ion mass tolerances were set to 10 
ppm and 0.05 amu, respectively. A final peptide score of 
at least 20 and p < 0.05 (MudPIT scoring) were required, 
which resulted in a global false discovery rate of less 
than 1%.

Label-free quantification was performed using 
Progenesis LC-MS (version 4.1; Nonlinear Dynamics). 
Only MS peaks with a charge of 2+, 3+ or 4+ and the five 
most intense spectra within each feature were extracted 
from each LC-MS run for analysis. Normalization was 
first performed based on the sum of the ion intensities of 
these sets of multi-charged ions (2+, 3+, 4+). The associated 
unique peptide ion intensities for a specific protein were 
then summed to generate an abundance value, which was 
transformed using an ArcSinH function. The within-group 
means were calculated to determine the fold change between 
conditions, and the transformed data were used to calculate 
the p-values using one-way analysis of variance (ANOVA).

MS data were deposited in ProteomeXchange 
(http://www.proteomexchange.org) via the PRIDE partner 
repository (http://www.ebi.ac.uk/pride) with the dataset 
identifier PXD002057 (DOI: 10.6019/PXD002057).

Hierarchical clustering analysis

Unsupervised hierarchical clustering analysis of 
normalized protein expression was performed on the basis of 
Pearson correlation using Cluster 3.0 (C Clustering Library, 
version 1.37) [24], computing distances using a complete-
linkage matrix. Clustering results were visualized using Java 
TreeView (version 1.1.1) [25] and MultiExperiment Viewer 
(version 4.1.01) [26].

Network analyses

Functional enrichment analysis was performed 
using BiNGO, assessing over-representation of GO terms 
describing biological processes using a hypergeometric test 
with Benjamini–Hochberg post hoc correction. Network 
clusters were generated from over-represented GO terms 
using Enrichment Map in Cytoscape (version 3.0.2) [27], 
with a Jaccard coefficient cutoff of 0.25, and manually 
annotated. Interaction networks were constructed using 
GeneMania, clustered using the yFiles Organic algorithm 
in Cytoscape, and network topology was analyzed from 
undirected graphs using NetworkAnalyzer [28].

Cell migration assay

Cells were plated in duplicate at 3 × 103 cells per 
well in a 12-well plate in DMEM containing 10% FCS 
and 10 mM HEPES. Random migration was monitored by 
time-lapse video microscopy over 16 hours on an Olympus 

scan^R screening station. Total path length (accumulated 
distance) and net displacement (Euclidean distance) of 
individual cells were calculated using ImageJ software 
(National Institutes of Health). Directional persistence of 
cell migration was calculated by dividing net displacement 
by total path length.

Survival analysis of gene expression data 

Gene expression levels of the EMT-associated 
proteins that were over-expressed in the resistant cells 
were assessed in 289 ERBB2-subtype primary breast 
tumors from a compendium of 2999 tumors integrated 
from 17 studies, as previously described [29]. Briefly, 
raw Affymetrix U133A/plus 2 .cel files were downloaded 
from the NCBI Gene Expression Omnibus (GSE12276, 
GSE21653, GSE3744, GSE5460, GSE2109, GSE1561, 
GSE17907, GSE2990, GSE7390, GSE11121, GSE16716, 
GSE2034, GSE1456, GSE6532, GSE3494, GSE19615) 
and cancer Biomedical Informatics Grid (geral-00143) 
repositories, summarized with Ensembl alternative CDF 
[30], normalized with RMA [31] and integrated using 
ComBat [32] to remove dataset-specific bias, as previously 
described [33]. The intrinsic molecular subtypes were 
assigned based upon the highest correlation to the intrinsic 
subtype centroids [34]. Survival analysis was performed 
using the survival R package [35].
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