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ABSTRACT

Purpose: This work aims to identify differential metabolites and predicting 
molecular subtypes of breast cancer (BC).

Methods: Plasma samples were collected from 96 BC patients and 79 normal 
participants. Metabolic profiles were determined by liquid chromatography-mass 
spectrometry and gas chromatography-mass spectrometry based on multivariate 
statistical data analysis.

Results: We observed 64 differential metabolites between BC and normal 
group. Compared to human epidermal growth factor receptor 2 (HER2)-negative 
patients, HER2-positive group showed elevated aerobic glycolysis, gluconeogenesis, 
and increased fatty acid biosynthesis with reduced Krebs cycle. Compared with 
estrogen receptor (ER)-negative group, ER-positive patients showed elevated 
alanine, aspartate and glutamate metabolism, decreased glycerolipid catabolism, 
and enhanced purine metabolism. A panel of 8 differential metabolites, including 
carnitine, lysophosphatidylcholine (20:4), proline, alanine, lysophosphatidylcholine 
(16:1), glycochenodeoxycholic acid, valine, and 2-octenedioic acid, was identified for 
the classification of BC subtypes. These markers showed potential diagnostic value 
with average area under the curve at 0.925 (95% CI 0.867-0.983) for the training 
set (n=51) and 0.893 (95% CI 0.847-0.939) for the test set (n=45).

Conclusion: Human plasma metabolomics is useful in identifying differential 
metabolites and predicting breast cancer subtypes.

INTRODUCTION

Breast cancer (BC) is the most common cause of 
death among women worldwide [1]. Human epidermal 
growth factor receptor 2 (HER2), estrogen receptor 
(ER) are the two key molecular biomarkers to segregate 
the most distinct biologic subgroups of BC [2]. The 
characteristics of HER2 and ER can be used to roughly 
divide BC into four major molecular subtypes, including 
Luminal A (HER2 negative and ER positive), Luminal 
B (HER2 positive and ER positive), HER2-enriched 

(HER2 positive and ER negative), and Basal-Like (HER2 
negative and ER positive) [3]. Each subtype of BC is 
accompanied with characteristic molecular features, 
subsequent metastatic lesions, prognosis and clinical 
responses to available medical therapies [4].

Determining the molecular subtype of BC 
is fundamental for personalized treatment. It was 
demonstrated that the “specific molecular type matched” 
patients had a higher overall response rate, longer time to 
treatment failure and longer survival compared to patients 
whose treatment was not matched to particular molecular 
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abnormality [5]. Repeated biopsies and subsequent 
histopathology are commonly used to study molecular and 
genetic information from tumor cells for BC diagnosis and 
subtype classification. This analysis is invasive and time-
consuming [6, 7]. Rapid and sensitive analysis is urgently 
required in clinic for discrimination of BC subtypes.

Recent studies have shown that genomic alterations 
in solid cancers can be characterized by bio-fluid 
metabolome change [8, 9]. Metabolomics is a new, 
rapidly expanding field dedicated to the global metabolic 
alterations in biological systems that occur in response 
to genetic, pathological, and environmental or lifestyle 
factors. The high-throughput nature of metabolomics 
makes it applicable to perform diagnostic biomarker 
screening for diseases or follow drug efficacy [10]. 
Plasma, a frequently considered pool of metabolites, has 
been applied to represent systemic metabolic deregulation 
in cancer patients, and the markers in this biological 
specimen could present biological mechanisms during 
cancer progression [9]. Metabolomics has been applied 
to find urinary biomarkers for BC [11]. Limited data, 
however, is available to characterize BC molecular 
subtypes by plasma metabolic profiles.

Gas chromatography coupled with mass 
spectrometry (GC-MS), liquid chromatography (LC)-MS, 
and nuclear magnetic resonance (NMR) are the three most 
commonly used platforms for metabolomic study [12, 13]. 
LC-MS is the most compatible technique for sensitive 
detection of biomolecules [14]. GC-MS technique 
provides a relatively more robust chromatography and 
greater separation efficiency together with the availability 
of reference compound libraries [13]. The parallel use 
of GC-MS and LC-MS could be a good choice to better 
profile different classes of compounds.

In this study, metabolomics was applied to identify 
differential metabolites and predicting molecular 
subtypes of breast cancer. We collected plasma 
samples from 96 BC patients and 79 normal control 
(NC) participants. Analysis was performed on ultra-
performance liquid chromatography-quadrupole time of 
flight mass spectrometry (UPLC-Q/TOF-MS) and gas 
chromatography-quadrupole mass spectrometry (GC-Q/
MS).

RESULTS

Clinical characteristics of BC patients and NC 
subjects were summarized in Table 1. Detailed patient 
information, stages of disease and other parameters were 
shown in Supplementary Table S1 and Table S2. Typical 
immunohistochemical pathology of different receptor 
statuses in accordance with the FDA-approved system was 
provided in Supplementary Figure S1. Typical total ion 
chromatograms (TICs) of a BC sample obtained from ESI+, 
ESI−, and GC-Q/MS were provided in Supplementary 
Figure S2. As shown in Figure 1, clear discriminations 

were obtained by ESI+ between BC and NC groups 
(Figure 1A), HER2-positive and HER2-negative BC 
groups (Figure 1B), ER-positive and ER-negative BC 
groups (Figure 1C). Similar discriminations were also 
observed by ESI− (Supplementary Figure S3) and GC-Q/
MS (Supplementary Figure S4). The metabolites with 
variable importance in the project (VIP) higher than 1 in 
loading plot were highlighted as biomarker candidates 
(Supplementary Figure S5). Additionally, Student’s t test 
was used to validate the significance of the difference in 
intensities between variables.

Discrimination of BC and NC groups

A total of 1957 peaks were detected from ESI+ LC-
MS, 1329 peaks from ESI− LC-MS, and 123 peaks from 
GC-MS. The significant ions were then imported into the 
SIMCA-P 11.5 software package. Figure 1A illustrated 
score plots of the partial least squares discriminant analysis 
(PLS-DA) model of BC patients and NC participants. 
In Figure 1A, BC patients were clearly separated from 
NC group. The cumulative R2Y and Q2 were 0.953 and 
0.918. The chance permutations at 200 times produced 
R2Y-intercept and Q2-intercept at 0.322 and −0.109 
(Figure 1D), indicating that no over-fitting was observed.

Sixty-four significantly altered plasma metabolites 
in BC patients relative to NC group were identified 
from the two-component PLS-DA model, in which 32 
were further confirmed using reference compounds. The 
differential metabolites and their pathways were presented 
in Supplementary Table S3. Their relative normalized 
quantities were plotted in a heat map in Figure 2A.

Correlation network of differential metabolites 
in BC plasma

A correlation network analysis was established 
using Cytoscape software in Figure 2B. Highly correlated 
metabolites were connected with a line. Glycolysis-related 
metabolites were located in the center of the network with 
an elevated tendency. A positive correlation was observed 
between the levels of glycolysis-related metabolites 
and fatty acids, indicating the high energy consumption 
from aerobic glycolysis during fatty acid biosynthesis in 
cancer. Lipids, especially lysophospholipids, exhibited a 
significantly decreased amount in the network. For most 
of the amino acids, there was a negatively correlated 
regulation.

Discrimination of HER2-positive and HER2-
negative BC

As shown in Figure 1B, we demonstrated significant 
differences between the HER2-positive patients and 
HER2-negative BC subjects in the PLS-DA score plot. 
Permutation results were shown in Figure 1E. Using a 
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Table 1: Clinical characteristics of the patients with breast cancer

Samples HER2 positive
(IHC + + + and + + with 
gene amplification by 
FISH)

HER2 negative
(IHC−, + , and 
++ without gene 
amplification by FISH)

Normal 
control

p

Sample No. 36 60 79

Age(year) 52.3(31~82) 53.1(31~78) 46.4(24~86) >0.05

ER positive n=11 (5 for test set) as 
Luminal B subtype

n=42 (22 for test set) as 
Luminal A subtype \

ER negative n=25 (10 for test set) as 
HER2-enriched subtype

n=18 (8 for test set) as 
Basal-like subtype \

TNM
classification
stage

I 6 25 \

IIA 19 20 \

IIIA 1 1 \

IIIB 10 14 \

HER2, human epidermal growth factor receptor 2;
ER, estrogen receptor;
IHC, immunohistochemistry;
FISH, fluorescence in situ hybridization.

Figure 1: PLS-DA loading plots and chance permutation test obtained from LC-MS in positive mode. A. Normal control 
(NC) vs breast cancer (BC) group; B. HER2-positive (HER2P) vs HER2-negative (HER2N) BC group; C. ER-positive (ERP) vs ER-
negative (ERN) group. Black triangle corresponds to NC group, red triangle corresponds to BC group, green triangle corresponds to HER2-
positive BC patients, blue triangle corresponds to HER2-negative BC subjects, purple triangle corresponds to ER-positive participants, and 
yellow triangle corresponds to ER-negative patients. Chance permutation at 200 times was used for the discrimination between D. NC vs 
BC, E. HER2P vs HER2N, and F. ERP vs ERN.



Oncotarget9928www.impactjournals.com/oncotarget

Figure 2: The identified differential metabolites between normal control (NC) and breast cancer (BC) groups. A. 
Heatmap of 64 differential metabolites between BC and NC participants. The colors from blue to yellow indicate the elevated amount of 
metabolites. B. Correlation network analysis of differential metabolites. Metabolites with high correlation coefficients were connected by 
lines.
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combination of the VIP > 1 from PLS-DA with results 
from Student’s t test, 40 metabolites (Table 2) were 
identified as differential variables. Heatmap of 40 
differential metabolites were shown in Supplementary 
Figure S6. HER2-related altered metabolic pathway 
network of the significantly regulated metabolites was 
provided in Figure 3.

Discrimination of ER-positive and ER-negative 
BC

As shown in Figure 1C, significant differences 
were observed between the ER-positive and ER-negative 

patients. Table 3 listed the 22 differential metabolites 
identified with the VIP > 1 from PLS-DA and results from 
Student’s t test. ER-related disturbed metabolic pathways 
were shown in Figure 4.

Diagnostic potential of differential metabolites 
for subtype classifications

The HER2 and ER statuses are the key to the 
classification of BC subtypes. The metabolites with 
VIPs > 2.5 responsible for the discrimination of HER2 
in Table 2 and ER statuses in Table 3 were selected 
for potential diagnosis. A combinational panel of 8 

Table 2: Differential metabolites identified between HER2 positive breast cancer and HER2 negative breast cancer 
and their pathway involved

No. tR(min) m/z Metabolites Formula Fold 
change a

p value VIP b Pathway involved

ESI+

1 0.676 147.0604 Glutamine* C5H10N2O3 1.287 <0.001 1.232 Alanine, aspartate and 
glutamate metabolism

2 0.733 162.1124 Carnitine* C7H15NO3 1.367 <0.001 2.721 Fatty acid 
transportation

3 0.743 116.0711 Proline* C5H9NO2 1.217 0.007 2.771 Arginine and proline 
metabolism

4 0.959 118.0869 Valine* C5H11NO2 1.187 0.002 2.749 Valine, leucine and 
isoleucine metabolism

5 1.015 204.1231 Acetylcarnitine* C9H17NO4 1.666 0.003 2.337 Fatty acid 
transportation

6 1.018 130.0861 Pipecolic acid C6H11NO2 0.746 0.024 1.485
Protein synthesis, 
amino acid 
biosynthesis

7 1.242 150.0548 Methionine* C5H11NO2S 1.260 <0.001 1.986
Cysteine and 
methionine 
metabolism

8 1.468 182.0815 Tyrosine* C9H11NO3 1.227 0.030 1.036 Aminoacyl-tRNA 
biosynthesis

9 1.638 218.1378 Propionyl-carnitine C10H19NO4 1.238 <0.001 1.622 Fatty acid 
transportation

10 1.751 166.0871 Phenylalanine* C9H11NO2 1.375 <0.001 2.221 Aminoacyl-tRNA 
biosynthesis

11 1.977 232.1545 Isobutyryl-carnitine C11H21NO4 1.334 0.011 1.454 Fatty acid 
transportation

12 2.712 260.1855 Hexanoylcarnitine C13H25NO4 1.260 0.010 1.453 Fatty acid 
transportation

13 3.448 288.2172 Octanoylcarnitine C15H29NO4 1.254 0.019 1.839 Fatty acid 
transportation

(continued)
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No. tR(min) m/z Metabolites Formula Fold 
change a

p value VIP b Pathway involved

14 4.240 502.2933 LysoPE (20:4) C25H44NO7P 1.497 0.001 2.274 Lysophospholipid 
catabolism

15 4.409 316.2485 Decanoyl-L-carnitine C17H33NO4 1.386 0.004 1.626 Fatty acid 
transportation

16 4.636 544.3397 LysoPC(20:4)* C28H50NO7P 1.299 0.020 2.653 Glycerophospholipid 
catabolism

17 4.749 184.0734 Phosphorylcholine C5H14NO4P 0.721 0.007 1.009 Glycerophospholipid 
catabolism

18 4.862 480.3079 LysoPE(18:1) C23H46NO7P 1.484 0.003 2.083 Lysophospholipid 
catabolism

19 5.654 522.3550 LysoPC (18:1) C26H52NO7P 1.287 0.003 2.251 Glycerophospholipid 
catabolism

ESI−

20 0.688 179.0579 Paraxanthine* C7H8N4O2 1.129 0.004 1.141 Purine metabolism

21 0.907 145.0139 α-Ketoglutaric acid C5H6O5 0.713 0.038 1.101 Tricarboxylic acid 
cycle

22 1.423 133.0139 Malic acid* C4H6O5 0.461 0.004 1.571 Tricarboxylic acid 
cycle

23 1.536 130.0871 Isoleucine* C6H13NO2 1.545 <0.001 1.957 Valine, leucine and 
isoleucine metabolism

24 2.611 171.0659 2-Octenedioic acid C8H12O4 1.234 <0.001 2.565 Fatty acid metabolism

25 3.573 448.3075 Glycocheno-
deoxycholic acid* C26H43NO5 0.566 0.026 1.980 Bile acid biosynthesis

26 6.684 277.2174 FFA (18:3)* C18H30O2 1.422 0.007 1.746 Biosynthesis of 
unsaturated fatty acids

27 7.532 279.2322 FFA (18:2)* C18H32O2 1.461 <0.001 1.864 Biosynthesis of 
unsaturated fatty acids

28 8.833 281.2486 FFA (18:1)* C18H34O2 1.174 0.013 1.416 Biosynthesis of 
unsaturated fatty acids

GC-MS

29 6.299 Lactic acid* C3H6O3 1.443 <0.001 1.208 Glycolysis 
metabolism

30 6.904 Alanine C3H7NO2 1.023 <0.001 1.190 Alanine and aspartate 
metabolism

31 7.117 Glycine* C2H5NO2 2.252 <0.001 1.961 Glycine, serine and 
threonine metabolism

32 8.879 Urea CH4N2O 2.574 0.012 1.455 Urea cycle

33 10.612 Serine* C3H7NO3 2.090 <0.001 1.084 Glycine, serine and 
threonine metabolism

34 10.957 Threonine* C4H9NO3 2.748 <0.001 1.028 Glycine, serine and 
threonine metabolism

35 11.871 Aspartic acid* C4H7NO4 0.559 <0.001 1.162 Alanine, aspartate and 
glutamate metabolism

(continued)



Oncotarget9931www.impactjournals.com/oncotarget

metabolites was assigned as candidate markers shown in 
Figure 5A, including carnitine, lysophosphatidylcholines 
(lysoPC) (20:4), proline, alanine, lysoPC (16:1), 
glycochenodeoxycholic acid (GDCA), valine, and 
2-octenedioic acid (2-OA). The performances of these 8 

metabolites in the diagnosis of four clinical BC subtypes 
were conducted by ROC analysis. As shown in Figure 
5B, the panel of 8 metabolites provided diagnostic 
abilities with average area under the curve at 0.925 (95% 
CI 0.867-0.983) for the training set (n=51) and 0.893 

No. tR(min) m/z Metabolites Formula Fold 
change a

p value VIP b Pathway involved

36 16.230 Citric acid* C6H8O7 0.837 <0.001 1.856 Tricarboxylic acid 
cycle

37 17.034 D-glucose* C6H12O6 0.333 <0.001 1.794 Glycolysis 
metabolism

38 18.045 Palmitic acid* C16H32O2 1.789 <0.001 1.739 Fatty acid 
biosynthesis

39 19.862 Stearic acid* C18H36O2 1.223 0.002 1.017 Fatty acid 
biosynthesis

40 27.843 Cholesterol* C27H46O 0.832 <0.001 2.359
Hormone biosynthesis 
and bile acid 
biosynthesis

* confirmed with reference standards;
a fold change >1 indicates that the average normalized peak area ratio in HER2-positive group is larger than that in HER2-
negative group;
b variable importance in the projection.
Metabolites in italic were variables with VIP>1.5.

Figure 3: HER2-related altered metabolic pathway network of the significantly regulated metabolites. Blue, yellow, and red 
charts represent the relative intensities of differential metabolites in normal control, HER2-negative, and HER2-positive breast cancer groups. The 
names with dashed red lines represent the undetected metabolites. The names with full red lines represent the detected metabolic reactions. LysoPC, 
lysophosphorylcholine; LysoPE, lysophosphoethanolamine; FFA, free fatty acid; Δ6 D, Δ6 desaturase. Acetyl-CoA, acetyl-coenzyme A; Succinyl-
CoA, succinyl-coenzyme A. * represents the difference between HER2-negative breast cancer group and normal subjects, *, p < 0.05; **, p < 0.01; 
***, p < 0.001, # represents the difference between HER2-positive patients and HER2-negative participants, #, p < 0.05; ##, p < 0.01; ###, p < 0.001.
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Table 3: Differential metabolites identified between ER positive breast cancer and ER negative plasma and their 
pathway involved

No. tR(min) m/z Metabolites Formula Fold 
change a

p value VIPb Pathway involved

ESI+

1 0.676 147.0604 Glutamine* C5H10N2O3 1.159 0.019 1.650
Alanine, aspartate 
and glutamate 
metabolism

2 0.733 162.1124 Carnitine* C7H15NO3 1.187 0.006 2.373 Fatty acid 
transportation

3 0.959 118.0869 Valine* C5H11NO2 0.682 <0.001 2.813
Valine, leucine 
and isoleucine 
metabolism

4 1.242 150.0548 Methionine* C5H11NO2S 1.284 0.025 1.942
Cysteine and 
methionine 
metabolism

5 4.296 468.3086 LysoPC(14:0) C22H46NO7P 0.751 0.001 2.257 Glycerophospholipid 
catabolism

6 4.466 494.3242 LysoPC(16:1)* C24H48NO7P 1.268 0.002 2.748 Glycerophospholipid 
catabolism

7 4.692 454.2957 LysoPE (16:0) C21H44NO7P 1.227 0.027 1.111 Lysophospholipid 
catabolism

8 4.805 542.3224 LysoPC (20:5) C28H48NO7P 0.649 0.037 2.358 Glycerophospholipid 
catabolism

9 4.805 482.3233 LysoPC(15:0) C23H48NO7P 0.870 0.003 2.152 Glycerophospholipid 
catabolism

10 4.862 570.3547 LysoPC(22:5) C30H52NO7P 0.799 <0.001 1.076 Glycerophospholipid 
catabolism

11 5.145 546.3559 LysoPC(20:3) C28H52NO7P 0.794 0.006 1.701 Glycerophospholipid 
catabolism

ESI−

12 0.688 179.0579 Paraxanthine* C7H8N4O2 1.169 0.003 1.445 Purine metabolism
13 0.914 175.0248 Ascorbic acid* C6H8O6 0.750 0.014 1.330 Ascorbic acid

14 1.423 133.0139 Malic acid* C4H6O5 0.464 <0.001 1.373 Tricarboxylic acid 
cycle

15 1.536 130.0871 Isoleucine* C6H13NO2 0.875 0.002 1.209
Valine, leucine 
and isoleucine 
metabolism

16 2.611 171.0659 2-Octenedioic acid C8H12O4 1.104 <0.001 2.511 Fatty acid 
metabolism

17 3.573 448.3075 Glycocheno-
deoxycholic acid* C26H43NO5 1.265 0.002 3.035 Bile acid 

biosynthesis
GC-MS

18 6.904 Alanine* C3H7NO2 2.056 <0.001 2.891 Alanine and 
aspartate metabolism

19 9.304 Leucine* C6H13NO2 0.452 <0.001 1.085
Valine, leucine 
and isoleucine 
metabolism

(continued)
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No. tR(min) m/z Metabolites Formula Fold 
change a

p value VIPb Pathway involved

20 9.403 Glycerol* C3H8O3 1.069 0.004 1.476 Glycerophospholipid 
metabolism

21 17.034 D-glucose* C6H12O6 1.218 0.003 2.193 Glycolysis 
metabolism

22 18.045 Palmitic acid* C16H32O2 0.556 <0.001 1.900 Fatty acid 
biosynthesis

* confirmed with reference standards;
a fold change >1 indicates that the average normalized peak area ratio in ER-positive group is larger than that in ER-
negative group;
b variable importance in the projection.
Metabolites in italic were variables with VIP>1.5.

Figure 4: Disturbed metabolic pathways in ER-positive compared with ER-negative BC. Metaboanalyst (http://www.
metaboanalyst.ca) generated topology map described the impact of baseline metabolites identified between ER-positive vs ER-negative 
groups with high VIP values (VIP>1) on metabolic pathways.
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(95% CI 0.847-0.939) for the test set (n=45). Based on 
the highest prediction sensitivity and specificity of the 
ROC on the training set, we calculated the optimal cut-
off values at 0.376 for Luminal A, 0.132 for Luminal 
B, 0.288 for HER2-enriched, and 0.342 for Basal-like 
subtypes (Figure 6). Using the optimal cut-off values, 
prediction accuracies in Figure 6A showed 88.3% for 
Luminal A subjects in the training set and 84.4% in 
the test set. Predictive accuracies in Figure 6B showed 
92.2% for Luminal B patients in the training set and 
88.9% for the test set. As shown in Figure 6C, predictive 
accuracies at 89.3% for HER2-enriched group in training 
set and 82.2% in the test set was obtained. In Figure 6D, 
we observed predictive accuracies at 84.3% for basal-like 
participants in the training set and 86.7% in the test set.

DISCUSSION

This study describes for the first time the plasma 
metabolic profiling change specifically associated with 
BC subtypes. Metabolic phenotypes revealed significant 
pattern differences between BC and NC groups, HER2-
positive and HER2-negative BC groups, ER-positive and 
ER-negative BC groups. In these datasets, there were few 
misclassifications by unbiased analysis. Progesterone 
receptor (PR) status should be considered in classification 
of breast cancer. Expressional consistency of ER and PR 
was observed in all samples.

The parallel use of LC-MS and GC-MS provided 
comprehensive distinct metabolites. We observed 64 most 
significantly regulated plasma metabolites between BC 
patients and NC group. They were classified as amino 
acids, free fatty acids (FFA), lysoPCs, lysophosphati-
dylethanolamines (lysoPEs), carnitines, and organic acids.

Comparison between HER2-positive and 
HER2-negative BC patients generated 40 differential 
metabolites. The principal metabolic changes in 
HER2-positive BC compared with HER2-negative 
BC included elevated aerobic glycolysis, enhanced 
gluconeogenesis, and increased fatty acid biosynthesis 
with reduced Krebs cycle and Δ9 desaturase. The 
elevated level of lactic acid and decreased D-glucose 
in plasma of HER2-positive BC characterized the 
strong aerobic glycolysis (Warburg effect) in cancer 
cells [15]. Gluconeogenesis in HER2-positive BC was 
upregulated for energy supply, resulting in enriched 
consumption of amino acids in gluconeogenesis [16]. 
A significant enrichment in unsaturated fatty acids 
(UFAs) was found in HER2-positive BC, implying 
the increased UFAs probably resulted from the 
de nevo biosynthesis of fatty acids and enhanced 
Δ-dehydrogenase during the cell proliferation and 
metastasis of HER2-positive BC [17].

The ER statuses in BC were considered. The 
present data suggested that the major altered pathways 
in ER-positive BC patients included elevated alanine, 
aspartate and glutamate metabolism, decreased 
glycerolipid catabolism, and enhanced purine 
metabolism, when compared with ER-negative group 
(Figure 4). Similar to HER2-positive BC group, 
lysoPCs were at low levels in ER-positive patients, 
corresponding to the strong negative correlation 
between cPLA2α mRNA expression and ER expression 
levels [18]. Elevated level of glutamine in ER-positive 
patients compared to ER-negative participants clearly 
point to the perturbation of glutamate-to-glutamine 
ratio. This result is in agreement with previous 
observations [19].

Figure 5: Combinational panel of 8 biomarkers and their diagnostic outcomes. A. Venn diagram of the differential metabolites 
panels generated from the discrimination of different HER2 and ER statuses in breast cancer. The upward arrow represents an increased level 
of metabolite with the overexpression of HER2 (blue arrow) and ER (red arrow). LysoPC: lysophosphatidylcholine; 2-OA: 2-octenedioic 
acid; GDCA: glycochenodeoxycholic acid. B. Areas under the curve provided by the 8 biomarkers for the discrimination of BC subtypes 
in the training set and test set.
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We identified a panel of 8 potential small-
molecule biomarkers for the diagnosis of BC subtypes. 
Carnitine, as an essential for the entry of fatty acid into 
the mitochondria for β-oxidation [20], was observed at a 
high level (FC=1.367, P<0.001) in HER2-positive group, 
which might lead to the activated metabolism of fats. 
LysoPC (20:4), metabolic products of PC by hydrolysis 
of phospholipase A2 [18], were at a high level (FC=1.299, 
P=0.020) in HER2-positive patients. The results 
corresponded to an increased expression of cytosolic 
phospholipase A2-α in HER2 over-expression BC cell 
lines [21]. The elevated amount of proline (FC=1.217, 
P=0.007) might indicate a suppressed proline oxidase 
in HER2-positive group [22]. Alanine was the most 
significantly decreased metabolite (FC=0.544, P<0.001) 
in ER-positive participants compared with ER-negative 
group [23]. The reduced lysoPC (16:1) (FC=0.786, 
P=0.002) in ER-positive patients showed relation with 
the activity inhibition of phospholipase A2 in MCF-7 BC 
cells [18]. The increased GDCA (FC=1.265, P=0.002) 
in ER-positive group was highly related to the enhanced 
proliferation of cancer cells, corresponding to its higher 
morbidity [24]. Valine and 2-OA were the co-markers in 
the discrimination of BC with different HER2 and ER 
expression levels. They are significantly increased in 
HER2-postive compared to HER2-negative but decreased 

remarkably in ER-positive compared to ER-negative 
groups. The abnormalities of valine suggested the disorder 
of energy supply in HER2-postive (FC=1.187, P=0.002) 
and ER-positive (FC=0.682, P<0.001) patients. The 
marked regulation of 2-octenedioic acid was an indicator 
for the abnormal fatty acid metabolism in HER2-positive 
(FC=1.234, P<0.001) and ER-positive (FC=0.833, 
P<0.001) subjects [25].

The clinical predictive potential of the identified 8 
biomarkers was highlighted in this work for BC subtypes. 
Average predictive accuracies at 88.5% (95% CI 83.3%-
93.7%) were obtained for the training set and 85.6% 
(95% CI 80.9%-90.1%) for the test set. We also used a 
panel of 29 metabolites with VIPs>1.5 (metabolites in 
italic in Tables 2 and 3) instead of 8 metabolites with 
VIPs>2.5 for prediction of breast cancer subtypes. The 
average predictive accuracies increased to 97.1% (95% 
CI 93.0%-100.0%) for training sets and 95.6% (95% CI 
92.7%-98.5%) for test sets. In consideration of the clinical 
use of 29 metabolites is difficultly popularized due to the 
limited standards, 8 metabolites with VIPs>2.5 were more 
applicable as the diagnostic biomarkers.

In conclusion, this study is a first clinical metabolic 
research for BC subtype classification. We demonstrate a 
clear move toward discovering the metabolomic drivers 
for the various BC subtypes. We suggest that plasma 

Figure 6: Prediction accuracies for BC subtypes based on the eight biomarkers. The prediction plots based on the optimal 
cut-off value for A. Luminal A, B. Luminal B, C. HER2-enriched, and D. Basal-like BC subtypes. Plot in hollow dashed circle represents 
samples with false prediction.
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metabolomic test is faster, less costly, and noninvasive, 
and could be used as a pre-screen to other forms of more 
invasive or uncomfortable screening. These metabolomic 
data can also help to identify new therapeutic pathways 
from which novel agents might be developed. In future, 
we will undertake study of a larger prospective cohort to 
further validate the accuracy of this test. An evaluation of 
the mechanisms of BC subtypes by general and targeted 
metabolomics as well as other systematic biological 
approaches could be used.

MATERIALS AND METHODS

Clinical sample collection

We collected plasma samples from 175 participants 
and all the subjects signed the informed consents before 
sample collection. In total, 96 BC patients, aged 31 to 
82 years old, were enrolled in this work. This study was 
conducted with the guide of the Helsinki Declaration and 
the International Conference on Harmonization-Good 
Clinical Practices (ICH-GCP). This study was approved 
by the Institutional Review Boards of the First Affiliated 
Hospital of Nanjing Medical University, Jiangsu Province 
Hospital with approval number 2011-SRFA-058. The 
patients selecting protocol was set as follows: all the 
participants should sign the informed consent; patients 
diagnosed with BC should be confirmed by histology; 
patients should receive no surgical operation before 
this research; participants have sufficient heart, lung, 
liver, kidney, and hematopoietic functions with Eastern 
cooperative oncology group (ECOG) performance status 
≤ 2, and weight loss < 10% in recent 6 months. Cancer 
stage was classified according to the 2002 Tumor Nodes 
Metastasis (TNM) staging system. Particularly, BC 
patients diagnosed with HER2 (−), HER2 (+), or HER2 
(+ +) without gene amplification were defined as HER2-
negative BC. Patients diagnosed with HER2 (+ + +) or 
HER2 (+ +) with gene amplification were classified into 
the HER2-positive BC group. NC samples were collected 
from a total of 79 healthy volunteers between the ages 
of 24 and 86 according to the same sample collection 
protocol. All the samples were randomly classified into 
training set and test set. Detailed baseline characteristics 
of patients enrolled in this study were provided in Table 1.

Fasting blood samples collected in the morning 
from all the subjects were stored in K2 EDTA vacutainer 
tubes and cooled down in freezer (4°C) at once. They were 
then centrifuged at 3000 × g for 10 min at 4°C within 2 
h. Supernatants (plasma) were transferred into new vials, 
and immediately stored frozen (−80°C) until sample 
preparation. The sample pretreatment methods for LC-
MS and GC-MS were detailed in the methods provided 
in Methods S1.

As part of the quality control (QC) and system 
conditioning process, a pooled QC sample was prepared 

by mixing equal volumes (10 μL) of the collected 175 
samples.

Statistical analysis

The acquired MS data from GC-Q/MS and 
UPLC-Q/TOF-MS in both positive and negative ion 
modes were imported into the SIMCA-P software (version 
11.5, Umetrics) for multivariate analysis. GraphPad 
Prism 5 package was applied to plot the relative amount 
of each metabolite. Heatmaps and hierarchical cluster 
analysis (HCA) were conducted using the MeV software 
package (version 4.6.0), and the correlation network was 
established using the Cytoscape software package. ROC 
analysis and binary logistic regression were applied using 
SPSS version 19.

Metabolites identification

GC-Q/MS metabolites were identified by comparing 
the mass fragmentations with NIST 05 Standard mass 
spectral databases in NIST MS search 2.0 (NIST, 
Gaithersburg, MD) software with a similarity of more than 
70% and finally verified by available reference standards. 
Differential metabolites obtained from positive and 
negative ion modes of UPLC-Q/TOF-MS analyses were 
identified with available reference standards in our lab and 
the web-based resources such as the Human Metabolome 
Database (http://www.hmdb.ca/) and METLIN (http://
metlin.scripps.edu/index.php) data source.

Metabolomics pathway analysis

Database sources, including the KEGG (http://
www.genome.jp/kegg/), MetaboAnalyst (http://www.
metaboanalyst.ca/MetaboAnalyst/), Human Metabolome 
Database, and METLIN, were used for the identification 
of affected metabolic pathways.
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