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ABSTRACT
Accumulating evidence has underscored the important roles of long non-

coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in cancer 
initiation and progression. In this study, we used an integrative computational 
method to identify miRNA-mediated ceRNA crosstalk between lncRNAs and mRNAs, 
and constructed global and progression-related lncRNA-associated ceRNA networks 
(LCeNETs) in ovarian cancer (OvCa) based on “ceRNA hypothesis”. The constructed 
LCeNETs exhibited small world, modular architecture and high functional specificity 
for OvCa. Known OvCa-related genes tended to be hubs and occurred preferentially 
in the functional modules. Ten lncRNA ceRNAs were identified as potential candidates 
associated with stage progression in OvCa using ceRNA-network driven method. 
Finally, we developed a ten-lncRNA signature which classified patients into high- 
and low-risk subgroups with significantly different survival outcomes. Our study will 
provide novel insight for better understanding of ceRNA-mediated gene regulation 
in progression of OvCa and facilitate the identification of novel diagnostic and 
therapeutic lncRNA ceRNAs for OvCa.

INTRODUCTION

MicroRNAs (miRNAs) are a major class of short 
non-coding RNAs (ncRNAs) with ~20 nucleotides in 
length, and participate in a wide range of biological 
processes [1]. miRNAs can regulate gene expression at 
the post-transcriptional level through binding to miRNA 
response elements (MREs) on the 3’ untranslated region 
(3’UTR), coding sequence (CDS) and 5’UTR of target 
gene [2]. It has been shown that diverse RNA molecules 
harboring MREs can act as competing endogenous RNAs 
(ceRNAs) to communicate by competing for a common 
pool of miRNAs, leading to the ‘ceRNA hypothesis’ 
[3, 4]. CeRNA crosstalk represents an exciting novel 
layer of miRNA regulatory network and forms complex 
miRNA-mediated ceRNA networks (ceRNETs). There is 
increasing evidence shown that ceRNA crosstalk occurs 
widely in essential cellular processes and functions, and 
its perturbation will disrupt the balance of the ceRNETs 
leading to disease initiation and progression [4, 5].

Long non-coding RNAs (lncRNAs), a newly 
described subclass of ncRNAs, was arbitrarily defined 
as ncRNAs of larger than 200 nucleotides in length 
distinguished from short ncRNAs [6]. A growing body 
of evidence has shown that lncRNAs function as a 
crucial component of complex gene regulatory network 
by regulating gene expression at the transcriptional, 
post-transcriptional and epigenetic levels [7, 8]. Recent 
theoretical and experimental studies have demonstrated 
the ceRNA activity of lncRNAs as natural miRNA decoys 
in human development and pathophysiological conditions 
[9]. Systematic analysis of lncRNA-associated ceRNA 
network have been performed in breast cancer [10, 11], 
gastric cancer [12] and glioblastoma multiforme [13]. A 
more recent study reported lncRNA HOST2 as miRNA let-
7b sponge to inhibit let-7b functions, thereby contributing 
to ovarian cancer (OvCa) [14], revealing the functional 
significance of lncRNA-associated ceRNA network in 
OvCa for the first time. However, the complexity and 
behavior of lncRNA-associated ceRNA network remains 
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poorly characterized in the progression of OvCa.
Here, we used an integrative computational method 

to identify miRNA-mediated ceRNA crosstalk between 
lncRNAs and mRNAs, and reconstructed global and 
progression-related lncRNA-associated ceRNA networks 
(LCeNETs) with sample-matched miRNA, mRNA 
and lncRNA expression profiles of 401 OvCa patients 
with stage I, III and IV derived from TCGA based 
on “ceRNA hypothesis”. We identified key lncRNAs 
associated with distinct stages of OvCa progression 
using a ceRNA-network driven method, and developed a 
ten-lncRNA signature to predict the clinical outcome of 
OvCa. The methodology presented seems to be the first 
implementation of progression-related ceRNA network to 
identify candidate prognostic lncRNA biomarkers.

RESULTS

Global properties and functional characterization 
of OvCa-specific LCeNET

We integrated matched expression profiles of 
401 OvCa patients from TCGA and experimentally 
validated interaction network among miRNAs, mRNAs 
and lncRNAs to identify functional miRNA-mediated 
LMceCTs. As described in the Methods section, a total 
of 1270 miRNA-mediated ceRNA crosstalk between 
lncRNAs and mRNAs (LMceCTs) were identified 
(Supplementary File 1). Then these functional LMceCTs 
were integrated to build a global OvCa-specific LCeNET. 
The constructed LCeNET contained 1045 nodes 
(including 97 miRNAs, 150 lncRNAs and 798 mRNAs) 
and 2516 edges (Figure 1A). To explore the architecture 
and features of OvCa-specific LCeNET, network analysis 
was performed and the results were summarized in 
Table 1. As observed, the degree distribution of nodes in 
the LCeNET closely followed a power law distribution 
with R2=0.9196(Figure 1B). Most nodes had relatively 

few interactions with others and only a small portion of 
nodes had a large number of interactions. The topology 
analysis suggested that the LCeNET had a small-world 
organization with high small-world index of 7.779 and 
high clustering coefficient of 0.745 (empirical p < 0.001) 
(Figure 1C) compared with random networks. However, it 
is interesting to observe that the characteristic path length 
is slightly larger than random networks which may be due 
to the lack of extremely long-range connections (Figure 
1D).

To further validate potential functional implication 
of LCeNET in OvCa, we performed functional enrichment 
analysis of mRNAs in the LCeNET based on Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways, and found that these mRNAs 
were significantly enriched in 211 GO terms (p < 0.05 and 
Fold Enrichment > 1.5) mainly involved in six functional 
clusters including RNA splicing, biosynthetic process, 
cell death and apoptosis, cell cycle, morphogenesis and 
development and mRNA catabolic process (Figure 1E), 
and 20 KEGG pathways including pathways in cancer, 
ribosome pathway and several signaling pathways (Figure 
1F) (Supplementary File 2). All the enriched signaling 
pathways, including mTOR signaling pathway, TGF-
beta signaling pathway, Insulin signaling pathway, VEGF 
signaling pathway and p53 signaling pathway, are well 
known to contribute to the pathogenesis of OvCa [15-18]. 
These results suggested that lncRNA-associated ceRNA 
regulation in the LCeNET participated in broad biological 
functions associated with OvCa.

Hub nodes in the LCeNET play critical roles in 
OvCa

We mapped known OvCa-related genes to the 
LCeNET, and found that known OvCa-related genes 
were significantly enriched in the LCeNET (p < 0.001, 
Hypergeometric test). Further network analysis revealed 
significantly different topological characteristics between 

Table 1: Network characteristics of OvCa-specific and progression-related LCeNETs
OvCa-specific 
LCeNET

Stage II-related 
LCeNET

Stage III-related 
LCeNET

Stage IV-related 
LCeNET

Number of nodes 1045 1114 1180 839
Number of edges 2516 2391 2837 2046
Clustering coefficient 0.745 0.768 0.748 0.735
Characteristic path length 4.144 4.418 4.038 4.074
Small world property 7.779 11.829 7.332 8.076
Average number of neighbors 4.815 4.293 4.842 4.877
Connected components 7 7 3 6
Network diameter 10 10 8 9
Network radius 1 1 1 1
Network density 0.005 0.004 0.004 0.006
Network Heterogeneity 1.877 1.853 2.018 1.730
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known OvCa-related nodes and other nodes in the 
LCeNET. The OvCa-related nodes have significantly 
higher degrees, betweenness centrality and closeness 
centrality than other nodes in the LCeNET (avg. 13.831 
vs. 4.158 for degrees, p = 3.413e-11, Figure 2A; avg. 
0.018 vs. 0.003 for betweenness centrality, p = 8.176e-11, 
Figure 2B; avg. 0.296 vs. 0.256 for closeness centrality, 
p = 0.006, Figure 2C; Wilcoxon rank sum test), implying 

that hub nodes in the LCeNET were far more important 
than non-hub nodes, and were more likely associated with 
OvCa.

To determine the hub nodes in the LCeNET, all 
nodes in the LCeNET were sorted in a descending order 
according to their degree. We chose the top 5 percent of 
miRNAs, lncRNAs and mRNAs with the highest degree 
as the hub components according recent studies [19, 20]. 

Figure 1: Ovarian cancer-specific lncRNA-associated ceRNA network and their characteristics. A. Global view of the 
LCeNET in ovarian cancer. This network consists of 1045 nodes and 2516 links. B. Degree distribution of the LCeNET. C. The clustering 
coefficient of the LCeNET is higher than randomization test. The arrow represents the clustering coefficient in the real network. D. The 
characteristic path length of the LCeNET is higher than randomization test. The arrow represents the characteristic path length in the 
real network. E. The functional enrichment map of GO terms. Each node represents a GO term, which are grouped and annotated by GO 
similarity. A link represents the overlap of shared genes between connecting GO terms. Node size represents the number of gene in the 
GO terms. Color intensity is proportional to enrichment significance. F. Significantly enriched KEGG pathway of mRNAs in the LCeNET.
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We identified 5 hub miRNAs (HubmiRs), 8 hub lncRNAs 
(HublncRs) and 40 hub mRNAs (HubmRs), and found that 
known OvCa-related genes were significantly enriched in 
the hubs (p = 6.992e-04, Hypergeometric test) (Figure 
2D). 11 of 53 hub nodes were known OvCa-related genes, 
including 5 HubmiRs, 1 HublncR and 5 HubmRs. All of 
these observations demonstrated that hub nodes in the 
LCeNET were significantly more likely to be essential for 
OvCa development and progression compared with non-
hub nodes.

We further investigated the modularity feature 
of the LCeNET. Based on the OvCa-specific LCeNET, 
16 OvCa-related functional modules, comprising 129 
genes, were identified using molecular complex detection 
(MCODE) method [21]. These functional modules were 
numbered from 1 to 16 in order of decreasing module size 
(Supplementary File 3). We found that these functional 
modules varied greatly in size, ranging from 3 to 58 genes, 
with a mean size of 16 genes. Known OvCa-related genes 
in the LCeNET were observed to occur preferentially in 

these functional modules (p = 0.044, Hypergeometric 
test), suggesting that these functional modules were 
significantly associated with OvCa. We also found a hub 
miRNA miR-186-5p function as a date hub to connect 
four functional modules (module 2, 3, 4 and 5), implying 
its important roles in organizing the functional modules. 
A recent study suggested that miR-186 can act as a key 
player in overcoming chemoresistance in ovarian cancer 
therapy [22], which strongly supported our findings.

Progression-related network analysis reveals 
prognostic lncRNA biomarkers associated with 
progression of OvCa

To identify potential prognostic lncRNA biomarkers 
associated with progression of OvCa stages, we further 
constructed progression-related LCeNETs of OvCa 
patients in stage II, III and IV based on correlated 
relationships among miRNAs, lncRNAs and mRNAs 
under a specified condition. The stage II and III-related 

Figure 2: The ovarian cancer-associated nodes tend to be hubs and are enriched in modules. A. The difference of degree 
between ovarian cancer-associated nodes and other nodes. Ovarian cancer-associated nodes had a higher degree than other nodes. B. The 
difference of betweenness centrality between ovarian cancer-associated nodes and other nodes. Ovarian cancer-associated nodes had a 
higher betweenness centrality than other nodes. C. The difference of clustering coefficient between ovarian cancer-associated nodes and 
other nodes. Ovarian cancer-associated nodes had a higher clustering coefficient than other nodes. P-values were calculated based on 
Wilcoxon rank sum test. D. The proportion of ovarian cancer-associated nodes among hubs and all nodes in the LCeNET. E. The proportion 
of ovarian cancer-associated nodes among modules and LCeNET. P-values were calculated based on Hypergeometric test.



Oncotarget12602www.impactjournals.com/oncotarget

Figure 3: Prognostic value of ten-lncRNA signature for assessing clinical outcome of ovarian cancer. A. Hierarchical 
clustering heatmap and dendrogram of ovarian cancer samples based the expression patterns of ten stage-specific HublncRs. B. Kaplan-
Meier survival curves for ovarian cancer samples classified into two subgroups using the unsupervised hierarchical clustering strategy. 
P-Values were calculated using the log-rank test. C. Kaplan-Meier survival curves for ovarian cancer samples classified into high-risk and 
low-risk groups using the ten-lncRNA signature. P-values were calculated using the log-rank test. D. The ten lncRNA-based risk score 
distribution, patients’ survival status and heatmap of the ten stage-specific HublncRs expression profiles. The black dotted line represents 
the cutoff value of the risk score derived from the TCGA patients which separated patients into high- and low-risk groups. E. Receiver 
operating characteristic (ROC) analysis of the risk scores for overall survival prediction in the TCGA dataset.
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LCeNETs have significantly more nodes and edges 
than the stage IV-related LCeNET. The stage II-related 
LCeNET contains 1114 nodes (101 miRNAs, 204 
lncRNAs and 809 mRNAs) and 2391 edges, and stage 
III-related LCeNET contains 1180 nodes (99 miRNAs, 
162 lncRNAs and 919 mRNAs) and 2837 edges, whereas 
stage IV-related LCeNET contains only 839 nodes (88 
miRNAs, 139 lncRNAs and 612 mRNAs) and 2046 
edges (Supplementary File 4). Network analyses revealed 
that all three progression-related LCeNETs had similar 
topological properties, such as the clustering coefficient 
(0.768, 0.748 and 0.735, respectively), characteristic path 
length (4.418, 4.038 and 4.074, respectively) and small 
world index (11.829, 7.332 and 8.076, respectively) (Table 
1 and Supplementary File 5). In order to identify potential 
critical lncRNAs associated with OvCa progression, we 
focused our attention on hub lncRNAs (are hereafter 
referred to as HublncR) in progression-related LCeNETs.

We identified HublncR as the top 5% with the 
highest degree for lncRNAs, and 10, 8 and 7 lncRNAs 
were identified as HublncRs in three progression-related 
LCeNETs respectively (Supplementary File 6). One of 
HublncRs, NEAT1 was commonly shared among three 
progression-related LCeNETs, implying that NEAT1 was 
most likely to play an important role in OvCa. Although 
several previous studies have reported the important roles 
of NEAT1 as biomarker in acute promyelocytic leukemia 
[23] and prostate cancer [24], little is known about the role 
of lncRNA NEAT1 in OvCa. More recently, a latest study 
through cell proliferation assays and migration assays 
performed by Patel et al. found OvCa cell migration 
decreased when lncRNA NEAT1 was silenced [25], 
which provided experimental evidences for functional 
implication of NEAT1 in OvCa. Three lncRNAs (TP73-
AS1, AC000120.7 and CTB-89H12.4) were identified 
as HublncRs both in stage III and IV-related LCeNETs, 
implying their critical functional roles in the advanced 
stage of OvCa. lncRNA TP73-AS1, the antisense of 
the protein-coding gene TP73, has been reported to 
be associated with tumorigenesis and histological 
differentiation and can function as a biomarker in non-
small-cell lung carcinomas (NSCLC) [26]. lncRNA 
AC000120.7 overlaps with the sense strand of protein-
coding gene KRIT1. KRIT1 is a binding partner of the 
GTPase Rap1a and can function as a tumor suppressor 
[27]. lncRNA CTB-89H12.4 is the retained intron of 
protein-coding gene CSNK1A1. Previous study has 
suggested that the expression of CSNK1A1 is implicated 
in advanced stage (III/IV) of OvCa [28]. A recent study 
about relationships between lncRNAs and protein-
coding genes has suggested that the function of lncRNA 
overlapping with protein-coding gene tended to be similar 
to this protein-coding gene [29]. These results implied 
that AC000120.7 and CTB-89H12.4 may function by 
posttranscriptional regulation of the KRIT1 and CSNK1A1 
genes, and had significant roles in advanced stage (III/

IV) of OvCa. Ten HublncRs were found to be stage-
specific, including six HublncRs for stage II-specific, two 
HublncRs for stage III-specific and two HublncRs for 
stage IV-specific. These stage-specific HublncRs may have 
important functions in individual stages in the course of 
OvCa progression.

Based on above observations, we further explored 
whether these ten stage-specific HublncRs had prognostic 
significance for predicting clinical outcome in OvCa. We 
used an unsupervised hierarchical clustering strategy to 
group the expression patterns of ten HublncR and 401 
patients with OvCa. All patients were divided into two 
subgroups (219 patients vs. 182 patients) based on the 
first bifurcation of the clustering dendrogram (Figure 
3A). As seen in Figure 3B, survival analysis revealed 
obvious difference in overall survival (OS) between these 
two patients subgroups (median OS 41.6 months vs.45.6 
months) (log-rank test p = 7.6E-02; Figure 3B), indicating 
the prognostic potential of ten stage-specific HublncRs 
as candidate biomarkers in the prediction of clinical 
outcomes. Although most of these stage-specific lncRNAs 
have not been functionally characterized, hub lncRNA 
MALAT1 is well known to promote cancer metastasis in 
lung, colorectal, bladder and multiple myeloma when its 
expression was up-regulated [30-32]. Moreover, recent 
study has demonstrated aberrant expression of lncRNA 
MALAT1 in OvCa-associated fibroblasts [33], which was 
consistent with results produced by clustering analysis.

Prognostic value of ten-lncRNA signature for 
assessing clinical outcome of OvCa

To build a lncRNA signature to predict survival 
outcome in OvCa, these ten HublncRs were fitted in 
a multivariate Cox regression model with OS as the 
dependent variable and other clinical information as 
covariables. A ten-HublncR-based risk score model 
was constructed according to a linear combination of 
expression values of these ten HublncRs weighted by 
the regression coefficients derived from multivariate Cox 
regression analysis as follows: Risk score = (5.303e-
02* expression value of AC005562.1)+(-8.968e-02* 
expression value of AC074117.10)+(6.192e-01*expression 
value of AC105760.2)+(1.088e-02* expression 
value of EPB41L4A-AS1)+(1.182e-06*expression 
value of MALAT1)+(4.516e-02* expression value 
of MCM3AP-AS1)+(-1.121e-01* expression value 
of MEG8)+(-1.045e-02* expression value of RP11-
220I1.1)+(5.753e-02* expression value of RP11-
429J17.2)+(-3.291 * expression value of RP11-618G20.1). 
We then calculated the ten-HublncR signature based risk 
score for each patient in the TCGA dataset (n = 401). The 
patients were divided into a high-risk group (n = 200) 
and a low-risk group (n = 201) using the median risk 
score as the cut-off. Patients in the high-risk group had 
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significantly shorter survival than those in the low-risk 
group (median 39.6 months vs. 48.4 months, log-rank p 
= 4.26e-03) (Figure 3C). The 5-year survival rate of the 
high-risk group was 26.6%, whereas the corresponding 
rate in the low-risk group was 34.2%. In the univariate 
analysis, the hazard ratios of low-risk versus high-risk 
group was 2.718 (p = 0.002; 95% confidence interval 
(CI) = 1.458-5.068) (Table 2).The distribution of risk 
score, patient status and ten HublncR expression in 
401 patients of TCGA dataset are shown in Figure 3D. 
Of these ten HublncRs, four were found to be risky 
lncRNAs (AC005562.1, AC105760.2, EPB41L4A-AS1 
and MCM3AP-AS1) and six were found to be protective 
lncRNAs (AC074117.10, MALAT1, MEG8, RP11-220I1.1, 
RP11-429J17.2 and RP11-618G20.1). Patients with high-
risk scores tended to express risky HublncRs, whereas 

patients with low-risk scores tended to express protective 
HublncRs. Furthermore, we performed the time-dependent 
ROC curve analysis to evaluate sensitivity and specificity 
for survival prediction of ten-HublncR signature in the 
entire TCGA set. As shown in Figure 3E, the ten-HublncR 
signature achieved AUC values of 0.694, demonstrating its 
better prediction performance. 

We further investigated whether the prognostic value 
of the ten-HublncR signature was independent of other 
clinical variables. For this, we first performed multivariate 
Cox regression analysis including ten-HublncR risk 
score, age, grade, stage and surgical debulking status as 
covariates. The results showed that ten-HublncR risk score 
(HR = 2.485, p = 0.004), age (HR = 1.018, p = 0.007) 
and stage IV (HR = 2.666, p = 0.044) were independent 
prognostic factors (Table 2). Next, data stratification 

Figure 4: Stratification analyses of all patients with available age or tumor stage information using the ten-lncRNA 
signature. A. Kaplan-Meier survival curves for elder patients with OvCa (age > 65, n = 126). B. Kaplan-Meier survival curves for 
younger patients with OvCa (age < = 65, n = 275). C. Kaplan-Meier survival curves for all patients with stage IV (n = 60). D. Kaplan-Meier 
survival curves for all patients with II and III (n = 341). P-values were calculated using the log-rank test.
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analysis was then performed for age and stage. All patients 
of TCGA dataset were stratified by age into either an elder 
stratum (age > 65) or a younger stratum (age≤65). This 
stratified analysis showed effective prognostic power of 
the ten-HublncR signature in both the younger and elder 
patient groups. The ten-HublncR signature could classify 
patients within each age stratum into either high- or low-
risk groups with significantly different OS (median OS 
36.4 months vs. 38.7 months, log-rank test p = 0.045 
for the elder patient group and median OS 42.6 months 
vs. 50.5 months, log-rank test p = 0.058 for the younger 
patient group) (Figure 4A and 4B), indicating that the 
prognostic power of ten-HublncR signature was also age-
independent. Then the patients of stage II-III and stage 
IV for TCGA dataset were classified into two separate 
groups. The stratified analysis was further performed in 
patients group with stage II-III and patients with stage 
IV to evaluate whether the ten-HublncR signature could 
predict OS of patients for different clinical stage. The 
results of stratification analysis showed that the ten-
HublncR signature could further subdivide patients with 
stage IV into either a high-risk group with shorter survival 
or a low-risk group with longer survival (median OS 31.6 
months vs. 62.6 months, log-rank test p = 0.004) (Figure 
4C). Difference for OS between high-risk group (n = 171) 
and low-risk group (n = 170) was also observed in patients 
with stage II-III (median OS 41.6 months vs.45.5 months) 
(Figure 4D), although the log-rank p value is 0.052 which 
was slightly above the 0.05 significance level.

DISCUSSION

Recently, ceRNA hypothesis has been proposed 
to represent a novel post-transcriptional layer of gene 
regulation working through miRNA competition [3, 4]. 
With the discovery of ceRNA crosstalk, it has been shown 
that miRNA and their ceRNA targets can connect directly 
or indirectly to form a complex ceRNA network [5]. In the 
present study, based on the ceRNA hypothesis, we utilized 
paired miRNA, lncRNA and mRNA expression profiles 

of OvCa patients in combination with experimentally 
validated miRNA-target interactions to reconstruct 
lncRNA-associated ceRNA network in the progression of 
OvCa. The constructed OvCa-related LCeNETs provide 
important clues for understanding the key roles of ceRNA-
mediated gene regulatory network in the development and 
progression of OvCa.

Complex alterations of disease-specific or stage-
specific global expression profiles for miRNAs, lncRNAs 
and mRNAs, and the resultant changes in lncRNA-
associated ceRNA crosstalk interactions, may become 
the determinant of progression of cancer stages [4]. We 
found that three progression-related LCeNETs exhibited 
substantial differences in ceRNA crosstalk interactions, 
even though their network structures were similar. These 
differences may be attributed to miRNA and ceRNA 
abundance variations and rewiring interaction in the 
progression of OvCa. We further investigated the observed 
variations of stage-specific LCeNETs and found ten stage-
specific HublncRs associated with OvCa stage. Based on 
the expression patterns of these ten stage-specific lncRNA 
hubs, 401 patients with OvCa were classified into two 
groups with different clinical outcomes, indicating the 
potential roles of ten hub lncRNAs as potential prognostic 
biomarkers for predicting the clinical outcome in OvCa.

The differential expressions of lncRNAs have been 
widely observed in various cancers [34-37], and their 
expressional perturbation has been implicated in the 
development and progression of cancers [38, 39]. Several 
lncRNA signatures have been developed to improve 
prognosis prediction of cancers, including colorectal 
cancer [40], glioblastoma multiforme [41], breast cancer 
[42], lung cancer [43] and multiple myeloma [44]. 
Recently, Du and colleagues identified approximately 100 
lncRNAs correlated with OS using Cox regression analysis 
[45]. However, the prognostic role of lncRNA signature in 
OvCa has not been investigated. So we created a risk score 
model according to the patients’ expression values of ten 
stage-specific HublncRs, and applied this ten-HublncR 
signature to the TCGA patients. We found that the ten-

Table 2:Univariate and multivariate Cox regression analysis of the ten-lncRNA signature and overall survival of OvCa 
patients in the TCGA cohort
Variables Univariate analysis Multivariate analysis

HR 95% CI of HR P-value HR 95% CI of HR P-value
Age 1.017 1.005-1.03 0.006 1.018 1.005-1.031 0.007
Stage II 1 (reference) Reference

III 1.958 0.919-4.269 0.082 2.086 0.842-5.168 0.112
IV 2.233 0.994-5.017 0.052 2.666 1.027-6.921 0.044

Grade G1/G2 1 (reference) Reference
G3/G4 1.343 0.912-1.978 0.136 1.388 0.921-2.091 0.117

Residual 0-10mm 1 (reference) Reference
>10mm 1.224 0.914-1.638 0.175 1.129 0.835-1.526 0.430

lncRNA risk 
score 2.718 1.458-5.068 0.002 2.485 1.328-4.647 0.004
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HublncR signature was able to differentiate OvCa patients 
between poor prognosis and good prognosis on the basis 
of differences in their expression profiles. 

From our literature review, we found that one of 
ten HublncRs, MALAT1, was a well-known prognostic 
marker linked to several cancers [46]. Another 
lncRNA, MEG8, was an imprinted gene which showed 
preferentially expressed in skeletal muscle [47]. As 
functional research of lncRNAs is still in its infancy, the 
functions of remaining eight HublncRs have not been 
reported yet. Currently, computational prediction for 
lncRNA function has demonstrated many advantages 
of the functional interpretation by their co-expressed 
mRNAs [48, 49]. So, we predicted lncRNA function 
through GO and KEGG enrichment analysis for its all 
mRNA neighbors in the ceRNA network, and top one 
enriched functional annotation of GO term and KEGG 
pathway was considered as potential function of lncRNA. 
We found that inferred functions of these HublncRs 
were involved in Hedgehog signaling pathway, VEGF 
signaling pathway, Wnt receptor signaling pathway, tube 
development, cell adhesion and ECM-receptor interaction, 
which are fundamental processes for cancer growth and 

are relevant to OvCa progression. For example, hedgehog 
signaling pathway involves in a variety of developmental 
process and its aberrant activation has profound effect 
on OvCa progression [50]. Vascular endothelial growth 
factor (VEGF), a key regulator of angiogenesis, has been 
implicated in OvCa progression, and VEGF signaling 
pathway has revealed its value as a therapeutic target 
in patients with OvCa [51]. A previous study suggested 
that abnormal activation of Wnt signaling pathway can 
promotes OvCa progression [52]. The negative effect 
on ECM-receptor interaction is able to inhibit OvCa 
progression by reducing invasive activity of cancer 
cells [53]. Functional analysis has suggested that these 
ten stage-specific HublncRs played important roles in 
OvCa and their expression patterns were correlated with 
distinct stages of OvCa progression. However, further 
experimental studies should be conducted to uncover the 
functional roles of these lncRNAs in OvCa progression. 
To our knowledge, the sample-matched expression profiles 
of mRNA, miRNA and lncRNAs in OvCa patients derived 
from TCGA are unprecedented in comprehensiveness. 
There is no other independent datasets to validate our 
findings owing to the limitation of available lncRNA 

Table 3: Overall information and predicted functions of ten stage-specific HublncRs

Ensembl id Ensembl 
name

Chromosomal 
position

Known 
disease

Known 
function

Top 1 enriched GO 
function

Top1 
enriched 
KEGG 
pathway

ENSG00000214719 AC005562.1 Chr17: 30,576,464-
30,672,789 (+) Unknown Unknown cellular hormone 

metabolic process NA

ENSG00000234072 AC074117.10 Chr2: 27,356,246-
27,367,622 (+) Unknown Unknown transcription NA

ENSG00000227252 AC105760.2 Chr2: 237,059,434-
237,085,817 (-) Unknown Unknown limb morphogenesis

Hedgehog 
signaling 
pathway

ENSG00000224032 EPB41L4A-
AS1

Chr5: 112,160,526-
112,164,276  (+) Unknown Unknown translational 

elongation Ribosome

ENSG00000251562 MALAT1 Chr11: 65,497,762-
65,506,516  (+)

lung, 
colorectal, 
bladder, 
ovarian 
cancers and 
multiple 
myeloma

alternative 
splicing 
and cell 
cycle

regulation of 
transcription

VEGF 
signaling 
pathway

ENSG00000215424 MCM3AP-
AS1

Chr21: 46,229,217-
46,259,390 (+) Unknown Unknown

positive regulation 
of Wnt receptor 
signaling pathway

Cysteine 
and 
methionine 
metabolism

ENSG00000258399 MEG8 Chr14: 100,894,770-
100,935,999  (+) Unknown imprinted 

gene tube development NA

ENSG00000281649 EBLN3 Chr9: 37,079,857-
37,090,507  (+) Unknown Unknown transcription NA

ENSG00000181097 RP11-
429J17.2

Chr8: 143,696,154-
143,698,413 (+) Unknown Unknown cell adhesion NA

ENSG00000258964 RP11-
618G20.1

Chr14: 61,734,138-
61,776,260  (+) Unknown Unknown extracellular matrix 

organization
ECM-
receptor 
interaction
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expression. This ten-HublncR signature, if validated 
prospectively, may have important implications for the 
identification of novel diagnostic and therapeutic lncRNA 
ceRNAs in OvCa.

MATERIALS AND METHODS

Data collection

The mRNA and lncRNA expression profile data of 
OvCa patients were obtained from the research of Du et al. 
[45] by repurposing the exon-array data on the Affymetrix 
Human 1.0 ST array from the Cancer Genome Atlas 
(TCGA) data portal (http://cancergenome.nih.gov/) [54]. 
Briefly, the probe sets of Human Exon 1.0 ST array were 
re-annotated to the human genome. Then those probes 
that uniquely mapped to lncRNA sequences were kept to 
represent lncRNAs. The expression levels of lncRNAs 
were obtained by background correction and quantile 
normalization [45]. The miRNA expression profile data of 
OvCa patients was downloaded from TCGA [54]. Finally, 
expression profiles of 18292 mRNA, 10207 lncRNA and 
723 miRNA in 401 OvCa patients with stage information 
were included in our study.

Human miRNA and targets data were collected 
from TarBase (version 6.0) [55], miRTarBase (version 
4.5) [56] and miRecords (version 4) [57], which provide 
high-quality experimentally validated miRNA-target 
interaction relationships manually curated from published 
experiments. By integrating the above three databases, a 
total of 37659 non-redundant miRNA-target interactions 
were used in our study. The experimentally validated 
miRNA-lncRNA interaction was downloaded from 
starBase v2.0 [58], including 10129 miRNA-lncRNA 
interactions.

Experimentally verified OvCa-related miRNAs, 
mRNAs and lncRNAs were obtained from HMDD [59], 
miR2Disease [60], miRCancer [61], NCG [62] and 
LncRNADisease [63] databases.

Construction of lncRNA-associated ceRNA 
network

The lncRNA-associated ceRNA network was 
constructed based on “ceRNA hypothesis” as follows: 
First, expression correlation between mRNA and lncRNA 
was evaluated using Pearson correlation coefficient (PCC) 
from matched mRNA and lncRNA expression profiles data 
as follows:

 (1)
Where n is the number of patients with OvCa;  

  is the expression value 

of mRNA (lncRNA) in the OvCa patient i.   
 is the average expression level of 

mRNA (lncRNA), and ( )mRNAσ   denotes 
the standard deviation of expression level of mRNA 
(lncRNA). To reduce false positives, only top correlated 
mRNA-lncRNA pairs, whose correlation coefficient are 
higher than the threshold of the 99th percentile of the 
corresponding overall correlation distribution (Pearson 
correlation coefficient > 0.33) [11], were chosen for 
further analysis. Second, an lncRNA-mRNA pair in which 
both are positively correlated and interact with more than 
one same miRNA was considered as a candidate LMceCT. 
Third, the Pearson correlation coefficient for miRNA-
mRNA and miRNA-lncRNA was computed using paired 
miRNA, mRNA and lncRNA expression profile data 
according to the above equation (1). If both mRNA and 
lncRNA in the same candidate LMceCT are co-expressed 
negatively with a certain common miRNA, this candidate 
LMceCT was identified as the functional LMceCT. 
Finally, all the functional LMceCTs were integrated to 
form a miRNA-mediated lncRNA-associated ceRNA 
network (LCeNET).

Network analysis

The topological features of LCeNET, including 
degree, characteristic path length (CPL), betweenness 
centrality (BC), clustering coefficient (CC) and small 
world property (SWP), were analyzed. The degree of a 
node is the number of edges connecting to other nodes. 
The CPL of a network is the average shortest path length 
for all pairs of nodes. Lower CPL implies a more compact 
network form. The BC is an indicator of measuring the 
influence of a node exerting over the spread of information 
through the network. The high BC represents the key role 
of a node in communication and information diffusion 
[64]. The CC of a node measures the local cohesiveness, 
and the CC of network is the average of the CCs for all 
nodes in the network. The SWP can be calculated as 
follows [65]: 

 (2)
Where  CCr and CPLr are respectively the CC and 

CPL of the corresponding random network. A network has 
‘small word’ property if the small-world index is larger 
than random network.

To determine the statistical significance of 
topological features, randomization test was performed 
by comparing real topological features with those of 
1000 random network that preserve the same number of 
nodes and edges and keep the same degree of each node 
as in LCeNET. The empirical p-values of each measure 
were defined as the fraction of corresponding topological 
feature in 1000 random conditions which is greater 
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than the value in the real condition. The comparison 
on attributes of network between LCeNET and random 
network was performed by using the R package “igraph”. 
The LCeNET was visualized using Cytoscape 3.2.0, 
and the functional modules were mined using MCODE 
algorithm which can effectively dig out densely connected 
regions of a molecular interaction network [21].

Functional enrichment analysis

Functional enrichment analysis at the GO and 
KEGG levels was performed using DAVID Bioinformatics 
Resources (http://david.abcc.ncifcrf.gov/, version 6.7) 
[66]. The DAVID enrichment analysis was limited to 
KEGG pathways and GO- FAT biological process (BP) 
terms with the whole human genome as background. 
Functional categories with p-value of < 0.05 and an 
enrichment score of > 1.5 were considered statistically 
significant, and were visualized and clustered based on 
similar functions using the Enrichment Map plugin in 
Cytoscape 3.2.0 [67].

Survival analysis

By fitting prognostic lncRNA biomarkers in a 
multivariate Cox regression analysis, a risk score model 
was constructed by considering the power of each of the 
prognostic lncRNA biomarkers as follows:

 (3)
Where N is the number of prognostic lncRNAs,  

Expi is the expression level of prognostic lncRNA i and 
Wi is the estimated regression coefficient of lncRNA i 
in the multivariate Cox regression analysis. The median 
value of risk score was chosen as the cutoff to classify 
patients with OvCa into high-risk group and low-risk 
group. Kaplan-Meier survival analyses were carried out 
to assess the difference in OS between high-risk group and 
low-risk group, and statistical signifi cance was evaluated 
using the two-sided log-rank test using the R package 
“survival”. In addition, multivariate Cox regression 
analysis and data stratification analysis were performed 
to access whether the risk score model was independent 
of other clinical features. The time-dependent receiver 
operating characteristic (ROC) curve analysis was also 
performed to evaluate the sensitivity and specificity of risk 
score model for survival prediction using the R package 
“survivalROC”. Area under the curve (AUC) value 
was calculated from the ROC curve. All analyses were 
performed using R software and Bio-conductor. 
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