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INTRODUCTION

Epithelial ovarian cancer (EOC) is the second 
most common gynecologic cancer in the US, but it 
leads in deaths owing to its tendency to be diagnosed in 
the late stages of disease [1]. EOC is composed of five 
major histologic types [2]: high-grade serous carcinoma 
(HGSC), accounting for most cases (~70%); and the 
rarer clear cell, endometrioid, mucinous, and low-grade 
serous carcinomas (LGSC). Known rare mutations in 
DNA repair and mismatch repair genes are thought to 
account for 10%-15% of all EOCs [3-9]. Common alleles 

identified by genome-wide association studies (GWAS) 
are thought to account for an additional 3%-4% of EOC 
risk [10-17]. Still, much of about the heritability of EOC 
remains unaccounted for. Here, we sought to identify 
additional EOC susceptibility variants through direct 
genotyping and analysis of EOC cases and controls from 
13 independent studies. We targeted variants based on 
innovative pilot studies, hypothesizing that previously 
ungenotyped variants may be responsible for a proportion 
of the unexplained EOC susceptibility.
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ABSTRACT
Background: Genome-wide association studies have identified several common 

susceptibility alleles for epithelial ovarian cancer (EOC). To further understand EOC 
susceptibility, we examined previously ungenotyped candidate variants, including 
uncommon variants and those residing within known susceptibility loci.

Results: At nine of eleven previously published EOC susceptibility regions (2q31, 
3q25, 5p15, 8q21, 8q24, 10p12, 17q12, 17q21.31, and 19p13), novel variants were 
identified that were more strongly associated with risk than previously reported variants. 
Beyond known susceptibility regions, no variants were found to be associated with EOC 
risk at genome-wide statistical significance (p <5x10-8), nor were any significant after 
Bonferroni correction for 17,000 variants (p< 3x10-6).

Methods: A customized genotyping array was used to assess over 17,000 variants 
in coding, non-coding, regulatory, and known susceptibility regions in 4,973 EOC cases 
and 5,640 controls from 13 independent studies. Susceptibility for EOC overall and for 
select histotypes was evaluated using logistic regression adjusted for age, study site, 
and population substructure.

Conclusion: Given the novel variants identified within the 2q31, 3q25, 5p15, 8q21, 
8q24, 10p12, 17q12, 17q21.31, and 19p13 regions, larger follow-up genotyping studies, 
using imputation where necessary, are needed for fine-mapping and confirmation of 
low frequency variants that fall below statistical significance.
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RESULTS

Known EOC susceptibility regions

One goal of this project was to compare the 
relative strength of the associations between known and 
novel variants within the first eleven published EOC 
risk loci[10-12, 14, 18] (Supplemental Table 1). The 
variants most strongly associated with EOC risk in this 
study (all histology or HGSC) are given in Table 1 and 
plotted regionally in Figure 1, Figure 2, and Supplemental 
Figure 1. Compared to published variants, novel variants 
were more strongly associated with susceptibility of all 
histologies of EOC at nine loci (2q31, 3q25, 5p15, 8q21, 
8q24, 10p12, 17q12, 17q21.31, and 19p13) (Table 1); all 
but three (8q21, 17q21.31, and 19p13) are in moderate LD 
(r2> 0.4) with known variants (Supplemental Figure 1). 
At the 3q25 locus variant rs62273902 (pall-histology= 2 x10-8) 
was the most strongly associated variant (Figure 1), and at 
the 17q21.31 locus variant rs2532240 (pall-histology= 3 x10-7) 
was the most strongly associated variant (Figure 2). In the 
HGSC only analysis, novel variants were more strongly 
associated with susceptibility at seven loci (2q31, 3q25, 
8q24, 10p12, 17q12, 17q21.31, and 19p13; Table 1); all 
but two (2q31, 17q21.31) are in moderate LD (r2> 0.4) 
with known variants (Supplemental Figure 1). With two 
exceptions (noted below), novel variants were common 
(minor allele frequency (MAF)>0.05), in the intron of 
genes or intergenic, in moderate-to-strong LD with known 
variants, and conferred modest effects on susceptibility. 
One exception was the association of rare intergenic 
variant rs74955251 at 8q21 (MAFoverall= 0.00028, OR= 
3.9 x 10-6, 95% confidence interval [CI]: 3.4 x 10-118-4.6 
x 10106, pall-histology= 4 x10-3). Given its rarity, rs74955251 
requires assessment in a much larger sample of cases 
and controls. A second exception was the association of 
common (MAFoverall= 0.50) missense variant rs2363956 
in the gene ANKLE1 at 19p13 (OR= 0.91, 95% CI: 0.87-
0.97, pall-histology = 2 x10-3, protein change Leu184Trp). 

Beyond known EOC susceptibility regions

We targeted 5,320 variants which showed 
suggestive association with susceptibility in a pilot-
scale whole genome sequence analysis that compared 
germline sequence of EOC patients (N= 19) to 1000 GP 
participants (N= 174). No novel variants reached genome-
wide significance for association with EOC risk overall or 
HGSC (p≤ 5x10-8), nor were significant after Bonferroni 
correction (p≤ 9x10-6). Nonetheless, the risk estimates 
generally were in the expected direction based on pilot 
data, and several variants merit investigation in larger 
case-control collections (Table 2). For example, among 
variants targeted because they were present only in EOC 

germline sequence data (WGS EOC+ in Table 2), the most 
strongly associated risk variant was rs138643956 (OR= 
3.68; pHGSC= 2 x10-4).  For variants selected because they 
were absent from whole genome sequenced EOC cases 
(WGS EOC- in Table 2), the most associated variant was 
rs9380516 (OR= 0.83; pHGSC= 6 x10-5); in the current study 
this variant showed a case MAF of 0.15, suggesting that 
this was a missed variant in the pilot sequencing study. 
For variants targeted which were present in whole genome 
sequenced EOC cases and in 1000 GP data, but differed 
in MAF (WGS EOC↑  and WGS EOC↓ in Table 2), the 
current analyses were generally consistent, including 
rs117841616 on chromosome 20 (pall histology= 2 x10-4) and 
rs240783 (pHGSC= 8 x10-4) on chromosome 6. In general, 
very few variants targeted based on suggestive association 
in pilot sequence study had appreciable MAF differences 
(case vs. control) in the current genotyping study. As 
expected due to small sample size, we observed that case 
MAF estimates in our pilot whole genome sequencing 
study were both inflated and deflated compared to the 
current study.

Finally, among NF-κB-related variants and those 
hypothesized to associate with endometrioid EOC 
risk, the most suggestive results for variants which 
disrupt NF-κB binding [19, 20] were intergenic variants 
rs10143322 on chromosome 14 (pall-histology= 3 x10-5) and 
rs6092485 on chromosome 20 (pHGSC= 7x10-4) (Table 2). 
If Bonferroni correction for the number NF-κB binding 
site variants tested is applied, the threshold for statistical 
significance is p<4 x10-5 (p= 0.05/1,302), and this single 
variant, rs10143322, is declared significant; using 
experiment-wide and certainly genome-wide multiple 
testing corrections, it is not significant. Among variants 
previously identified in a pilot GWAS of endometrioid 
EOC, the most significant variants were intronic variant 
rs2638653 (pendometrioid= 1 x10-4) on chromosome 8 (Table 
2), and intergenic rs9264042 on chromosome 6 (pall-histology= 
5 x10-4). These modest associations may also warrant 
follow-up in larger studies.

DISCUSSION

The objective of this study was to test whether 
novel variants identified through a combination of 
approaches were associated with EOC susceptibility. We 
took an innovative approach to the selection of variants, 
including the use of whole genome sequencing data to 
target novel variants correlated with known GWAS risk 
variants, comparison of sequencing EOC cases to 1000 
GP participants beyond these regions, NF-κB functional 
data, and GWAS analysis of EOC cases with endometrioid 
histology. 

In nine of the eleven susceptibility regions 
investigated, novel variants were more highly associated 
with all histology EOC risk than previously reported 
variants, and, in the HGSC only analysis, novel variants 
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were more strongly associated with susceptibility at seven 
loci. Further work on thesevariant may provide more 
biological insight. For example, at the 3q25 locus, the 
novel variant rs62273902 (all histology) coincides with 
a genomic sequence that appears functionally active in a 
range of cell lines and tissues relevant to EOC, including 
ovary, as assayed by the Roadmap Epigenomics Mapping 
Consortium (REMC), http://www.epigenomebrowser.
org/. rs62273902 resides within a DNase peak, an active 
transcription start site (TSS), and multiple proteins 
across diverse tissues bind the sequence spanning this 
variant. rs62273902 is therefore a good functional 
candidate variant at this locus. As well, at 17q21.31, 
the novel variants (rs2532240 in all histologies and 
rs3785880 in HGSC-only analysis) are separated by 272 
kb and not correlated with each other or the previously 
reported variant rs1294266. rs2532240 coincides with a 
chromatin region marked as a weak/poised enhancer in 
several tissues, including ovary (REMC[21]); however, 
it does not overlap transcription factor binding sites 
(TFBS) or DNase peaks. rs12942666 does not coincide 
with promoter or enhancer regions in tissues relevant to 

EOC in the REMC data, suggesting it is unlikely to be 
functionally relevant. The 17q21.31 variants are located 
in a large region of strong LD previously identified as 
the “17q21.31 inversion” (~900kb long), which exists 
either as a direct (H1) or inverted (H2) haplotype in the 
European population [14, 15, 22]. Further investigation of 
how these variants might impact EOC risk is needed.   

Of critical note, a large EOC meta-GWAS with 
imputation to revised Phase I 1000 GP data was recently 
completed with over 23,000 cases and 35,000 controls of 
the Ovarian Cancer Association Consortium, including 
many of the participants in the current analysis. We 
inspected our most associated variants from the 11 known 
susceptibility regions in in an online look-up of results 
based on these data (http://apps.ccge.medschl.cam.ac.uk/
consortia/ocac/contact/contact.html). In general, the 
variants reported here were highly ranked in the EOC 
meta-GWAS data (i.e., in the top 50 most associated 
variants in the regions we defined). At 8q24, the novel 
directly genotyped variant presented here (rs1400482) 
was the most associated variant in the larger imputation-
based study. At 3q25, 10p12, 17q21.31, and 17q21.32, 

Figure 1: Novel variant rs62273902 in the 5’-untranslated region of LEKR1 has the strongest association signal at 
3q25. Regional association plot for variants genotyped at 3q25 in all EOC histologies cases (N = 4,973) and controls (N = 5,640). Linkage 
disequilibrium between rs62273902 and each variant is estimated using data from 5,640 controls and indicated by the color scheme. The 
previously reported risk variant rs2665390 in this region {Goode, 2010 #23} was not genotyped; rs344008 (p = 5x10-6) is indicated in its 
place to allow comparison of the novel (rs62273902) and known (rs2665390) most associated variants (r2 = 1 for rs344008 and rs2665390 
in 1000 Genomes Project phase 1 European data).
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the most significant variant in the current study was 
not among the most significant in the imputation-based 
study. Nonetheless, novel variants at 3q25 and 17q21.32 
remained highly significant (rs62273902 at 3q25 pmeta= 
2 x10-28, and rs9303542 at 17q21.32 pmeta= 3 x10-12). 
Although novel variants at 3q25 and 17q21.32 remained 
highly significant (rs62273902 at 3q25 pmeta= 2 x10-28, 
and rs9303542 at 17q21.32 pmeta= 3 x10-12), at these two 
regions as well as at 10p12 and 17q21.31, the imputation-
based study revealed stronger associations with other 
variants.  

Among variants genotyped based on our pilot 
study comparing whole genomes of EOC cases and 
1000 GP participants, none were significant after 
multiple testing correction for 5,320 variants. Despite 
our sample size (4,973 cases and 5,640 controls), power 
to detect associations with low MAF variants was 
limited. Variants in NF-κB binding sites were also not 
associated with EOC risk at genome-wide significance. 
Noting the debate regarding the use of p<5 x10-8 as the 
threshold for statistical significance when evaluating 

potentially functional variants with presumed higher prior 
probability[23], Bonferroni correction for the number 
of NF-κB binding site variants yields one statistically 
significant variant (rs10143322, p= 3x10-5). rs2638653, 
a variant selected based on an unpublished GWAS of 
endometrioid EOC, and found here to be the variant 
most associated with endometrioid EOC risk (p= 1 x10-

4), coincides with chromatin marked as being an active 
promoter in ovary tissues (of PSD3), but not an enhancer 
or DNase site. Interestingly, loss of heterozygosity on 
chromosome 8p22, where this variant is located, is 
common in EOC tumors, and reduced expression of genes 
in this region has been found to negatively impact survival 
in EOC [24].  

In summary, we developed a diverse panel of 
previously ungenotyped variants to directly test for 
association with EOC susceptibility in 4,973 EOC 
cases and 5,640 controls from 13 independent studies. 
Our innovative approach to variant selection included 
the first use of whole-genome sequencing data from 
EOC cases in novel variant discovery. At several EOC 

Figure 2: Novel variant rs2532240 has the strongest association signal at 17q21.31. Regional association plot for variants 
genotyped at 17q21.31 in all EOC histologies cases (N = 4,973) and controls (N = 5,640). The most associated variant was rs2532240 (p = 
3 x10-7). Linkage disequilibrium between rs2532240 and each variant is estimated using data from 5,640 controls and indicated by the color 
scheme. The previously reported risk variant rs12942666 in this region {Permuth-Wey, 2013 #28} was not genotyped, but rs117169618 
(p = 5 x10-4) is indicated in its place to allow comparison of the novel (rs2532240) and known (rs12942666) most variants (r2 = 0.8 for 
rs117169618 and rs12942666 in 1000 Genomes Project phase 1 European data).
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susceptibility regions, we report novel risk variants for 
further association and functional investigation. Beyond 
known regions, this first pass at using whole genome 
sequencing pilot analyses, although underpowered, also 
yielded variants of potential interest (rs138643956 and 
rs117841616). The key strength of this report is the use 
of direct genotyping of novel variants, some rare, while 
its key limitation is an inability to more comprehensively 
examine rare variation. Larger scale genotyping and/or 
improved genotype imputation accuracy will facilitate 
further scrutiny of the variants highlighted here. 

MATERIALS AND METHODS

Study participants

Study participants were drawn from 13 independent 
EOC case-control studies of the Ovarian Cancer 
Association Consortium and were restricted to women 
of European ancestry. Characteristics of the contributing 
studies are given in Supplemental Table 2 and have been 
described previously [18]. Cases (N=4,973) consisted of 
women aged 18 and older with a pathologically confirmed 
primary invasive EOC, fallopian tube cancer, or primary 
peritoneal cancer; controls (N=5,640) were matched by 
age and region. 

Table 1: Most significant associations within eleven known EOC susceptibility regions 

Bolded variants were previously reported as the most strongly associated variants in these susceptibility regions (Supplemental 
Table 1). MAF, minor allele frequency; OR, odds ratio; CI, confidence interval; UTR, untranslated region. Associations adjust 
for age, site, and three European principal components.

Table 2: Most significant EOC risk associations by selection criteria outside of eleven known susceptibility regions

WGS, whole-genome sequencing; EOC, epithelial ovarian cancer; 1000 GP, 1000 Genomes Project; GWAS, genome wide 
association study; Chr, chromosome; MAF, minor allele frequency; OR, odds ratio; CI, confidence interval; HGSC, high grade 
serous carcinoma; n.a., not applicable. WGS EOC+ variant selection criteria: MAF> 0% in serous EOC cases, monomorphic 
in 1000 GP European individuals; WGS EOC↑ variant selection criteria: polymorphic in cases and 1000 GP, MAF greater 
in WGS patients; WGS EOC↓ variant selection criteria: polymorphic in cases and 1000 GP, MAF greater in 1000 GP; WGS 
1000 EOC− variant selection criteria: monomorphic in cases, MAF> 0% in 1000 GP.
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Genotyping array

A total of 17,439 germline DNA variants were 
genotyped using a customized Affymetrix Axiom Exome 
array (Affymetrix Corporation, Santa Clara, CA). These 
variants were drawn from four discovery categories: 
1) from eleven known EOC susceptibility regions (N 
=6,948; Supplemental Table 3)[10-14, 18], identified by 
in silico fine-mapping and a small germline whole genome 
sequencing study of EOC cases, 2) variants outside these 
eleven regions which showed suggestive association in 
pilot whole genome sequencing of serous EOC cases 
(compared to 1000 Genomes Project [GP] data)(N = 
7,189), 3) variants with a hypothesized role in disrupted 
binding of NF-κB transcription factors, which are known 
to have central roles in immune and inflammatory 
responses and cancer[19, 20, 25, 26](N = 1,302), and 
4) the top associated variants from a pilot GWAS of 
endometrioid EOC (N = 2,000). See the Supplemental 
Methods for more detail on the selection of these variants.

Quality control 

Germline DNA was genotyped at the Affymetrix 
Research Services Laboratory (Santa Clara, CA) using 
default quality control (QC) and genotype calling criteria. 
Variants failed QC if: (1) the call rate was < 95%; (2) 
p-values of Hardy-Weinberg equilibrium in controls were 
< 10-7; or (3) there was > 2% discordance in duplicate 
pairs. Further, monomorphic variants were removed. 
Of 6,948 variants genotyped within 11 known EOC risk 
regions, 4,919 (71%) met these QC criteria and were 
polymorphic. Outside of these regions, of 7,189 variants 
selected based on whole-genome sequencing data, 5,286 
(74%) met QC criteria and were polymorphic. Of 1,302 
variants associated with NF-κB binding, 980 (75%) met 
QC criteria and were polymorphic, and, of 2,000 variants 
selected from a GWAS of endometrioid EOC, 1,826 (91%) 
met QC criteria and were polymorphic. Most variants were 
excluded for being monomorphic. Thus, a total of 13,011 
genotyped variants remained for analysis.

Association analysis 

All cases were included in the overall EOC risk 
association analyses (N=4,973). Subset analyses were 
performed on histologic subsets based on a priori 
selection; HGSC (N=3,573) and endometrioid EOC 
(N=835). For each analysis, 5,640 controls were used. 
Associations were estimated using logistic regression 
assuming an additive genetic model, adjusting for age, 
study site, and population substructure by including 
the first three eigenvalues from principal components 
analysis[18]. All analyses were conducted in R version 

3.0.2 (http://www.R-project.org/).
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