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ABSTRACT
Missense mutation of p53 not only impairs its tumor suppression function, 

but also causes oncogenic gain of function (GOF). The molecular underpinning of 
mutant p53 (mutp53) GOF is not fully understood, especially for the potential roles of  
non-coding genes. Here we identify the microRNA expression profile (microRNAome) 
of mutp53 on Arg282 by controlled microarray experiments, and clarify the prognostic 
significance of mutp53-regulated miRNAs in cancers. A predominant repression effect 
on miRNA expression was found for mutant p53, with 183 significantly downregulated 
and only 12 upregulated miRNAs. Mutp53 and wild-type (wtp53) commonly upregulate 
let-7i, and other two miRNAs were upregulated by wtp53 but repressed by mutp53 
(miR-610 and miR-3065–3p). Based the mutp53-regulated miRNA signature, a  
non-negative matrix factorization (NMF) model classified gastric cancer (GC) cases 
into subgroups with significantly different Disease-free survival (Kaplan-Meier test, 
P = 0.013). In contrast, the NMF model based on all miRNAs did not associate with 
cancer outcome. The mutp53 miRNA signature associated with the outcomes of breast 
cancer (P = 0.024) and hepatocellular cancer (P = 0.012). The miRPath analysis 
revealed that mutp53-suppressed miRNAs associate with Hippo, TGF-β and stem 
cell signaling pathways. Taken together, our results highlight a miRNA-mediated 
GOF mechanism of mutant p53 on Arg282, and suggest the prognostic potential of 
mutp53-associated miRNA signature.

INTRODUCTION

The TP53 gene that encodes the p53 tumor 
suppressor protein is the most commonly mutated gene 
in all human cancers [1], and missense mutation causing 
substitution of single amino acid represents the major 
type of mutations of TP53 gene [2]. The wild-type p53 
is a master regulator of human genomic integrity [3], 
which is stabilized an accumulated in the nucleus in 
response to genomic stress or oncogenic signaling [4]. 
The p53 protein was firstly recognized as a transcription 
factor, which binds to DNA in a sequence-specific manner 
in its tetrameric form. The regulation of p53 monomer-
tetramer assembly is regulated by c-abl and RhoGAPs 
[5]. The downstream target genes of p53 are involved in 
multiple pathways such as cell cycle arrest, apoptosis, and 

metabolism [6]. The cytoplasmic function of p53 protein 
associates with mitochondria outer membrane, where it 
binds BCL-XL and induces cytochrome C release and 
initiates apoptosis [7]. 

Missense mutation of p53 not only causes loss of 
tumor suppression function (LOF), but also causes gain 
of oncogenic function (GOF) [8]. Evidence based on both 
transgenic mouse model and human cancer data consistently 
support the GOF effect of mutant p53 (mutp53). When 
compared to p53-null mice [9], mice harboring the hot-
spot mutant p53 displayed more spontaneous tumors and 
shorter survival. In addition, different p53 mutants have 
been confirmed to associate with different outcomes [10]. 
In a previous study, we have demonstrated that the hot-
spot p53 mutation on Arg282 (R282) associated with 
significantly earlier cancer onset in Li-Fraumeni families 
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that carry germline p53 mutations [11]. Moreover, the 
R282 mutation also associated with shorter survival of 
cancer patients, as reported in our previous study. Due to 
the variable signaling pathways and clinicopathological 
features of different p53 mutations, it has been proposed that 
p53 mutations should be considered as different oncogenes 
and biomarkers in cancers [12]. In a structural perspective, 
the R282 mutation may destabilize of the protein structure 
[13], induce protein aggregation [14], and affect its binding 
to BCL-XL in mitochondria [15]. However, the signaling 
pathways associated with R282 mutant are largely unknown, 
presenting a major challenge for developing targeted therapy.

MicroRNAs (miRNAs) are a class of non-coding 
RNAs with 20–25 nucleotides in length that function 
in RNA silencing and post-transcriptional regulation 
of gene expression [16] The miRNA expression profile 
(miRNAome) is significantly altered in cancers [17–19], and 
it is known that miRNAs may play causative roles in cancers 
by regulating multiple signaling pathways [20, 21]. The 
competing endogenous RNA (ceRNA) regulatory networks 
involving protein-coding messenger RNAs, long-noncoding 
RNAs and miRNAs are emerging factors that may contribute 
to cancer development [22, 23]. The miRNAome may be 
affected by multiple factors in cancer, including gene copy 
alteration [24, 25], transcription factor dysregulation, and 
the dynamics of ceRNA network. Besides, microRNAs have 
been generally accepted to be involved in the p53-regulated 
network, like contributing to the down-regulations of mRNA 
and protein expression observed after p53 activation [26]. 
Otherwise, we found previously that mutp53 R248W could 
transactivate the GAPLINC long non-coding RNA and 
promote the expression of CD44 oncogene [27]. Therefore, 
mutp53 GOF may not only involve protein-coding genes 
(PCGs) but also non-coding genes. Although some studies 
have already explored the correlations between cancers and 
miRNA, signature [28] and survival predictions [29], it is 
unknown to which extent mutp53 may affect the expression 
of miRNAs, and whether the mutp53 related miRNA 
signature may be prognostic in cancers.

In the present study, we characterize the mutp53 
Arg282-regulated miRNAome in cancer cells, and analyze 
the prognostic significance of mutp53-regulated miRNA 
signature. The signaling pathways associated with the 
miRNA signature were analyzed with the miRPath 
algorithm, based on the enrichment of miRNA-mRNA 
target pairs in KEGG pathway. Through these approaches, 
we aim to identify the miRNA-mediated GOF mechanisms 
of Arg282 hotspot p53 mutation. 

RESULTS

Identification of mutp53 R282W regulated 
miRNAs

To identify mutp53 R282W regulated miRNAs in an 
unbiased manner, we performed stable transfection of the 
p53-null H1299 cells with an expression vector encoding the 

p53 R282W mutant. After total RNA isolation, microarray 
assay (Affymetrix miRNA 4.0) was used to measure the 
expression profile of miRNAs. The cells transfected with 
empty vector was used as control, and each experimental 
group had triple biological repeats (schematics of 
experimental procedures shown in Figure 1A). Because fold-
change ranking combined with a non-stringent statistical 
P-value [30–32] has been found to be more reliable for 
microarray-based differential expression analysis, we used 
the widely-accepted criteria of fold-change > 2 (or < 0.5) 
and P-value < 0.05 [33–36]. Interestingly, we found that 
mutant p53 R282W had a predominant repression effect 
on miRNA epxression, with 183 downregulated miRNAs 
(Supplementary Tables S1) but only 12 upregulated miRNAs 
(Supplementary Tables S2). We have already uploaded the 
microRNA data to the GEO website (Series GSE 73876).

Most mutp53-regulated miRNAs are unrelated 
to wtp53

We further analyzed if mutp53 R282W-regulated 
miRNAs might partially overlap with those regulated by 
the wild-type p53 (wtp53). The wtp53-regulated miRNAs 
were determined based on the raw data of a recently 
published paper, using the same criteria as mutp53 [37]. 
Interestingly, only one miRNA, namely hsa-let-7i was 
found commonly upregulated by wtp53 and mutp53. 
Two other miRNAs (hsa-miR-610 and hsa-miR-3p) were 
downregulated by mutp53, but upregulated by wtp53. 
No miRNA was found commonly downregulated by 
mutp53 and wtp53 (Figure 1B). Of note, the mutp53 
regulated miRNAs were found with uneven chromosomal 
distribution. While chromosome 1 contained 21 miRNAs 
that were regulated by mutp53, chromosomes 21 and 22 
only contained one such miRNA, respectively (Figure 1C, 
listed in Supplementary Table S3). The vast majority 
of mutp53 regulatory targets were unrelated to wtp53, 
suggesting that mutp53 may acquire GOF effects through 
regulating miRNAs.

Mutp53-regulated miRNA signature associates 
with prognosis of gastric cancer

We further questioned whether the mutp53-
regulated miRNAs may associate with the prognosis 
of cancers. The expression profiles of miRNAs were 
obtained from the gastric adenocarcinoma dataset of the 
cancer genome atlas (TCGA) that included 470 cancer 
cases [38]. Among the 195 mutp53-regulated miRNAs, 
38 were found abundantly expressed in the gastric cancer 
samples (list in Supplementary Table S4). This partial 
mutp53 signature containing 38 miRNAs was then used to 
calculate the similarity between cancer samples (schematic 
diagram in Figure 2A). Since the non-negative matrix 
factorization (NMF) model has been successfully applied 
to classify cancer samples with clinical significance [39], 
we also employed the NMF method in the present study 
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(detailed procedures described in the Methods section). 
Interestingly, the partial mutp53 miRNA signature 
classified the cancer samples into 3 or 4 subgroups with 
significantly different disease-free survival (P = 0.015 
and P = 0.013, respectively). In contrast, NMF clustering 
revealed subgroups with no association with cancer 
outcome (Figure 3). 

Of note, the miRNA signature-based classification 
displayed stronger association with cancer outcome than 
the traditional AJCC staging (Figure 3) and microsatellite 

instability (Supplementary Figure S1). When the 
p53 gene status was categorized as wild type, missense 
mutation or truncating mutation, patients with different 
p53 status displayed no significant difference in DFS. 
Likewise, the p53 gene copy number, mRNA expression, 
and protein expression displayed no significant 
association with DFS (Supplementary Figure S1). 
These may be due to the complexity of p53 regulation 
at genetic, epigenetic, and protein levels. Thus, one such 
factor alone may not perfectly mark its functional status. 

Figure 1: The miRNAome of mutp53 largely differs from that of wtp53. (A) Schematic representation of the study procedures. 
Mutant p53 or empty vector was stably transfected to p53-null H1290 cancer cells, followed by Affymetrix miRNA 4.0 microarray study 
and differential expression analysis. (B) Venn’s diagram showing the common and unique miRNAs regulated by either mutp53 or wtp53. 
(C) The Circos map indicates the miRNAs that were upregulated (red) or downregulated (blue) by mutp53 R282W. The chromosomal 
locations of regulated miRNAs are also indicated.
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Figure 2: The miRNA signature of mutp53 associated with disease-free survival of gastric cancer patients. Comparison 
of survival in all panels were performed using Kaplan-Meier test. (A) The schematic diagram showing the analysis flow. A partial mutp53 
signature was derived by overlapping mutp53-regulated miRNAs and abundantly expressed miRNAs in gastric cancer. a non-negative 
matrix factorization (NMF) model was used to classify the cancer patients based on the miRNA signature, followed by DFS comparison 
between different groups. (B) The survival of gastric cancer patients with different AJCC stages were compared using Kaplan-Meier 
survival test (P-value indicated). (C–D) DFS of patients in 3 subgroups determined by NMF clustering based on either the miRNA signature 
(C) or all miRNAs (D). (E–F) Comparison of patient DFS in 4 subgroups as determined based on miRNA signature (E) or all miRNAs (F).
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Figure 3: The mutp53 miRNA signature associates with prognosis of breast and liver cancers. Comparison of survival 
in all panels were performed using Kaplan-Meier test. (A–B) Disease-free survival of breast cancers with lymphnode involvement. The 
subgroups determined by miRNA signature displayed significantly different DFS (A), but the subgroups determined by all miRNAs did  
not significantly associate with DFS (B). (C–D) Survival of patients in 3 subgroups of liver cancer patients classified by the mutp53 miRNA 
signature (C) or all miRNAs (D). (E–F) The comparison of patient survival in 4 subgroups determined based on miRNA signature (E) or 
all miRNAs (F).
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Mutp53 miRNA signature in the prognosis of 
breast and liver cancers

Since p53 is also frequently mutated in multiple 
cancer types, we also examined the association of 
mutp53 miRNA signature with the prognosis of other 
cancers. The breast cancer dataset reported by Buffa and 
colleagues [40] contained both miRNA expression profile 
and patient DFS, and thus was included in this study. The 
NMF model divided the patients into 2 subgroups, because 
more groups caused significant decrease in cophenetic 
correlation. As a result, the partial mutp53 signature 
(listed in Supplementary Table S4) classified breast cancer 
patients with significantly different DFS (P = 0.024, 
Kaplan-Meier survival test). In contrast, the classification 
model based on all miRNAs showed no significant 
association with DFS (P = 0.06, Figure 3A and 3B). 

Further, we analyzed the prognostic effect of 
mutp53 miRNA signature in liver cancer. Since the 
disease-free survival data of the TCGA liver cancer 
patients were more incomplete (247 of 377 cases 
unavailable), we analyzed the overall survival of patients. 
Again, the partial mutp53 signature (miRNAs listed 
in Supplementary Table S4) divided patients into 3 or 
4 groups with significantly different survival (P = 0.046 
and P = 0.012), but the model based on all miRNAs 
displayed no significant association (Figure 3C–3F). These 
results consistently suggest that mutp53 miRNA signature 
is associated with cancer outcome.

Mutp53-repressed miRNAs target multiple 
cancer-related pathways

To probe the signaling pathways of mutp53-
regulated miRNAs, we performed pathway enrichment 
analysis for miRNAs using the miRPath algorithm, 
which is based on more than 600,000 experimentally 
supported miRNA targets from DIANA-TarBase [41]. 
Since the mutp53 displayed predominant suppression 
effect on miRNAs, we firstly analyzed the pathways 
that were targeted by the downregulated miRNAs  
(in positive association with mutp53 function). The hippo 
signaling pathway was the most significantly associated 
gene set, containing 11 genes that were targeted by 
96 miRNAs (Figure 4A). These miRNAs represent half 
of all mutp53-repressed miRNAs, indicating a strong 
association between mutp53 and the Hippo signaling 
pathway. The pathways belonging to TGF-β signaling, 
regulation of pluripotency of stem cells, proteoglycans 
in cancer were also significantly associated with mutp53-
repressed miRNAs (Figure 4A). The miRNAs upregulated 
by mutp53 were associated with specific metabolic 
pathways (steroid hormone, mycin type O-glycan, and 
glycosphingolipid biosynthesis), as well as the ErbB 
signaling (Figure 4B). Note that such associations were 
less significant, due to the smaller number of miRNAs 
upregulated by mutp53. In fact, the hippo signaling 

pathway has been reported to regulate the pluripotency 
of stem cells [42] and to interplay with the TGF-β 
pathway [43, 44], thus the pathways associated with 
mutp53-repressed miRNAs might reflect the significant 
involvement of hippo signaling.

DISCUSSION

The mechanisms of mutp53 gain-of-function effect 
are important for developing targeted therapies against 
advanced cancers, and our study presents the first unbiased 
characterization of mutp53 R282W-regulated miRNAs. We 
demonstrate that a mutp53 miRNA signature can identify 
cancer subgroups with significantly different outcomes, and 
the hippo signaling is associated with the mutp53 signature. 

Firstly, our data revealed a novel miRNAome of 
mutp53 that substantially differs from that of wtp53. 
Among the 195 mutp53-regulated miRNAs, only 3 were 
related to wtp53. As reported previously, the wtp53 
regulates a broad panel of miRNAs with potential tumor 
suppressing roles, including miR-34a-5p, miR-182–5p, 
miR-203a, miR-222–3p, and miR-432–5p, etc [45–47].  
Our data suggest that on a p53-null background, ectopic 
expression of mutp53 repressed the expression of 
many miRNAs that are not regulated by wtp53. This 
may be explained by the two major GOF models: 1) 
mutp53 may bind new gene promoters and acquire a novel 
transcriptome; 2) mutp53 may interact with other proteins 
and indirectly regulate gene expression through its mutant 
interactome [12, 48]. Since miRNAs belong to competing 
endogenous RNA (ceRNA) networks, the intermediate 
pathways between mutp3 and miRNA expression might 
be complicated. It deserves further investigation whether 
other coding genes or long noncoding genes might be 
involved in the effects of mutp53 on miRNA expression.

Moreover, our results demonstrate that a mutp53 
GOF signature composed of miRNAs could successfully 
divide patients into subgroups with clinical relevance. It 
has been suggested that GOF mutation of p53 associates 
with worse cancer outcomes, but our results revealed 
for the first time that mutp53-regulated miRNAs have 
prognostic significance. Indeed, the miRNA signature 
displayed stronger association with gastric cancer 
DFS, over p53 genetic status or its expression level. 
The expression of miRNAs were strongly influenced 
by mutp53, and thus a miRNA signature could reflect 
the functional status of p53. Other factors such as 
p53 genetic status, copy number alteration, mRNA level, 
or protein level were not ideal markers for p53 function, 
which is actually a result of interaction between the 
above-mentioned factors. It should be noted that miRNA 
expression profiles differ substantially between cancer 
types, thus the miRNA signatures for gastric, liver and 
breast cancers were distinct subsets of the mutp53-
regulated miRNAs. Even though, the partial mutp53 
signature displayed prognostic significance in these 
cancer types.
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Figure 4: The signaling pathways associated with mutp53-regulated miRNAs. (A) KEGG signaling pathways that significantly 
associated with miRNAs repressed by mutp53. The results were based on miRPath, an experimentally supported tool for identifying 
miRNA-targeted pathways. The significance, number of targeted genes and miRNAs are shown in the upper panel, and the heat map in the 
lower panel indicate the involvement of top-ranked miRNAs in the indicated signaling pathway. (B) The pathway enrichment analysis of 
mutp53-upregulated miRNAs. The significance of each pathway and the association of top-ranked miRNAs are respectively shown in the 
upper and lower panels.
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Finally, our pathway analysis revealed that mutp53 
R282W associated with the hippo signaling, which is 
involved in regulating pluripotency of stem cells and 
cancer aggressiveness [49, 50]. The experimentally 
supported miRPath algorithm identified multiple genes 
in the hippo pathway that could be targeted by miRNAs 
in the mutp53 signature, suggesting that mutp53 R282W 
may acquire GOF effect through this oncogenic route. 
This finding also raises the possibility of targeting 
hippo signaling pathway in cancer cases bearing the p53 
R282 hot-spot mutation.

In conclusion, the hot-spot mutp53 R282W 
regulates a novel miRNAome that largely differs from 
that of wtp53, and this mutant GOF signature associates 
with poor prognosis of multiple cancer types. In future 
research, the mechanisms underlying this mutant-specific 
miRNAome should be investigated, which may facilitate 
the development of more effective targeted cancer therapies.

METHODS

Plasmid construction

The pcDNA3-HA-p53 expression vector was 
constructed by inserting PCR-amplified p53 cDNA 
sequence into pcDNA3 vector (Invitrogen, Carlsbad, 
CA, USA). The p53 R282W mutant was derived by site-
directed mutagenesis PCR reaction using platinum PWO 
SuperYield DNA polymerase (Roche, Basel, Switzerland) 
according to the product manual. The plasmid was 
sequenced to confirm if the designed mutation is present, 
without any other unwanted mutation.

Cell culture and transfection

The human H1299 (p53-null) cells were maintained 
in DMEM medium (Gibco, Gaithersburg, MD, USA) 
supplemented with 10% fetal bovine serum (Invitrogen) 
and cultured in a humidified incubator at 37 °C under 
5% CO2. Before transfection, cells were seeded into 
normal growth medium at 50% confluence in six-well 
tissue plates. The FuGENE HD transfection reagent 
(Promega, Fitchburg, WI, USA) was applied according 
to the product manual. Briefely, the transfection complex 
was made by 1 μg plasmid, 3 μl FuGENE HD and 100 μl 
media. Six hours after the complex was added to the 
cells, normal culture media was used to culture cells for 
additional 48 h, followed by gene expression analysis. 
For stable transfection, the 600 μg/mL G418 was used to 
culture cells for four weeks, and the expression of mutp53 
in stable strains was confirmed by quantitative PCR.

MicroRNA-microarray experiment

The H1299 cells stably transfected with mutp53 
R282W or the control vector were respectively analyzed 
by Affymetrix GeneChip miRNA 4.0 microarray with 

three biological replications. A total of 200 ng small 
RNA was used in sample preparation with a FlashTag 
Biotin RNA Labeling Kit for Affymetrix GeneChip 
miRNA arrays (Genisphere). The labeled RNA was 
consequently hybridized for sixteen hours to an Affymetrix 
GeneChip miRNA array according to the product manual. 
Microarrays were washed and stained in the Affymetrix 
Fluidics Station 450, and scanned on the Affymetrix G3000 
GeneArray Scanner. The image files were analyzed using 
the Affymetrix software (Expression Console), Robust 
Multi-array Average (RMA) background correction, log-2  
transformations and global normalization methods were 
performed for data pre-processing, and normalization.

Unsupervised clustering by non-negative matrix 
factorization (NMF) algorithm

NMF is a matrix factorization algorithm that focuses 
on the analysis of data matrices whose elements are 
nonnegative, and the principles and the detailed algorithm 
has been described previously [51]. We employed the 
NMF algorithm module of the MEV 4.9 program package 
[52] to perform unsupervised clustering of cancer samples, 
with «divergence» as the update rule and maximum 
iteration of 1,000. The optimal number of classes was 
determined according to the cophenetic correlation value, 
as described in our previous study [39].

Survival analysis

The survival analysis was carried out using the 
SPSS software package. In the Kaplan–Meier (log rank) 
survival test model, the censored status was indicated 
when the patient was still alive (or cancer-free) at the time 
of follow-up. The criteria of P < 0.05 was used for judging 
statistical significance. 

Pathway analysis of miRNAs

The signaling pathways in association with miRNAs 
were analyzed with the miRPath v3.0 web server as 
described previously [41]. Briefly, the down-regulated 
(or up-regulated) miRNAs in the mutp53 signature were 
used as input, and the microT-CDS method was used 
for determining target genes. The species was defined 
as “human”, and the gene filter was set as “determine 
genes”. The enrichment of target genes in different 
KEGG molecular pathways were ranked by the respective 
P-values (adjusted by false discovery rate, FDR). The 
criteria of P < 0.01 (adjusted) was used for judging 
statistically significance.
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