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ABSTRACT
5-Fluorouracil (5-FU)-based chemotherapy is currently the first-line treatment 

for gastric cancer. In this study, using gene expression profiles for a panel of cell 
lines with drug sensitivity data and two cohorts of patients, we extracted a signature 
consisting of two gene pairs (KCNE2 and API5, KCNE2 and PRPF3) whose within-
sample relative expression orderings (REOs) could robustly predict prognoses of 
gastric cancer patients treated with 5-FU-based chemotherapy. This REOs-based 
signature was insensitive to experimental batch effects and could be directly applied 
to samples measured by different laboratories. Taking this unique advantage of the 
REOs-based signature, we classified gastric cancer samples of The Cancer Genome 
Atlas (TCGA) into two prognostic groups with distinct transcriptional characteristics, 
circumventing the usage of confounded TCGA survival data. We further showed that 
the two prognostic groups displayed distinct copy number, gene mutation and DNA 
methylation landscapes using the TCGA multi-omics data. The results provided hints 
for understanding molecular mechanisms determining prognoses of gastric cancer 
patients treated with 5-FU-based chemotherapy.

INTRODUCTION

Gastric cancer is often diagnosed in advanced 
stage [1], and 5-FU-based chemotherapy is currently 
recommended as the first-line treatment [2]. As the 
overall response rate is only about 20-40% [3], it is 
urgent to develop a signature to recognize patients who 
cannot benefit from 5-FU-based chemotherapy and 
recommend them to other chemotherapy regimens. A 
number of previous studies focused on genes related 
to 5-FU metabolism (TS, TP, DPD), DNA repair 
(ERCC1, ERBB2) or apoptosis (BCL2, BAX) to find 
signatures of 5-FU resistance [4–8] but few have 
been validated [9]. Then, many studies have turned 
to use gene expression profiles to identify prognostic 

signatures for chemo-treated gastric cancer patients, 
usually based on risk scores summarized from the 
expression measurements of signature genes [10, 11]. 
However, this type of signatures cannot be applied 
directly to independent inter-laboratory data because 
their applications require pre-setting risk thresholds 
which are sensitive to experimental batch effects [12]. 
Although many batch effect correction algorithms and 
data normalization methods have been proposed, they 
can hardly correct such biases and even distort the real 
biological signals [13]. Even if it would be possible to 
pre-collect a set of samples to measure together with a 
particular sample for data normalization, the risk-score 
based signatures would still have a critical limitation that 
the risk classification of a sample will change with the 
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uncertain risk compositions of the other samples adopted 
for normalization together, as systematically revealed in 
our recent work [14]. In contrast, it has been reported that 
the within-sample relative expression orderings (REOs) 
of genes are insensitive to experimental batch effects 
and invariant to monotonic data normalization [15]. With 
this unique advantage, the REOs-based signatures can 
perform robustly across datasets produced by different 
laboratories and allow application at the individual levels 
[16]. Therefore, it is worthy adopting the REOs-based 
approach to extract robust prognostic signatures for 
clinical application.

Notably, researchers often firstly identify prognostic 
signatures of overall survival (OS) or relapse risk for 
chemo-treated patients, and then prove the drug benefit 
predictive value by showing that these signatures could not 
predict prognoses of patients not receiving chemotherapy 
[11, 17, 18]. However, this approach is challenged by 
the argument that patients receiving and not receiving 
the chemotherapy may have systemic differences in 
malignant degree of tumor or corporeity [19]. To increase 
the relevance of prognostic signatures to drug-resistance, 
Kim et al. [17] pre-selected “drug-resistance” genes 
from differentially expressed genes (DEGs) between 
non-responders and responders of patients with the 
chemotherapy treatment. However, because the tissue 
samples of non-responders were dissected from patients 
after the chemotherapy treatment, these DEGs may mainly 
reflect tissue’s response to drug stimuli rather than drug 
resistance [20]. The same problem exists when pre-
selecting DEGs between drug-induced resistant cell lines 
and parental cell lines [21, 22]. 

Another major problem in studies for extracting 
drug resistance signatures for a single drug on clinical 
trials is that currently combination administration of 
drugs is conventionally used for cancer chemotherapy 
[23]. In such a situation, human cancer-derived cell line 
models provide the only chance to identify drug resistance 
signature for a single drug [24–26] although the clinical 
relevance of cancer cell line models remains controversial 
[27]. Recently, we have proved that if two chemo-
regimens shared one or several drugs, then the overlaps 
between their clinically relevant drug resistance genes 
(CRGs), defined as the genes differentially expressed 
in the non-responders compared with responders 
respectively for the two chemo-regimens, should be  
(or largely be) the CRGs for the shared single or multiple 
drugs, given that the drugs used in combination have no (or 
limited) antagonistic effects [28]. Thus, if we could firstly 
identify a set of genes positively or negatively associated 
with 5-FU GI50 (50% Growth Inhibition) from gastric 
cancer cell lines and prove that they are correspondingly 
negatively or positively associated with prognoses of 
patients treated with a chemo-regimen including 5-FU  
as a component, then these genes should be CRGs  
for 5-FU shared by the cancer cell models and clinical 

chemo-regimen, given that patients with poor or good 
prognoses should largely represent non-responders 
or responders to 5-FU treatment. In this process, the 
clinical relevance of the cancer cell line models could be 
evaluated by statistical evidence of concordance analysis 
(see Materials and Methods) that the genes positively 
or negatively correlated with 5-FU GI50 values of the 
cell lines were non-randomly negatively or positively 
correlated with prognoses of patients treated with  
5-FU-based chemotherapy.

In this study, by pre-selecting genes correlated with 
both 5-FU GI50 of gastric cancer cells and OS of patients 
treated with 5-FU-based chemotherapy, we extracted and 
validated a prognostic signature consisting of two gene 
pairs. The within-sample REOs of these gene pairs could 
robustly stratify patients into distinct prognostic groups. 
Using the robust REOs-based signature, we classified 
the gastric cancer samples of The Cancer Genome Atlas 
(TCGA) [29] into two groups. Then, instead of analyzing 
the TCGA samples’ survival data which were confounded 
with complex chemotherapy regimens and treatment cycles 
[30], we confirmed that the two identified groups of TCGA 
samples represented the prognostic groups by evidence that 
they had the same distinct transcriptional characteristics 
with the prognostics groups identified in the validation 
dataset. This strategy enabled us to exploit the TCGA multi-
omics data to reveal the distinct copy number, gene mutation 
and DNA methylation landscapes of the prognostic groups. 

RESULTS

Extraction of the REOs-based 5-FU-relevant 
prognostic signature

We hypothesized that genes which are differentially 
expressed between 5-FU-resistant and -sensitive cell lines 
while also showing concordant correlation with prognosis 
in patients could robustly predict prognoses of gastric 
cancer patients treated with 5-FU-based chemotherapy 
(Figure 1). Tan et al. [31] classified 28 gastric cancer cell 
lines into two subtypes which had significantly different 
average 5-FU GI50 values [32], and we defined them as 
5-FU-resistant subtype and 5-FU-sensitive subtype, 
respectively. Based on the gene expression profiles of 
these cell lines (GSE22183, Table 1), 2,175 DEGs were 
detected (Student’s t-test, FDR < 20%) between the two 
subtypes. Notably, 5 of the 17 cells in the 5-FU-resistant 
subtype had GI50 values below the median of the GI50 
values of the 28 cells while 2 of the 11 cells in the 5-FU-
sensitive subtype had GI50 values above the median. 
When reclassifying these 5 and 2 cell lines into the 
5-FU-sensitive and FU-resistant groups, respectively, no 
DEGs could be detected between the two groups with the 
same 20% FDR control. Thus, we chose to use the DEGs 
between the primary subtypes defined by Tan et al. [31] for 
the 28 cell lines as candidates of 5-FU resistance relevant 
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genes. Statistically, these DEGs should include the genes 
associated with 5-FU resistance given that most of 5-FU-
resistant and 5-FU-sensitive cells were correctly identified. 
Then, to ensure the relevance of the candidate genes to 

5-FU resistance, we further extracted genes correlated 
with 5-FU GI50 values of the cells from these DEGs. In this 
regard, from the 2,175 DEGs between the two subtypes, 
we were able to extract 100 genes whose expression levels 

Figure 1: The flowchart for depicting the development, validation and application of the 5-FU-relevant prognostic 
signature.
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were significantly correlated with 5-FU GI50 values of the 
28 cell lines with a reasonable statistical control (FDR 
< 20%, Pearson correlation analysis). Notably, without 
the process of preselecting candidates of 5-FU resistance 
genes, no genes could be found to be significantly 
correlated with 5-FU GI50 values of the 28 cell lines at an 
acceptable FDR control level (e.g., FDR < 20%) due to 
the conservativeness of multiple testing correction. Then, 
based on the gene expression profiles of 35 gastric cancer 
patients treated with 5-FU-based chemotherapy extracted 
from the GSE15459 dataset (Table 1) [31], denoted as 
GC35, we found 14 of the 100 GI50-related genes tended 
to be significantly associated with patients’ OS (univariate 
Cox model, P < 0.05). The concordance score of the 
clinical relevance of these 14 genes was 100%, which was 
unlikely to be observed by chance (binomial distribution 
test, P < 6.10E–05; see Materials and Methods). In the 
following analyses, we focused on analyzing nine of the 
14 genes, which were also measured in the validation 
GSE14208 dataset produced by the Affymetrix U133A 
2.0 platform (Table 1).

For every two of the nine candidate genes, according 
to their within-sample REO, we classified the 35 gastric 
cancer samples of the GC35 dataset into two groups and 
then evaluated whether they had significantly different OS 
(see Materials and Methods). Using univariate Cox model, 
we found two gene pairs (KCNE2 and PRPF3, KCNE2 
and API5) whose REOs were likely to be associated with 
patients’ OS (P < 0.05). KCNE2 had lower expression 
level than both PRPF3 and API5 in the high-risk group, 
whereas the REOs were reversed in the low-risk group. 
Thus, a simple rule was used to classify patients: a patient 
would be predicted to be of high risk if and only if KCNE2 
had lower expression level than both PRPF3 and API5. 
According to this rule, 24 and 11 of the 35 samples were 
classified into the high- and low-risk groups, respectively, 
and the former had significantly shorter OS than the latter 
(HR = 2.78, 95%CI 1.05−7.39, log-rank P = 3.39E-02, 
Figure 2A). A multivariate Cox analysis showed that the 
signature still tended to be prognostic after adjusting for 
stage, grade and gender even though the size of the GC35 
dataset was small (P = 0.11, Table 2). As the 35 patients 

Table 1: The datasets of gastric cancer cell lines and tissues analyzed in this study

Accession Size Omics Platform Stage Treatment

Samples of gastric cancer cell lines

GSE22183a 28 mRNA AffymetrixU133 Plus 2.0 - 5-FU

Samples of gastric cancer tissues

GSE15459b 35 mRNA AffymetrixU133 Plus 2.0 I–IV 5-FU-based

GSE14208c 123 mRNA AffymetrixU133A 2.0 IV 5-FU plus 
cisplatin

GSE15459b 130 mRNA AffymetrixU133 Plus 2.0 I–IV Surgery alone

TCGAd 329 mRNA IlluminaHiSeqRNASeq I–IV Mixed

TCGAe 327 Copy number Genome Wide SNP 6.0 I–IV Mixed

TCGAe 289 Somatic mutation IlluminaGADNASeq/ IlluminaHiSeq I–IV Mixed

TCGAe 293 DNA methylation HumanMethylation450 I–IV Mixed

Abbreviation: 5-FU, 5-Fluorouracil; 
a The gene expression profiles of 28 gastric cancer cell lines with 5-FU GI50 data in this dataset were analyzed. 17 and 11 cell 
lines were defined as 5-FU-resistant and 5-FU-sensitive, respectively.

b In this dataset, there were 35 samples of patients treated with 5-FU-based chemotherapy and 130 samples of patients treated 
with surgery alone. These two groups of samples were analyzed. The clinical information of patients was kindly provided 
by Dr. Ju-Seog Lee.

c The survival data of patients was kindly provided by Dr. Jeffrey E. Green.
d Only 329 TCGA samples of patients in stage I-IV with mRNA-seq profiles, measured by IlluminaHiSeq RNASeq, were 
analyzed.

e 327, 289 and 293 samples among the 329 TCGA samples with mRNA-seq profiles also had copy number, somatic mutation 
and DNA methylation data produced by the corresponding platforms, respectively.
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were treated with 5-FU combined with other drugs after 
surgery, we hypothesized that the high-risk patients could 
benefit from neither 5-FU nor the other drugs used in 
combination, whereas the majority of low-risk patients 
could benefit from 5-FU-based chemotherapy. Thus, we 
defined these two gene pairs as 5-FU-relevant prognostic 
signature. 

It has been reported that overexpression of KCNE2, 
which encodes a member of potassium channel on plasma 
membrane, can facilitate cell apoptosis by mediating K+ 
efflux [33]. Overexpression of API5, which encodes an 
apoptosis inhibitory protein, is related to poor prognosis 
in various cancers [34]. PRPF3 encodes a constitutive 
protein associated with U4 and U6 small nuclear 
ribonucleoproteins (snRNPs) which make up spliceosome, 
and abnormal splicing activity is associated with 5-FU 
efficacy [35].

With the same approach, we have also analyzed 
the clinical relevance of cisplatin IC50 (50% Inhibitory 
Concentration)-related genes based on data of gastric 
cancer cell lines but failed to find their correlations with 
prognosis (see Supplementary Results). This result seems 
to be consistent with previous reports that no significantly 
different OS was observed between the 5-FU and cisplatin 
combination chemotherapy arm and 5-FU alone arm  
[36, 37]. Therefore, cisplatin therapeutic significance for 
gastric cancer should be further investigated.

Validation of the REOs-based 5-FU-relevant 
prognostic signature

We validated the signature in the GSE14208 dataset 
(Table 1), denoted as GC123, which included data for 118 
gastric cancer patients treated with 5-FU in combination 
with cisplatin and five patients treated with capecitabine 
in combination with cisplatin, respectively [17]. As 
capecitabine is a fluorouracil pro-drug, we collectively 
regarded the chemo-regimens of the GC123 dataset as 
5-FU-based chemotherapy. The signature predicted 88 
and 35 of the 123 patients into high- and low-risk groups, 
respectively. Compared with the low-risk group, the 
high-risk group had significantly shorter OS (HR = 1.87, 
95%CI 1.22-2.88, log-rank P = 3.90E–03, Figure 2B) and 
time to progression (TTP) (HR = 2.10, 95%CI 1.35−3.26, 
log-rank P = 8.37E–04, Figure 2C). The GC123 dataset 
lacked the necessary clinical data for multivariate Cox 
analysis. Alternatively, we proved that the transcriptome 
difference between the prognostic groups for the stage IV 
samples identified in this dataset was consistent with the 
corresponding difference for the 24 stage I–III samples 
involved in the GC35 dataset. Using Student’s t-test, 
with FDR < 20%, we extracted 3,927 DEGs between the 
high- and low-risk groups of stage IV samples from the 
GC123 dataset. Among these 3,927 DEGs, 456 genes 
were found to be deregulated between the 15 high-risk 

Table 2: Univariate and multivariate Cox regression analysis for the 5-FU-relevant prognostic 
signature

Variables
Univariate model Multivariate model

HR (95%CI) P HR (95%CI) P

The Prognostic signature

Low-risk 1 [Reference] 1 [Reference]

High-risk 2.78 (1.05–7.39) 3.39E–02 2.40 (0.83–6.96) 0.11

Tumor stage

I–II 1 [Reference] 1 [Reference]

III–IV 2.05 (0.79–5.29) 0.14 1.40 (0.47–4.11) 0.55

Tumor grade

Moderate 1 [Reference] 1 [Reference]

Poor/Undifferentiated 1.95 (0.66–5.81) 0.23 1.79 (0.56–5.72) 0.32

Gender

Female 1 [Reference] 1 [Reference]

Male 0.74 (0.29–1.92) 0.55 0.64 (0.21–1.96) 0.43

Abbreviation: HR, hazard ratio; CI, confidence interval.
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samples and 9 low-risk samples identified from the 24 
stage I–III samples in the GC35 dataset (Student’s t-test, 
P < 0.05). The concordance score of the 456 overlapped 
DEGs was 98.25%, which was unlikely to happen by 
chance (binomial distribution test, P < 1.11E–16; see 
Materials and Methods). This result provided evidence 
that the signature was independent of the disease stage. 

Functional enrichment analyses (hypergeometric 
distribution model, FDR < 10%) revealed that the up-
regulated genes in the high-risk group compared with 
the low-risk group identified from the GC123 dataset 
were significantly enriched in spliceosome, cell cycle, 
DNA replication, DNA repair (including mismatch 
repair, nucleotide excision repair, base excision repair 
and Homologous recombination) and ECM-receptor 

interaction, whereas the down-regulated genes were 
significantly enriched in immune, cell adhesion molecules 
and drug metabolism related pathways (Supplementary 
Table S1). The pathways enriched with DEGs between the 
two groups from the GC35 dataset were all reproducible 
in GC123 (Supplementary Table S2).

Finally, we applied the signature to predict the 
survival of the 130 samples of gastric cancer patients 
treated with surgery alone, which were extracted from the 
GSE15459 dataset and found that it could not stratify the 
patients into two groups with significantly different OS  
(HR = 1.21, 95%CI 0.69−2.13, log-rank P = 0.50, Figure 2D).  
This reflected that the signature was not just prognostic for 
gastric cancer patients in general but predictive for patient’s 
benefit from 5-FU-based chemotherapy. 

Figure 2: Kaplan-Meier estimates of overall survival and time to progression of the prognostic groups identified by the 
signature. (A) Overall survival curves for the GC35 dataset. (B) Overall survival curves for the GC123 dataset. (C) Time to progression 
curves for the GC123 dataset. (D) Overall survival curves of the 130 gastric cancer patients treated with surgery alone.
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Distinct genomic characteristics of prognostic 
groups

Applying the prognostic signature to the gene 
expression profiles of 329 gastric cancer samples 
documented in TCGA (Table 1), we recognized 286 high-
risk patients and 43 low-risk patients. Between the two 
prognostic groups for patients in stage I, II, III and IV, 
respectively, we detected 1,323, 3,103, 2,823 and 761 
DEGs (Rank Products, FDR < 20%). The four lists of DEGs  
shared 269, 706, 736 and 182 genes with the 3,927 
DEGs from the GC123 dataset for stage IV patients, and 
the concordance scores were 90.17%, 83.85%, 95.11% 
and 89.01% (binomial distribution test, all values of 
P < 1.11E-16), respectively. This result provided further 
evidence that the signature was independent of the disease 
stage. Among the 329 TCGA tumors, 327 (284 high-risk 
and 43 low-risk samples) had copy number alteration data; 
289 (249 high-risk and 40 low-risk samples) had somatic 
mutation data; and 293 (252 high-risk and 41 low-risk 
samples) had DNA methylation data (as described in 
Table 1). This allowed us to further characterize the two 
prognostic groups in genome and epigenome. 

Interestingly, we observed that the high-risk patients 
had a distinct copy number amplification landscape 
comparing to the low-risk patients, with significantly 
higher frequencies (Fisher’s exact test, FDR < 20%) of 
copy number gain at 7p22.1, 7p11.2, 7q21.2, 7q22.1, 
13q22.1, 13q12.3 and 12p12.1 (Figure 3), whereas 
the two prognostic groups had no difference in copy 
number loss regions. In further integrated analysis with 
the gene expression data, we found that 85 genes located 
in the seven amplified regions displayed significant 

overexpression in the high-risk samples (Spearman 
rank correlation, FDR < 20%). Functional enrichment 
analysis (FDR < 10%) showed that these 85 genes were 
significantly enriched in the “mismatch repair pathway”, 
indicating that the potentially enhanced ability of 
mismatch repair could lead to failure of 5-FU-induced 
DNA damage in the high-risk patients [38]. In the PPI 
network (see Materials and Methods), 12.94% (11) of 
the 85 genes with frequent amplification in the high-risk 
patients had direct PPI links with at least one of the 92 
5-FU metabolism-related genes collected by Tan et al. [39], 
which was significantly higher than the corresponding 
frequency of 4.05% for the rest 518 genes located in all 
the amplified regions in the gastric cancer tissues (Fisher’s 
exact test, P = 2.41E–03). As shown in Figure 4A, 
the 11 genes frequently amplified in high-risk patients 
directly interacted with nine 5-FU metabolism-related 
genes including ATR and CHEK1 [40] involved in cell 
cycle regulation, MLH1, PMS2 and EXO1 [38] involved 
in DNA repair, and BCL2 [41] involved in apoptosis 
(Supplementary Table S3). This result suggested that the 
high-risk patients had higher malignant degree of tumors.

Comparison of somatic mutation profiles of high- 
and low-risk samples characterized 156 genes whose 
mutation frequencies tended to be different between the 
two prognostic groups (Fisher’s exact test, P < 0.05). 
Among them, LRP1B was mutated in 31.33% of samples 
in the high-risk group while its mutation frequency was 
15% in the low-risk group. It has been reported that 
chromosomal, epigenetic and microRNA-mediated 
inactivation of LRP1B increases the growth and invasive 
capacity of tumor cells [42]. In addition to LRP1B, all 
other 155 genes had higher mutation frequencies in the 

Figure 3: The frequencies of the seven amplified regions in the two prognostic groups. ***P < 0.001, **P < 0.05.
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low-risk group compared with the high-risk group, 
significantly more than what expected by chance 
(P < 1.11E–16). Functional enrichment analysis 
(P < 0.05) showed that these 155 mutation genes 
tended to be enriched in Wnt signaling, Ras signaling 
and Regulation of autophagy pathways, which implied 
that mutation-induced disturbances of these pathways 
might promote 5-FU efficacy for the low-risk patients 
[43–45]. In the PPI network, 5.13% (eight) of the 155 
genes frequently mutated in the low-risk group had direct 
PPI links with at least one of the 92 5-FU metabolism-
related genes, which was significantly higher than the 
corresponding frequency of 0.93% for the rest 18,759 
mutated genes without significantly different mutation 
frequencies between the two prognostic groups (Fisher's 
exact test, P = 1.36E–04). As shown in Figure 4B,  
the eight mutation genes directly interacted with 13 
5-FU metabolism-related genes including RRM1 
involved in pyrimidine metabolism [46], ATM [40], 
MHL1 and BCL2 involved in DNA repair, cell cycle 
regulation and apoptosis (Supplementary Table S4). 
Therefore, it is possible that these mutation-induced 
disturbances could facilitate 5-FU efficacy for the low-
risk patients.

Distinct epigenomic characteristics of prognostic 
groups

Using the high- and low-risk TCGA samples 
with DNA methylation profiles, we identified 1,480 
hypermethylated genes and 1,235 hypomethylated 
genes in the high-risk group compared with the low-
risk group (Rank Products, FDR < 20%), respectively. 
Among the 1,480 hypermethylated genes, 400 genes 
were also identified as DEGs between the high-risk 
group and the low-risk group, and the concordance 
score of hypermethylation with down-regulation was 
81.75%, which was highly unlikely to occur by chance 
(binomial distribution test, P < 1.11E–16; see Materials 
and Methods). This result suggested that the down-
regulation of the concordant genes could be mediated by 
DNA hypermethylation. These genes were significantly 
enriched in the “cell adhesion molecules pathway” 
(FDR < 10%), indicating that hypermethylation-
induced suppression of this pathway might contribute to 
5-FU-based chemotherapy resistance. Among the 327 
hypermethylation-mediated down-regulated genes in the 
high-risk group, 5.81% (19) had direct PPI links with 
at least one of the 92 5-FU metabolism-related genes, 
which was significantly higher than the corresponding 

Figure 4: The PPI links between the 5-FU-metabolism-related genes and the genes with genomic or epigenomic 
alterations characterizing each of the prognostic groups. (A) The sub-network for the genes frequently amplified in the high-
risk group. (B) The sub-network for the genes frequently mutated in the low-risk group. (C) The sub-network for the hypermethylation-
mediated down-regulated genes in the high-risk group. The aquamarine nodes denote the 5-FU-metabolism-ralted genes. The pink nodes 
denote amplified genes (A), mutation genes (B), or hypermethylation-mediated down-regulation genes (C). The red nodes denote the 
5-FU-metabolism-related genes with genomic or epigenomic alterations. The red edges denote the direct PPI links between the aquamarine 
nodes and the pink or red nodes.
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frequency of 1.53% for the rest 12,476 genes without 
concordant hypermethylation with down-regulation in 
the high-risk group (Fisher’s exact test, P = 1.83E–06). 
As shown in Figure 4C, the 19 hypermethylation-
mediated down-regulated genes directly interacted with 
40 5-FU metabolism-related genes including NME1 
[47] and TK1/2 [48] involved in pyrimidine metabolism, 
MTR and SHMT1/2 [49] involved in folate metabolism 
(Supplementary Table S5). Folate, as a co-factor, can 
assist the 5-FU active metabolite flurodeoxyuridine 
monophosphate (FdUMP) to inhibit thymidylate synthase 
(TS) from DNA synthesis and repair [48]. The results 
implied that the hypermethylation-mediated down-
regulation of genes in the high-risk patients might disturb 
the conversion of 5-FU to active metabolites and inhibit 
5-FU-induced DNA or RNA damage. 

On the other hand, the concordance score of 
hypomethylation with up-regulation was only 39.63%, 
providing no evidence of hypomethylation- mediated up-
regulation of genes.

DISCUSSION

In this study, we developed a signature consisting of 
two gene pairs whose within-sample REOs were prognostic 
for gastric cancer patients treated with 5-FU-based 
chemotherapy. This REOs-based signature could perform 
robustly in independent datasets produced by different 
laboratories and could be easily applied at the individual 
levels. With this unique advantage, we were able to transform 
the transcriptional signature to other omics signature using 
the TCGA multi-omics data as a pivot. This strategy 
makes it feasible to explore the genomic and epigenomic 
characteristics of prognostic groups using the TCGA multi-
omics data which would otherwise be largely unsuitable for 
prognostic analyses because the diverse chemo-regimens 
could confound the survival outcomes. Our analyses showed 
that the high-risk patients had frequent amplification of 
genes affecting DNA repair, cell cycle regulation and 
apoptosis, indicating that they had high malignant degree of 
tumors. Meanwhile, the hypermethylation-mediated down-
regulation of genes in the high-risk group mainly affected 
pyrimidine and folate metabolism, which might decrease the 
conversion of 5-FU to active metabolites and inhibit 5-FU-
induced DNA or RNA damage. In contrast, the low-risk 
patients were characterized with frequent mutation of genes 
enriched in Wnt signaling, Ras signaling and Regulation of 
autophagy pathways, implying that these mutation-induced 
disturbances might facilitate 5-FU efficacy.

We need to clarify that we should not simply 
conclude that the high-risk patients identified by the 
prognostic signature are all resistant to 5-FU-based 
chemotherapy. Some of the high-risk patients’ tumor 
could be indeed resistant to 5-FU-induced DNA or RNA 
damage [48], while some others might be sensitive to 
5-FU but their tumor cell growth ability outperforms the 

drug efficacy [50]. Despite this problem, such a prognostic 
signature can still provide valuable information for clinical 
recommendation of adjuvant chemotherapy. Because all 
the high-risk patients should have high malignant degree 
of tumors and the routine clinical chemotherapy might be 
unable to improve their clinical outcomes, other therapy 
regimens or a larger dosage of chemotherapy could be 
recommended to these patients [51]. In contrast, the low-
risk patients identified by the signature should include 
both patients with high malignant degree of tumors who, 
however, can benefit from chemotherapy and patients with 
low malignant degree of tumors who could be at low risk 
without the help of chemotherapy. We could recommend 
5-FU-based chemotherapy to these patients. Especially, 
for the advanced patients with distant metastasis, because 
the improved survival of the low-risk patients must be 
attributed to 5-FU-based chemotherapy, the signature 
could identify the patients who can benefit from 5-FU-
based chemotherapy. To recognize the patients who are 
sensitive or resistant to 5-FU, we need gene expression 
profiles of patients with explicit information of response, 
which, however, are currently scarce in public databases. 
Also, future work is needed to study whether it is possible 
to design novel drugs targeting the genomic or epigenomic 
lesions characterizing the patients who cannot benefit from 
5-FU-based chemotherapy.

In summary, the discovery that the REOs-based 
signature could robustly predict prognoses of 5-FU-
treated gastric cancer patients will provide a translational 
biomarker in further stratifying the gastric cancer patients 
for 5-FU response. The multi-omics characteristics of the 
high-risk patients would expand our understanding of the 
mechanisms underlying 5-FU resistance in gastric cancer 
and provide novel therapeutic targets to overcome 5-FU 
resistance of gastric patients in the future.

MATERIALS AND METHODS

Data and pre-processing

Data for gastric cancer cell lines and tissues were 
downloaded from the Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/) and TCGA (http://
cancergenome.nih.gov/), as described in details in Table 1. 
The raw data (.CEL files) of microarray platforms were 
processed using the Robust Multichip Average algorithm 
[52]. Probe IDs were mapped to gene IDs using the 
corresponding platform files. If multiple probes were 
mapped to the same gene, the expression value for the gene 
was summarized as the arithmetic mean of the values of 
the multiple probes. The mRNA-seq profiles of level 3 for 
TCGA samples were downloaded from TCGA portal. We 
removed genes whose expression measurements were at or 
below a noise threshold of 0.2 reads per kilobase per million 
mapped reads (RPKM) in at least 75% of samples [29]. 

Copy number data of level 4 for TCGA samples 
analyzed by the GISTIC 2.0 algorithm [53] were 
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downloaded from Firehose (https://confluence.
broadinstitute.org/display/GDAC/Download). Using the 
significant regions of gain or loss identified by GISTIC 
2.0, we assigned a discrete copy number alteration status 
to each gene in each sample. Gene mutation data of level 
2 and DNA methylation data of level 3 for TCGA samples 
were downloaded from TCGA portal. For gene mutation 
data, only the non-synonymous mutations were included 
in our analysis. By integrating mutation data produced 
by different platforms, we generated a discrete mutation 
profile including 18,916 genes. DNA methylation profiles 
of level 3 provided beta-value for each CpG site in each 
sample. We focused on the 25,978 CpG sites located at 
the promoter regions of genes, which were measured 
by Illumina Infinium Human DNA methylation 450 and 
27 platforms. Probes that had any “NA”-masked data 
points and that were designed for sequences on X and Y 
chromosomes were removed [29]. Probe IDs were mapped 
to gene IDs using the corresponding platform file. If 
multiple probes were mapped to the same gene, the beta-
value for this gene was summarized as the arithmetic mean 
of the values of the multiple probes. Totally, 21,993 CpG 
sites mapped to 12,803 genes were analyzed in this study.

 The human protein-protein interaction (PPI) data 
including 142,583 distinct interactions and 13,693 human 
proteins were collected as previously described [54]. 
The types of interaction relationships between proteins 
included physical interaction, transcriptional regulation 
and sequential catalysis.

Correlation and survival analysis

The Pearson correlation analysis was used to 
evaluate the correlation of genes expression levels with 
GI50 values of cell lines. The univariate Cox regression 
model was used to evaluate the correlation of gene 
expression levels and REOs of gene pairs with OS, and the 
multivariate Cox regression model was used to evaluate 
the independent prognostic value of the signature after 
adjusting for clinical factors including stage, grade and 
gender. Survival curves were estimated by the Kaplan-
Meier method and compared with log-rank test.

Development of the prognostic signature

Let Ea and Eb represent the expression levels of 
two candidate genes, a and b, respectively, we classified 
cancer samples into two groups according to the within-
sample REO (Ea > Eb or Ea < Eb) of this gene pair. If the 
two groups of samples had significantly different OS, then 
we defined this gene pair as a prognosis-associated gene 
pair. If the Ea > Eb REO was associated with poor OS, 
then this REO voted for high risk; otherwise, low risk. 
All the prognosis-associated gene pairs were selected as 
prognostic signature. Finally, a sample was predicted to be 
of high risk if the REOs of all gene pairs of the signature 
in this sample voted for high risk; otherwise, low risk. 

Concordance scores

If two lists of DEGs detected separately from two 
datasets had k overlapped genes, among which s genes 
showed the same deregulation directions (up- or down-
regulation) in the two DEGs lists, then the concordance 
score was calculated as s/k. This score was used to evaluate 
the consistence of DEGs extracted from independent 
datasets.

If k genes were found to be correlated with both 
5-FU GI50 of cell lines and patients’ OS, among which 
s genes had the same signs positively (or negatively) 
correlated with 5-FU GI50 of cell lines and correspondingly 
negatively (or positively) correlated with patients’ OS, 
then the concordance score was calculated as s/k. This 
score was used to evaluate the clinical relevance of the 
GI50-related genes.

If k genes had both methylation and expression 
changes, among which s genes were hypermethylated (or 
hypomethylated) and correspondingly down-regulated  
(or up-regulated), then the concordance score was 
calculated as s/k. This score was used to evaluate the 
concordance of hypermethylation (or hypomethylation) 
with down-regulation (or up-regulation).

The probability of observing a concordance score of 
s/k by chance was evaluated by the cumulative binomial 
distribution model as following:
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where Pe is the probability of one gene having the 
concordant relationship between the two lists of genes by 
chance (here , Pe = 0.5).

Analysis of genomic and epigenomic data

The Student’s t-test was used to select DEGs 
between two groups of samples. The Rank Products 
algorithm [55], which is insensitive to batch effects, was 
used to select DEGs and differential DNA methylation 
genes (DMGs) between two groups of TCGA samples 
derived from multiple experimental batches.

Fisher’s exact test was conducted to extract genes 
which had significantly different frequencies of copy 
number alterations and mutation between two groups of 
TCGA samples. Spearman rank correlation analysis was 
used to evaluate the correlation between copy number 
alterations and expression changes after removing the 
batch effects by ComBat for TCGA samples [56]. 

Functional enrichment analysis 

Functional enrichment analyses were performed 
based on KEGG (the Kyoto Encyclopedia of Genes and 
Genomes) [57]. The hypergeometric distribution model 
was used to calculate the significance of biological 
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pathways enriched with genes of interest [58]. The 
Benjamini-Hochberg method was adopted to estimate the 
false discovery rate (FDR). All statistical analyses were 
performed using the R software package version 3.0.1.

The flowchart of the analysis procedure

Figure 1 describes the development, validation and 
application of the 5-FU-relevant prognostic signature.
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