
Oncotarget19430www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 15

Amyloid precursor protein and amyloid precursor-like protein 2 
in cancer

Poomy Pandey1, Bailee Sliker1, Haley L. Peters1,6, Amit Tuli1,2,7, Jonathan 
Herskovitz1, Kaitlin Smits1, Abhilasha Purohit3, Rakesh K. Singh3,4, Jixin Dong1,4, 
Surinder K. Batra2,4, Donald W. Coulter4,5 and Joyce C. Solheim1,2,3,4

1 Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
2 Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
3 Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
4 Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
5 Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
6 Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, 
TX, USA
7 Wellcome Trust/DBT India Alliance Intermediate Fellow, CSIR-Institute of Microbial Technology, Chandigarh, India

Correspondence to: Joyce C. Solheim, email: jsolheim@unmc.edu
Keywords: amyloid precursor protein, amyloid precursor-like protein 2, cancer, growth, migration
Received: October 02, 2015 Accepted: January 23, 2016 Published: January 31, 2016

AbstrAct
Amyloid precursor protein (APP) and its family members amyloid precursor-

like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are type 
1 transmembrane glycoproteins that are highly conserved across species. The 
transcriptional regulation of APP and APLP2 is similar but not identical, and the 
cleavage of both proteins is regulated by phosphorylation.  APP has been implicated 
in Alzheimer’s disease causation, and in addition to its importance in neurology, 
APP is deregulated in cancer cells. APLP2 is likewise overexpressed in cancer cells, 
and APLP2 and APP are linked to increased tumor cell proliferation, migration, and 
invasion. In this present review, we discuss the unfolding account of these APP family 
members’ roles in cancer progression and metastasis. 

INtrODUctION

Amyloid precursor protein (APP) is an 
evolutionarily conserved protein with two homologues 
in mammals: amyloid precursor-like protein 1 (APLP1) 
and amyloid precursor-like protein 2 (APLP2) [1, 2]. 
APLP1 was identified as the first homologue of APP [3, 
4], and APLP2 (also known as YWK-II) was subsequently 
identified as an APP homologue [5-8]. All of these three 
proteins share high sequence homology and conserved 
domain structure. Each has an extracellular domain, a 
transmembrane-spanning domain and a ~50 amino acid-
long cytoplasmic tail domain (shown for APP and APLP2 
in Figure 1A, 1B) [9,10]. APP and APLP2 are broadly 
expressed, while APLP1 expression is restricted to neural 
tissue [5, 6, 11, 12]. As described in detail below, APP and 
APLP2 are overexpressed in many cancers. APP and/or 
APLP2 have been described as having notable functions 
in many cancers, such as cancers of the prostate, breast, 

colon, thyroid, lung, nasopharynx, and gastrointestinal 
tract (for a more complete list, see Table 1). Both APP 
and APLP2 have been linked to characteristics of cancer 
cells such as abnormal growth, migration, and invasion 
(Table 1).

APP AND APLP2 GENEs AND PrOtEIN 
strUctUrEs

The APP family members are encoded by 
separate multi-exon genes located on three different 
chromosomes [13-15]. The human APP gene is positioned 
at chromosome 21 (specifically, at band 21q21), and the 
human APLP2 gene is found at 11q24 [16, 17]. Although 
APP and APLP2 are related genetically, it has been 
observed that they are transcriptionally divergent, and 
there are unique sequence motifs in each gene that suggest 
specialized, non-overlapping functions [18].

The extracellular domain of APP contains two 
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disulfide knots (three overlapping disulfide bonds) that 
resemble the disulfide knots within growth factors [19]. 
The cysteine residues used to form the disulfide knots 
of APP are conserved in APLP2, which by similarity is 
proposed to have two disulfide knots as well (Figure 1A, 
1B). In the extracellular portion of APP and APLP2 are 
several smaller domains, including a bovine pancreatic 
trypsin inhibitor (BPTI)/Kunitz protease inhibitor domain, 
and a domain in which aspartic and glutamic acid residues 
are very abundant (called the Asp-Glu-rich domain) 
(Figure 1A, 1B) [9, 20].

The Kunitz protease inhibitor domain in the 
extracellular region of APP and APLP2 (Figure 1A, 1B) 
inhibits multiple proteases (such as trypsin, chymotrypsin, 
plasmin, plasmin, and kallikrein enzymes) with varying 
efficiencies [21]. Another protease inhibited by the 

Kunitz protease inhibitor domain (as part of the cleaved, 
secreted APP ectodomain) is coagulation factor XIa [22]. 
Notably, mesotrypsin produced by tumor cells acts to 
cleave the Kunitz protease inhibitor domain of the soluble, 
secreted APP ectodomain, which likely contributes to the 
procoagulant character of the tumor microenvironment 
[23].

At the positions indicated in Figure 1, the 
extracellular domains of APLP2 and APP bind copper 
or zinc ions [9, 24-27]. Recently, it was shown that the 
presence of copper increases the expression of APP in 
prostate cancer cells [28]. Furthermore, this same study 
revealed that the copper-binding region of the APP 770 
splice variant (in conjunction with tyrosine residues in 
the APP intracellular domain) reduces copper-mediated 
inhibition of prostate cancer cell growth [28]. 

Figure 1: Graphical representations of the domains and sub-domains for APP and APLP2 are shown, along with 
disulfide bonds and predicted post-translational modifications. A. For APP, the 770 amino acid isoform (UniProt accession 
number P05067) is displayed. B. For APLP2, the 763 amino acid isoform (UniProt accession number Q06481) is shown. N-glycan 
prediction was done with the NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/). O-glycan prediction was performed by 
NetOGlyc 3.1 Server (http://www.cbs.dtu.dk/ services/NetOGlyc/). Phosphorylated residues were predicted with PhosphoSite (http://www.
phosphosite.org/ homeAction.do). For some isoforms of APLP2, but not of APP, chondroitin sulfate (CS) glycosaminoglycan modification 
occurs at Serine 614.



Oncotarget19432www.impactjournals.com/oncotarget

cLEAVAGE OF APP FAMILY MEMbErs

Of the three APP family members, APP is the most 
studied, notorious for its cleavage generating the β amyloid 
peptide (Figure 1A) that contributes to Alzheimer’s 
disease [29-31]. Each of the APP family members (APP, 
APLP1, and APLP2) undergoes cleavage by secretases 
that release a large extracellular domain and produce 
smaller C-terminal fragments (Figure 2) [32-33]. APP 
and APLP2 cleavage is regulated by the hormone insulin-
like growth factor 1 (IGF-1) [34-37]. IGF-1 has a known 
role in cancer progression, and multiple studies have 
explored the impact of inhibiting IGF-1 receptor signaling 

as a potential therapeutic approach for cancers, including 
neuroblastoma [38-41]. Some reports suggest that IGF-1 
increases α-secretase cleavage of APP and APLP2, which 
would presumably result in down-regulation of β amyloid 
production [34, 36]. However, other reports indicate that 
IGF-1 actually promotes the generation of β amyloid [35], 
and therefore additional studies are needed to fully discern 
the effect of IGF-1 on APP and APLP2 processing and 
function in cancer.

In our studies, we have examined the effect of 
blocking beta-secretase activity on the viability of 
pancreatic cancer cells [42]. Many chemical inhibitors 
of beta-secretase have been developed, and some have 

table 1: Expression and role of APP and APLP2 in multiple cancer cell types
cancer     APP Expression and Effects    APLP2 Expression and Effects

Acute myeloid 
leukemia 

APP increases cell migration, as well as 
extramedullary infiltration due to matrix 
metalloproteinase-2 [67]. - -

Breast 
APP increases cell growth, motility, survival, and 
phosphorylation of AKT pathway proteins [63, 64]. -

APLP2 is differentially spliced in breast 
cancer cell lines and human mammary 
epithelial cells [47].

Colon 
APP increases phosphorylation of ERK pathway 
proteins and increases proliferation [62, 68].   APLP2 increases proliferation [69].  

EBV-negative 
Burkitt’s 
lymphoma 

APP causes rapid proliferation of Epstein-Barr 
virus-negative Burkitt’s lymphoma cells [70]. - -

Ewing’s 
sarcoma - - 

APLP2 interferes with radiation-induced 
apoptosis and reduces MHC class I 
expression; APLP2 is increased in immune-
evasive Ewing’s sarcoma cells [71, 72].

Gastrointes-
tinal neuro-
endocrine 

APP is expressed in intestinal carcinoids, and is 
colocalized partly with markers of microvesicles 
and early endosomes [73]. 

APLP2 is expressed in intestinal carcinoids, 
and is colocalized partly with markers of 
microvesicles and early endosomes [73].

Lung 
APP increases proliferation and causes cell size 
abnormalities [74]. 

APLP2 expression is decreased in lung 
neuroendocrine tumors, though the 
consequences are not well understood [73].

Melanoma 

Perinuclear APP staining and soluble APP secretion 
are increased.  APP facilitates proliferation, and its 
knockdown induces differentiation [75].  

-

APLP2 decreases HLA class I surface 
expression on MDA-MB435S cells 
(formerly classified as breast cancer cells 
but recently classified as melanoma cells) 
[76].

Naso-pharynx 

APP increases cell growth and migration, and there 
is EGFR-mediated upregulation of soluble APP 
production [77].

- -

Oral  Upregulation of AP2α and positive correlation 
between APP and AP2α in tumor tissue [78]. - -

Pancreas  APP increases proliferation [42, 60, 68].  APLP2 increases migration, proliferation, 
invasion, and  metastasis [42, 61]. 

Prostate 

APP increases proliferation and migration, 
modulates levels of metalloproteinase and EMT-
related proteins, and downregulates MAP kinase 
phosphatase and Notch signaling pathways [65]. 

- -

Testicular germ 
cell 

APP expression was detected in ~39% of 
nonseminomatous germ cell tumors (NSGC), and 
APP was associated with venous invasion [79]. 

 APLP2 is expressed in testicular germ cell 
tumor tissue [80]. 

Thyroid 
APP staining is increased in tumor tissue, and is 
associated with bigger tumor size, extracapsular 
invasion, and spread to the lymph nodes [81]. 

- -
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already shown safety and efficacy in clinical trials for 
Alzheimer’s disease patients [43-46]. We incubated 
pancreatic cancer cells with inhibitors of the beta-secretase 
enzyme, and observed a reduction in APLP2 C-terminal 
fragments in the cells. Furthermore, we demonstrated that 
treatment of the pancreatic cancer cells with beta-secretase 
inhibitors decreased the growth and viability of the cells. 
A non-transformed pancreatic cell line was included as a 

control, and the beta-secretase inhibitors did not diminish 
the growth or survival of the non-transformed cell line. 
Our results suggest that although no chemical inhibitors 
have been designed with the specific goal of targeting 
APLP2, existing beta-secretase inhibitors that have been 
made to target APP for the treatment of Alzheimer’s 
disease may potentially be repurposed to target APLP2.

Figure 2: Secretase processing of APP and APLP2 generates many fragments. Fragments of APP A. and APLP2 B. generated 
following cleavage by several secretase enzymes are shown. Amino acids in canonical APP and APLP2 are provided. Double forward 
slashes are used to denote truncated sequences. The N-terminal ends are indicated with NH2 and the carboxyl ends are indicated with 
COOH. A. Beta secretase 1 and 2 (BACE1 and BACE2) can cleave at site β, while the alternate cleavage site for BACE1 is site β’ and the 
alternative cleavage site for BACE2 is site θ. Two α-secretase cleavage sites have been described, α and α’. Sites γ and ε are cleaved by 
γ-secretase enzymes. Fragments of APP generated by various cleavage sites are provided with their nomenclature (text inside rectangles) 
and the residues forming the various fragments (superscript text above rectangles). The C-terminal fragments (CTF) of APP are C99, 
C89, C83 and C80 and the intracellular domains (ICDs) of APP are C59, C57 and C50. B. The BACE1 (β), ADAM10 (α) and γ-secretase 
cleavage sites (γ) have been determined for APLP2. APLP2 C-terminal fragments are distinguished by the secretase responsible for their 
formation. Intracellular domains of APLP2 are denoted as ICDs. 
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APLP2 sPLIcING

In APLP2 (and in APP, as will be described below), 
splicing leads to diversity and to specialized functions 
influential in cancer. Several isoforms of APLP2 arise from 
splicing (Figure 3) [14, 20, 21]. The canonical isoform 
of human APLP2 is 763 residues long and ~110 kDa in 
molecular mass, and it utilizes all 18 exons. Alternative 
APLP2 isoforms of 751, 707, 695, and 522 amino acids 
in length have been reported, and the first four of these 
isoforms arise from exclusion of exons 7 and/or 14. 
Omission of exon 7 removes the Kunitz protease inhibitor 
domain, and the frequency with which this APLP2 exon 
is excluded was found to vary in a comparison of two 
human breast cancer lines (MCF7 and MDA-MD-231) 
and human mammary epithelial cells [47].

Only APLP2 isoforms that exclude exon 14 are 
modified by chondroitin sulfate glycosaminoglycan 
modification on Ser614 (Figures 1 and 3) [48, 49]. Among 
the pancreatic cancer cell lines that we examined, 4 out of 
5 expressed high levels of endogenous chondroitin sulfate 
glycosaminoglycan-modified APLP2 [42], which suggests 
that there may be preferential expression in pancreatic 
cancer cells of APLP2 isoforms lacking exon 14. Since 
transfected cells expressing various APLP2 isoforms had 
an increased migratory response when the isoform that 
was overexpressed was APLP2-751 (which bears the 
chondroitin sulfate glycosaminoglycan modification) [50], 
it is possible that the presence of the chondroitin sulfate 
glycosaminoglycan modification may also increase the 
migratory tendencies of pancreatic cancer cells.

APP sPLIcING

As is the case with APLP2, splicing also leads to 
generation of APP variants that differ in molecular mass. 
Alternative splicing of APP RNA gives rise to at least 9 
translated isoforms, with variable expression across normal 
and disease states. The largest isoform, which contains the 
sequences encoded by all 18 exons, is 770 amino acids in 
length (Figure 4A). Aside from the canonical APP-770, 
the other primary APP isoforms contain 751 or 695 amino 
acid residues (Figure 4B). Some APP splice variants are 
restricted in localization. For example, APP-751 and APP-
695 are abundantly present in mammalian brain [51-53], 
and APP 752, 733, 696, and 677 are found in astrocytes 
and leukocytes [54]. Upon mitogenic stimulation with 
phytohemagglutinin, T cells secrete APP-733 [55]. In the 
various APP isoforms, the spliced regions include a group 
of N-terminal residues near a heparin-binding domain 
(exon 2), the Kunitz-type protease inhibitor domain (exon 
7), an OX-2 antigen domain (exon 8), and the amyloid 
beta processing sequence (exon 15) (Figure 4C). 

Several studies have demonstrated that in cancer 
there is upregulation of the 751-amino acid APP isoform, 
which lacks the OX-2 antigenic domain encoded by exon 8 

[56-58]. High throughput reverse transcriptase-polymerase 
chain reaction screens that profiled the expression of >600 
cancer-related genes revealed the APP-751 splice variant 
in primary epithelial ovarian tumors and primary breast 
tumors, but not in corresponding tissues from normal 
donors, suggesting that the production of APP-751 is 
cancer-specific rather than simply characteristic of the 
tissue of origin [56-58]. The high degree of APP exon 
8 excision in breast tumor versus normal tissue (p<10-5)  
prompted its inclusion in a 12-marker APP splice 
variant panel that correctly identified 33 of 35 (96%) of 
tumor samples in a blinded validation assay. Likewise, 
quantitative microarray followed by reverse transcriptase-
polymerase chain reaction showed a >10% decrease in 
APP mRNAs containing exon 8 in non-squamous cell lung 
carcinoma, breast cancer, and colon cancer (as compared 
to patient-matched controls), indicating a predilection 
towards APP-751 expression in each of these cancers [58].

The role of the OX-2 domain that is omitted in APP-
751 is currently unclear. The OX-2 domain was named 
for its homology to a region of the OX-2 antigen (an 
immunoglobulin superfamily member found on neuronal 
and lymphoid cells), but the function of this specific 
sequence within the OX-2 protein is not known [59]. 
Hence, on a mechanistic basis, what effect is exerted by 
the presence versus absence of exon 8 in cancer cells is 
not yet apparent. An alternative perspective (proposed by 
Misquitta-Ali et al. [58]) is that exclusion of the OX-2 
domain could alter the production of specific APP cleavage 
products, and thus the ability of the APP-751 isoform to 
facilitate tumorigenesis is actually a consequence of the 
different levels of these products.

EXPrEssION OF APP FAMILY MEMbErs 
IN cANcEr

APP and/or APLP2 expression is aberrantly altered 
in many types of cancers (Table 1), such as pancreatic [42, 
60, 61], colon [62], breast [63, 64], prostate [65], lung 
[66], and other cancers [43, 67-81]. Furthermore, APP 
and APLP2 have been shown to have a range of roles in 
cancer cells, including both pro-growth and pro-invasion 
functions. In this review, we will now focus on the 
expression and functions of APP and APLP2 in specific 
types of cancer.

APP family members in germ cell cancers

APLP2 is expressed in normal mouse germ cells, is 
present on the plasma membrane on mature spermatozoa 
[82], and has been implicated in sperm survival [83]. 
Notably, recent studies done by Venkataramani et al. [80], 
reported that APP expression positively correlates with 
pluripotency-linked gene expression in testicular germ cell 
cancers but APLP2 expression does not, indicating that 
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APP (and not APLP2) is a biomarker of pluripotent stem 
cell transformation. APP is widely expressed at increased 
levels in several subsets of testicular germ cell tumors, 
such as seminomas, choriocarcinomas, yolk sac tumors 
and teratomas [80].

APP family members in Ewing’s sarcoma

In cell lines derived from the pediatric cancer 
Ewing’s sarcoma, APLP2 is typically overexpressed [71]. 

Upon radiation treatment, increased expression of APLP2 
reduces the proportion of Ewing’s sarcoma cells in the 
sub-G1 stage (i.e., the apoptotic subset) [71]. Consistent 
with APLP2’s ability to increase Ewing’s sarcoma cell 
survival following radiation treatment, higher APLP2 
overexpression was found in Ewing’s sarcoma cells that 
had resisted lysis by lymphokine-actived killer cells 
(which destroy target cells by an apoptotic mechanism) 
[71]. APLP2 overexpression also reduces the level of 
MHC class I molecules at the plasma membrane of 
Ewing’s sarcoma cell lines [72]. This effect of APLP2 on 

Figure 3: Isoforms of APLP2 arise through alternate splicing. A. Reported isoforms of APLP2 are shown with numbers denoting 
residues not encoded in smaller isoforms. B. The 18 exons of APLP2 are displayed alongside the residues that they encode. C. Exon 
junctions in the canonical APLP2 sequence (top row) and known splicing sites (bottom three rows) are depicted. Letters above exons 
indicate the nucleic acid codes, and residues and their location within the canonical APLP2 isoform are provided. 



Oncotarget19436www.impactjournals.com/oncotarget

MHC class I has also been observed with HeLa cells and 
other cancer cell lines [76, 84-87], suggesting that APLP2 
may generally assist in cancer immune escape from T cell 
killing.

APP family members in breast cancer

APP expression is increased in breast cancer cell 
lines that exhibit greater metastatic tendencies, such as 
motility and proliferation [64]. When APP in a variety of 

breast cancer cell lines with increasing metastatic potential 
was knocked down, the cell lines had reduced cell growth 
and underwent G1 arrest due to induction of the cell cycle 
inhibitor p27kip1 [64]. Additionally, induction of apoptosis 
markers such as cleaved caspase 3 and the PARP cleavage 
product were also noted in the breast cancer cell lines 
in which APLP2 expression had been knocked down, 
especially in those cell lines that had been identified 
as having higher metastatic potential [64]. The APP-
knockdown breast cancer cells also showed decreased 
tumor growth in both a 3D in vitro cell culture and in an 

Figure 4: APP has alternatively spliced isoforms. A. 18 exons encode the canonical 770-amino acid APP uncleaved glycoprotein, 
with several overlapping residues resulting from ligated mRNA of different exons forming a single codon. B. Diagrams of primary isoforms 
APP 751, APP 695, and leukocyte (L)-APP 752, with excised residues denoted by black horizontal lines. Excised exons are differentially 
colored: heparin-binding domain in exon 2 (purple), Kunitz-type protease inhibitor in exon 7 (red), OX-2 antigen sequence in exon 8 
(orange), and amyloid beta processing sequence (grey). The deletion of the amyloid beta processing sequence enables the attachment of 
chondroitin sulfate glycosaminoglycan. C. Alternative splicing events and amino acid substitutions in 8 APP isovariants.
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in vivo mouse model [64]. APP was also shown to induce 
migration in breast cancer cells, especially in the presence 
of IGF-1 [64]. Another study demonstrated that APP was 
positively correlated with a higher risk of recurrence in 
ER-positive breast cancer cases, as compared to ER-
negative cases, suggesting that increased APP is associated 
with a worse prognosis [63]. 

APP family members in prostate cancer

Studies done by Takayama et al. [88] showed 
APP induces androgen-mediated signaling pathways 
contributing to the growth and proliferation of prostate 
cancer. Also, immunohistology revealed a lack of APP 
in normal human prostate cells, while in tumor samples 
from a group of prostate cancer patients with a 50% 
survival rate there was intense cytoplasmic staining of 
APP [88]. The importance of APP in prostate cancer was 
further validated by an in vivo animal model in which 
knock-down of APP repressed tumor growth [88]. In 
addition, APP has been demonstrated to be involved in 
the migration and proliferation of prostate cancer cells via 
mechanisms involving metalloproteinases and epithelial-

to-mesenchymal transition-related pathways [65].

APP family members in lung cancer

APP, especially the secreted form of APP, is 
upregulated in lung cancers [66]. APP’s role in this type 
of cancer was further verified by a recent study by Sobol 
et al. [74]. Using APP-specific siRNA transfection of non-
small cell lung cancer (NSCLC) cells, this group showed 
that upon APP downregulation there was destabilization 
of cyclin C, leading to G0/G1 cell cycle arrest, as well 
as to decreased phosphorylation of pRb, abnormalities in 
cell size, and necrosis due to membrane permeabilization 
[74]. In regard to other APP family members, according to 
the ONCOMINE database (Compendia Bioscience, Ann 
Arbor, MI), significant upregulation and downregulation 
of APLP1 and APLP2 (respectively) was observed in 
neuroendocrine lung tumors [73]. More work remains 
to be done, not only to examine the role of APP in lung 
cancer, but also to investigate the role that APLP1 and 
APLP2 might play in this particular type of cancer.

Figure 5: Deregulation of APP and APLP2 causes cancer progression and metastasis, but the roles in cancer of most of 
the protein interactions involving APP and APLP2 are not well understood. Illustrations of transmembrane APP and APLP2 
are displayed with cleavage sites indicated. Proteolytic α-, β-. and γ-secretases cleave at various sites on APP and APLP2, generating protein 
fragments. Interactions between APP and APLP2 with various interacting partners are mediated by glycosylation and phosphorylation.
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APP family members in melanoma

Metastatic melanoma has a very poor prognosis due 
to its frequent resistance to traditional chemotherapies 
and radiation treatments. Botelho et al. [75] showed by 
immunohistochemistry and immunofluorescence that 
there is differential expression of transmembrane and 
secreted APP in the vertical and metastatic growth phase 
of melanomas, as compared to earlier stages of the disease. 
Transient knock-down of APP in advanced melanoma cell 
lines reduced proliferation and increased the expression 
of melanocyte pigmentation/differentiation markers such 
as human tyrosinase, tyrosinase-related protein-1, and 
microphthalmia-associated transcription factor, indicating 
that the loss of APP leads to a more differentiated 
phenotype [75]. It was also observed upon APP 
downregulation in melanoma cells that there was lower 
expression of ABCB5 (doxorubicin-resistant transporter), 
which has been implicated in chemoresistance [75]. 
Consistent with the observed reduction in ABCB5, upon 
APP downregulation aggressive melanoma cell lines 
became sensitive to chemotherapeutic drugs to which they 
were not previously sensitive [75].

APP family members in pancreatic cancer

Hansel et al. [60] demonstrated that secreted APP 
enhances cell proliferation in pancreatic cancer cells, 
as well as thyroid epithelial cells and fibroblasts, by 
acting as an autocrine growth factor. Other investigators 
have likewise shown that a secreted form of APP that is 
produced by α-secretase cleavage aids in cell survival 
and migration [89]. Pancreatic cancer cell proliferation 
was significantly reduced upon treatment of the cells with 
batimastat (which inhibits α-secretase cleavage of APP) 
along with gemcitabine, as compared to gemcitabine alone 
[90]. When cells that had been incubated with batimastat 
were treated with a recombinant form of the secreted APP 
fragment, growth capacity was restored, confirming that 
α-secretase-mediated secretion of APP contributes to 
pancreatic cancer cell growth [90].

Our research group has demonstrated that in 
addition to overexpression of APP in pancreatic cancer 
cell lines, there is overexpression of APLP2 (both full-
length and cleaved forms) in pancreatic cancer cell lines, 
and by immunohistochemistry we have demonstrated 
overexpression of APLP2 in human pancreatic tumor 
samples [42, 61]. Transient knock-down of APLP2 or 
APP reduced pancreatic cancer cell growth and viability 
[42]. We found that a series of cell lines derived from 
human ductal epithelial cells by transfection with hTERT 
plus an increasing number of oncogenes had escalating 
levels of full-length and cleaved APLP2, which suggests 
that APLP2 may increase gradually during the process of 
pancreatic cancer development [42].

In an orthotopic mouse model of pancreatic 
cancer, we demonstrated that down-regulation of APLP2 
expression resulted in decreased tumor weight and 
limited metastasis. We also investigated the expression of 
APLP2 in human pancreatic cancer metastases, and found 
that APLP2 is increased in metastatic lesions at many 
sites, particularly the intestine and the diaphragm [61]. 
Furthermore, we found positive APLP2 expression in a 
large proportion (38%) of paired primary tumor and liver 
metastasis samples from the same patients [61]. 

APP family members in colon cancer

Colon cancer also exhibits overexpressed APP and 
APLP2 [68, 69]. Both in vitro and in vivo studies have 
shown that APP promotes growth and proliferation of 
colon cancer [62]. The gene that encodes APP is part of 
a genetic signature for increased likelihood of metastasis 
in patients with early stage mismatch-repair proficient 
sporadic colon cancer [91].

Consistent with the findings obtained in studies 
of APP, knock-down of APLP2 reduced proliferation of 
the Caco2 colon cancer cell line [69]. In colon cancer 
cells, APLP2 expression is positively correlated with 
expression of human leukocyte antigen-B-associated 
transcript 3 (Bat3). Bat3 associates with APLP2 and 
inhibits its ubiquitylation, thereby blocking its degradation 
by the proteasome [92]. These findings suggest that Bat3 
facilitates the ability of APLP2 to increase colon cancer 
cell growth by stabilizing APLP2.

thE rEGULAtION OF APP AND APLP2

Since it is becoming increasingly clear that APP 
and APLP2 have pro-cancer functions, how APP and 
APLP2 expression and function are regulated is also 
evidently relevant to their roles in cancer. In regard to 
transcriptional control, there are distinctions between APP 
and APLP2. The APP promoter has putative recognition 
sites that are predicted to allow NFĸB/Rel and activator 
protein-1 (AP-1) to regulate APP expression [93, 94]. The 
promoter for the APP gene contains transcription factor 
sites that are absent in the promoter for the APLP2 gene, 
including a possible heat shock transcription element [95, 
96]. Retinoic acid and interleukin-1 have been associated 
with increased transcription of APP, and retinoic acid also 
upregulates APLP2 expression [97-99].

The processing of APP and APLP2 is regulated by 
phosphorylation events. For example, the Pin 1 protein 
binds to the phosphorylated form of APP at Thr668 [100], 
and this binding regulates the processing of APP [101]. 
In addition, the processing of APLP2 is influenced by 
epidermal growth factor, phorbol 12-myristate 13-acetate 
(PMA), IGF-1, and retinoic acid [36, 102]. Epidermal 
growth factor and PMA activate protein kinase C-ε/δ, 
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leading to cleavage and processing of APLP2 via the 
mitogen-activated protein kinase pathway in corneal 
epithelial cells [102]. Phosphorylation of protein kinase 
C by IGF-1 initiates intracellular events leading to the 
cleavage and shedding of APLP2 from the cell [36]. In 
cells of the nervous system, the processing and secretion 
of APP is increased by the presence of okadaic acid, 
estrogen, or testosterone [103-105]. 

cONcLUsIONs

The APP family members are highly conserved, 
but despite structural similarities, APP and APLP2 have 
frequently been observed to have divergent and unique 
functions. However, both APP and APLP2 are typically 
upregulated with advancement of cancer progression, and 
each has been implicated in several phenotypes related 
to cancer (Table 1; Figure 5). We are also examining the 
levels within cancer cells of the enzymes (such as beta-
secretases) that cleave APP and APLP2, since expression 
levels of these enzymes regulate the biological influences 
of both APP and APLP2 [32, 33]. At present, the signaling 
pathways by which APP and APLP2 wield their effects 
in cancer cells (which may be multiple pathways) are 
not well understood, though there are a few clues that 
the pathways leading to the transcription coactivator 
YAP (known to be an important factor in cancer growth 
and migration) might potentially be involved [106-112]. 
Much remains to be discovered in cancer models about the 
impact of APP/APLP2 post-translational modifications, 
such as phosphorylation and glycosylation (Figure 1) [93, 
113-125]. Deciphering the specific pathways in which APP 
and APLP2 function in cancer cells to increase malignancy 
(and, with APLP2, also to increase cancer immune evasion 
[76, 84-86]) will be necessary to fully comprehend 
the roles of these proteins in cancer progression and to 
develop new therapeutic regimens for cancer that are 
based on targeting APP and/or APLP2. 
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