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ABSTRACT
As tumors accumulate genetic alterations, an evolutionary process occurs 

in which genetically distinct subclonal populations of cells co-exist, resulting in 
intratumor genetic heterogeneity (ITH). The clinical implications of ITH remain poorly 
defined. Data are limited with respect to whether ITH is an independent determinant of 
patient survival outcomes, across different cancer types. Here, we report the results of 
a pan-cancer analysis of over 3300 tumors, showing a varied landscape of ITH across 
9 cancer types. While some gene mutations are subclonal, the majority of driver gene 
mutations are clonal events, present in nearly all cancer cells. Strikingly, high levels 
of ITH are associated with poorer survival across diverse types of cancer. The adverse 
impact of high ITH is independent of other clinical, pathologic and molecular factors. 
High ITH tends to be associated with lower levels of tumor-infiltrating immune cells, 
but this association is not able to explain the observed survival differences. Together, 
these data show that ITH is a prognostic marker in multiple cancers. These results 
illuminate the natural history of cancer evolution, indicating that tumor heterogeneity 
represents a significant obstacle to cancer control.

INTRODUCTION

Many of the somatic mutations found in cancer are 
clonal events, which occur in the founding cell at the time 
of tumor initiation, and are then propagated during clonal 
expansion. The model of branching evolution in cancer 
proposes that these “trunk mutations” are found in every 
cancer cell comprising a solid tumor. Subsequent “branch 
mutations” are subclonal events that only exist in a 
subpopulation of tumor cells. These subclonal populations 
of cells will expand or regress in response to the selective 
pressures exerted by the tumor microenvironment and 
cancer-directed treatment [1, 2]. Altogether, the repertoire 
of admixed clonal and subclonal populations is referred to 
as intratumor genetic heterogeneity (ITH).

Multifaceted studies of cancer genomes now allow 

the identification of clonal and subclonal alterations within 
tumors. Initial studies employed multi-sample sequencing 
to characterize genetic heterogeneity across different 
regions of a tumor [3-6], or single-cell sequencing [7-9], 
to define ITH within an individual cancer case. However, 
next-generation sequencing data derived from even single 
regions, or “bulk” tumor material can be analyzed to 
uncover subclonal populations. This approach has been 
shown to provide sufficient resolution for a window into a 
tumor’s overall level of heterogeneity, and could allow for 
the study of larger numbers of tumors [10-16]. 

It has been hypothesized that ITH would be 
associated with poorer clinical outcomes in cancer 
patients, but supportive evidence to date has been limited 
to small series in individual cancer types. This has mainly 
been studied in specific contexts, such as resistance to 
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therapy. For example, as treatment with chemotherapy, 
radiotherapy, or targeted agents applies selective pressure 
on a population of subclones, certain subpopulation(s) 
with resistance mutations can be observed to expand 
and populate recurrent tumors [17-21]. A key question is 
whether ITH has independent impact on a tumor’s natural 
history or a patient’s outcome, beyond known clinical, 
pathologic and molecular factors.

More generally, we hypothesize that the degree 
of ITH in a tumor can be considered an indication of a 
tumor’s potential for evolutionary adaptation. If this is 
true, we reason that ITH would be associated with more 
aggressive tumor behavior and poorer patient survival. 
The strongest evidence for this comes from a study of 
head and neck cancers, in which the degree of variation in 
mutational allelic frequencies was associated with poorer 
outcome [22].

To date, there have not been any large-scale studies 
investigating whether ITH is prognostic for patients 
with different types of cancer, providing information 
beyond standard clinicopathologic prognostic factors. If 
prognostic, ITH would have value akin to clinical staging, 
which can predict a patient’s likely clinical outcome at 
the time of initial diagnosis. Here, our objective was to 
determine whether ITH, analyzed in tumors at the time 
of treatment, impacts clinical outcome in patients. To 
this end, we performed a pan-cancer analysis of 9 cancer 
types (in total, 3383 tumors), integrating measures of 
tumor genetic heterogeneity with multifaceted clinical, 
pathologic and molecular data, to define the impact of ITH 
on patient survival.

RESULTS

Patient and tumor characteristics

To measure intratumor genetic heterogeneity (ITH) 
in cancers, we analyzed data from studies performed by 
The Cancer Genome Atlas Network (TCGA), for which 3 
types of complete data were available for >100 tumors: 1) 
SNP 6.0 array copy number, 2) single nucleotide variant 
read counts, and 3) clinical patient and tumor data (Figure 
1). TCGA tumors are high quality, frozen samples that 
are generally obtained from surgical resections. Clinical 
data are updated at regular intervals by the TCGA in 
concert with treating clinicians. We did not include cancer 
types if cohort sample sizes were <100, if these 3 data 
types were not publicly available in full, or if the cancer 
type exhibited a narrow range in survival times (e.g., 
glioblastoma or papillary thyroid carcinoma). We analyzed 
data for nine cancer sites: bladder urothelial carcinoma 
(BLCA, n = 359), breast invasive carcinoma (BRCA, n = 
878), head and neck squamous cell carcinoma (HNSC, n = 
280), clear cell carcinoma of the kidney (KIRC, n = 189), 

lower grade glioma (LGG, n = 484), lung adenocarcinoma 
(LUAD, n = 425), lung squamous cell carcinoma (LUSC, 
n = 178), prostate adenocarcinoma (PRAD, n = 389), 
and melanoma (SKCM, n = 201). Altogether these data 
comprised 3383 tumors with genetic and clinical data. We 
report the results of all analyzed datasets, and this study 
adheres to the REMARK (Reporting Recommendations 
for Tumor Marker Prognostic Studies) reporting guidelines 
[23] (see Methods).

Landscape of subclonal populations

The analysis workflow is depicted in Figure 1. 
For each primary tumor, we used SNP 6.0 array data 
to determine allele-specific copy number with ASCAT 
(allele-specific copy number of tumors), which estimates 
and adjusts for ploidy and non-variant cell admixture [24]. 
We validated the copy number-based purity estimates with 
an orthogonal expression-based technique, which produced 
highly concordant results (p = 1x10-7; see Methods) [25]. 
Using the exome data and TCGA somatic mutation calls, 
we obtained measures of tumor coverage and variant allele 
frequency for each single nucleotide variant. For each 
tumor, we input aberrant cell fraction and major and minor 
allele copy number from ASCAT, together with variant 
allele frequencies for somatic mutations, into PyClone 
[14]. PyClone estimates the cancer cell prevalence for 
each somatic mutation in a sequenced tumor sample, 
and subsequently uses Bayesian methodology to cluster 
cancer cell prevalence estimates into clonal populations. 
Intratumor heterogeneity can be expressed as the number 
of genetically distinct (sub)clonal populations (SCPs) in a 
tumor, where each SCP represents the outcome of a clonal 
expansion. We included SCPs containing ≥2 mutations, 
because SCPs defined by only 1 mutation are of unknown 
biologic significance. Because these tumors are only 
sampled in a single region, these measurements of SCPs 
may underestimate geographic ITH across regions of a 
tumor. However, comparable methodologies integrating 
purity, ploidy and mutational read counts to identify 
SCPs have been used in prior studies [10-12, 15, 16, 
26, 27] and have been shown to have high concordance 
with single-cell sequencing data [9] and histologic 
measures of ITH [15]. This study therefore evaluates the 
prognostic importance of ITH observed in single-region 
tumor sequencing. As an orthogonal confirmation of our 
measurements of ITH, we separately inferred SCPs with 
an independent tool (EXPANDS), which also determines 
subclonal architecture by integrating somatic mutation 
allele frequencies with local ploidy, albeit with a different 
mathematical model [16]. EXPANDS and PyClone-based 
analyses have been shown to be highly concordant[15], 
and were strongly correlated in our primary analysis (p = 
3.01 x10-4; see Methods). 

The landscape of SCPs across 9 cancer types is 
depicted in Figure 2A. SCPs were identified in 3364 
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(99.4%) tumors. These data were derived from tumors 
processed by the Biospecimen Core Resource of the 
TCGA, which extracts significant amounts of resected 
tissue from each tumor. Although the goal of such 
processing is not to separate distinct parts of the tumor, 
the processing is likely to provide a broad representation 
of tumor DNA. Based on these datasets, the mean number 
of SCPs was 1.96. The majority of bladder, breast, and 
lung squamous cancers were dominated by a single clonal 
expansion, while most head and neck, kidney, lower grade 
glioma, lung adenocarcinoma, prostate and melanoma 
tumors were clearly polyclonal. Overall, 59% of tumors 
were polyclonal, and 24% harbored more than 2 clonal 
populations (Supplementary Table 1). ITH was lowest 
in breast cancers, where the vast majority of tumors 
(63.1%) had one dominant clonal population, with mean 
SCP number 1.47. This distribution is similar to findings 
reported in an independent breast cancer study [12], and in 
a study of several other cancer types [15]. Heterogeneity 
was highest in clear cell renal carcinoma, where 13.2% of 
tumors were defined by only one clonal expansion, and 

mean SCP number was 2.84. ITH can also be compared 
in a more granular fashion, across tumors and cancer 
types, using the Shannon index, which is a measure of 
information uncertainty that is commonly used to quantify 
subpopulation diversity (Figure 2B, Supplementary Table 
2). 

For each cancer type, the majority of MutSig 
significantly (q<.10) mutated genes had SNVs with mean 
cancer cell prevalence (CCP) >90%. This indicates that 
most recurrent cancer gene mutations are present in every 
cancer cell. This is consistent with a scenario where these 
clonal mutations result from early events in tumorigenesis. 
For example, frequent mutations in driver genes such 
as TP53, RB1, CTNNB1, KEAP1, MLL2, PTEN and 
CDKN2A were almost universally clonal events (>90% 
mean CCP). However, there were some notable exceptions 
to this pattern of clonal mutations in driver genes, such as 
IDH1 in LGG (88% mean CCP), EGFR in LUAD (78%), 
and PIK3CA in HNSC (83%), LUAD (86%) and LUSC 
(87%). These results are largely concordant with findings 
reported in a prior study [11]. Interestingly, we observed 

Figure 1: Analysis of intratumor heterogeneity, and its prognostic significance, using multifaceted genomic data. SNP6 
array data are used to determine allele-specific copy number and tumor purity. These data are integrated with mutation variant allele 
frequencies in exome sequencing data to infer the cellular prevalence of each mutation. (Sub)clonal populations are identified by clustering 
mutations by their cellular prevalence. Multivariable models of survival can then be generated, incorporating intratumor heterogeneity and 
other relevant clinical factors.
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that many lower-prevalence mutations in driver genes 
were often subclonal. These included ERBB2 in LUAD 
(70% mean CCP), NFE2L2 in LUAD (78%, compared to 
92% in LUSC), ARID1A in lower grade glioma (55%), 
and multiple genes in KIRC (PTEN, 77%; SETD2, 68%; 
TP53, 51%; ARID1A, 37%). In fact, nearly all mutated 
genes in clear cell renal carcinoma, which had the highest 
overall degree of ITH, were commonly subclonal (Figure 

2C and Supplementary Figure 1). 

Intratumor heterogeneity and clinical outcome

To dissect the relationship between ITH and clinical 
outcome, we first examined head and neck squamous cell 
carcinoma (HNSC). This tumor type was chosen due to 
published data suggesting an association of ITH with 

Table 1. Multivariable Cox regression models for overall survival in all cancer types, incorporating ITH and other 
covariates.
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survival. This prior analysis [22, 28] used a measure of 
dispersion in variant allelic frequencies called MATH. 
Analyzing clinical, pathologic and genetic data from 
280 tumors in the TCGA HNSC dataset, we confirmed 
that a number of known prognostic factors were 
associated with overall survival (OS), including clinical 
stage (tumor/node/metastasis), human papillomavirus 
(HPV) status, TP53 mutation, degree of copy number 
alteration and mutational load, and predominance of copy 
number alteration (C class) or mutations (M class) [29] 
(Supplementary Figure 2). We also confirmed that higher 
MATH scores were associated with poorer OS in HNSC 
(Supplementary Figure 3). Perhaps because MATH is 
based on variability in mutation allelic frequencies, MATH 
scores were most strongly associated with each tumor’s 
degree of copy number alteration (p < 0.001), moreso 
than with measures of (sub)clonal populations (p = 0.35) 

(Supplementary Figure 4, Supplementary Table 3). 
In HNSC, we observed a consistent trend of 

decreasing OS with increasing heterogeneity. (HR for 
polyclonal tumors=1.23, p = .033; Figure 3A). The 
association was strongest for high levels of ITH (“High 
ITH,” SCP>4 or z-score of log-transformed SCP +1.75; 
HR = 2.91, p = .022, Supplementary Table 4). Starting 
with all relevant covariates (to a limit of one covariate per 
15 events), we used stepwise Cox multivariable regression 
to build a parsimonious model for overall survival, 
incorporating ITH and all of the above clinical, pathologic 
and molecular prognostic factors. This demonstrated that 
high ITH was independently associated with OS (HR = 
2.51; p = .007), when adjusting for HPV status, TP53 
mutation, and stage (Figure 3B, Supplementary Table 
5A). In contrast to ITH, other genomic metrics (such as 
mutational load and MATH) did not have independent 

Figure 2: The landscape of intratumor heterogeneity across different types of cancer. A. Histograms of the distribution of 
(sub)clonal populations in 9 cancer types. B. Boxplots of intratumor heterogeneity, expressed as the Shannon Index of diversity, by cancer 
type. The Shannon Index approaches zero as the number of (sub)clonal populations decreases, or become more equal in size. C. Spectrum 
of clonality among recurrently mutated (MutSig q<0.10, present in ≥3 cancer types) genes. Each pie is colored by the mean cancer cell 
prevalence of the gene mutation in that cancer type. The size of the white pie slice indicates the proportion of mutations categorized as 
subclonal (<70% cellular prevalence). For a more comprehensive survey of genes, see Supplementary Figure 1. 
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prognostic value when controlling for these same 
covariates (Supplementary Table 5B-C). The association 
between high ITH and OS was independent of adjuvant 
radiotherapy administration (Supplementary Table 5D, 
Supplementary Figure 5), indicating that ITH reflects 
prognostic aspects of tumor biology, rather than simply 
response to therapy.

Having established that high ITH had prognostic 

value in HNSC, we then asked if this factor was 
informative in the 8 other cancer types. We decided a 
priori to apply the same SCP thresholds for high ITH as 
in HNSC (SCP > 4 and z-score +1.75; see Methods). For 
each cancer type, we examined the association between 
ITH and OS in multivariable analyses, controlling for 
any clinical, pathologic and molecular factors that were 
significant on univariate analysis or clinically relevant. For 

Figure 3: Intratumor heterogeneity is associated with poorer patient survival. A. Kaplan-Meier curve of overall survival 
by degree of intratumor heterogeneity in the discovery dataset (HNSC). A trend toward poorer overall survival is evident as the number 
of subclonal populations increases. The log-rank test was used for comparisons. B. Overall survival for low and high ITH HNSC tumors, 
adjusting for HPV status, stage, and TP53 mutation status. The survival curve is plotted at the mean of other covariates in the multivariable 
model. C. Survival curves for low and high ITH tumors in 8 additional cancer types. In each case, curves are plotted at the mean of other 
covariates adjusted for in the regression models. The x-axis ranges from 0-5 years. The y-axis depicts the probability of overall survival, 
except for PRAD, where relapse-free survival is used. D. Hazard ratios for death (relapse in PRAD), with 95% confidence intervals, for 
each cancer type, where ITH is adjusted for other covariates as shown in C.
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prostate cancer (PRAD), we modeled relapse-free survival 
(RFS), because deaths were rare during the available 
follow-up period. We found that high ITH was associated 
with significantly poorer survival in LGG (HR = 8.30, p = 
.011), PRAD (HR = 5.76, p = .016), KIRC (HR = 6.06, p 
= .003), HNSC (HR = 3.75, p = .007), and BRCA (HR = 
2.50, p = .015). These 5 associations remained significant 
controlling false discovery rate (Benjamini-Hochberg) at 
q < .10. There was a borderline significant trend toward 
poorer OS in SKCM (HR = 2.81, p = .06). No association 
was observed in LUSC (HR = 1.59, p = .29), BLCA (HR 
= 1.05, p = .91) and LUAD (HR = 0.83, p = .63). The 
results of these analyses are summarized in Figure 3C-
D. Complete parameters of all multivariable models are 
detailed in the Table 1.

Intratumor heterogeneity and molecular subtypes

High levels of ITH may be associated with poorer 
outcome as the likelihood of treatment-resistant subclonal 
populations increases. ITH may also be considered an 
indicator of a tumor’s potential to adapt by undergoing 
evolution under selective pressure. We performed 
additional analyses to rule out the possibility that high 
ITH was merely a surrogate marker for other clinical or 
molecular factors driving poorer prognosis.

The Cox regression models for survival included 
adjustment for multiple factors, including prognostically-
relevant molecular subtypes, which have relevance in 
tumor types such as head and neck cancer, breast cancer, 
and lower grade glioma. We performed additional analyses 
to determine if tumors with high ITH had poorer prognosis 
due to an association with more aggressive molecular 

Figure 4: Associations of intratumor heterogeneity with other clinical, molecular, and immune factors. A. Distribution 
of (sub)clonal populations by HPV status in HNSC, showing a non-significant trend toward higher ITH in HPV+ tumors. B. Distribution 
of (sub)clonal populations by molecular and histologic subtype in LGG. High ITH was more common in IDH mutant, 1p-19q co-deleted 
tumors, and in oligodendrogliomas. C. Distribution of (sub)clonal populations by molecular and receptor subtype in BRCA, showing no 
differences between subgroups. Categorical comparisons were made with the Fisher exact or χ2 test. D. Mean levels of RNAseq-derived 
immune cell infiltration, by cancer type. Error bars represent ± 1 SEM. E. Column graph showing enrichment for immune cell infiltration 
in tumors with low ITH, by cancer type. The y-axis represents the z-score of absolute increase, or decrease, in immune infiltration in low 
ITH tumors.
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subtypes, and found that this was not the case. For HNSC, 
the degree of heterogeneity was slightly higher among 
HPV+ tumors (independent sample t-test p = .10; Figure 
4A), a subtype with superior survival (Supplementary 
Figure 2A). Among LGGs, ITH was strongly prognostic, 
even when controlling for IDH mutation and 1p-19q co-
deletion status. The majority of high ITH tumors were 
IDH-mutant/1p-19q co-deleted (chi-squared p = .002) 
or had oligodendroglioma histology (chi-squared p = 
.037) (Figure 4B). This subtype has the best prognosis 
among LGGs (Supplementary Figure 6A). Within this 
category of tumors, high ITH remained associated with 
poorer survival (p = .01) (Supplementary Figure 6B). In 
the BRCA cohort, we found that high ITH was associated 
with poorer survival, independent of clinical stage and 
receptor status. PAM50 expression-derived molecular 
subtype data were available for 522 of 878 cases; when 
substituting PAM50 subtype for receptor status, high 
ITH remained a significant prognostic factor (HR = 2.44, 
p = .03) (Supplementary Figure 7A). High ITH was not 
more common in poorer-prognosis tumors such as triple 
negative receptor status or basal-like molecular subtype. 
In fact, high ITH status was evenly distributed across 
receptor (p = .50) and PAM50 (p = .28) subtypes (Figure 
4C). The only enrichment was seen in the very highest 
ITH tumors (top 1%), which were concentrated in the 
ER+/Her2+ (p = .012) receptor subtype and the Luminal 
B (p = .043) molecular subtype. The prognostic impact 
of high ITH appeared to affect all molecular subtypes but 
was most significant in the Her2-enriched tumors (p = .04) 
(Supplementary Figure 7B).

Intratumor genetic heterogeneity and other 
factors

We then examined other clinical or genetic factors 
for correlation with ITH. As would be expected, the degree 
of ITH was strongly correlated with mutation number 
in most cancer types - all except LUAD and LUSC 
(Supplementary Table 6A). Mutational load was added 
as a covariate in all Cox regression models, to examine 
whether this factor explained the prognostic value of high 
ITH. In all cancer types, ITH, but not mutational load, was 
prognostically significant (Supplementary Table 6B). This 
indicates that the prognostic value of ITH is not mediated 
by any prognostic impact of mutational load. In fact, any 
prognostic aspect of mutational load in tumors could be 
mediated by ITH.

High ITH was associated with older age in 1 of 9 
cancer types - LGG (p = .001) (Supplementary Table 7A). 
We performed additional Cox multivariable modeling 
to adjust for age, and found that ITH still retained 
independent prognostic value in LGG (HR for high ITH 
= 10.19, p = .005) (Supplementary Table 7B). We did not 
identify any other significant associations between ITH 

and additional patient or tumor characteristics, including 
tumor size, disease stage, smoking history, prior treatment, 
subsequent treatment, or genetic alterations.

Immune infiltration and tumor heterogeneity

We also considered that ITH might be associated 
with altered levels of tumor-infiltrating immune cells, 
which could be driving the observed survival differences. 
Recent data in melanoma and non-small cell lung cancer 
have shown that tumors with a higher mutational burden 
have an increased number of predicted neoantigens, 
and are more likely to respond to immunotherapy [30, 
31]. It is believed that the neoantigens resulting from 
tumor mutations promote anti-tumor immunity and 
thereby facilitate therapeutic responses. We therefore 
asked if more genetically heterogeneous tumors had 
higher levels of immune cell infiltration. To this end, we 
analyzed RNAseq data to measure immune populations 
in the microenvironment of sequenced tumors [32] (see 
Methods). This approach infers the relative infiltration 
levels of most immune cells and overexpression of genes 
related to IFNγ signaling (Figure 4D, Supplementary 
Figure 8A-8B).

Across all cancers, we found an inverse association 
between tumor heterogeneity and immune cell 
infiltration. Tumors with high ITH tended to have lower 
levels of immune cell infiltration, or T cell infiltration, 
controlling for cancer type with logistic regression 
(immune infiltration p = .020, T cell infiltration p = .055) 
(Supplementary Table 8; Supplementary Figure 8C-E). 
When stratified by cancer type, there was insufficient 
statistical power to discern differences in all subsets, but a 
similar numerical trend was recapitulated in the majority 
of cancer types (Figure 4E, Supplementary Figure 8C-D). 
The association was most statistically significant for clear 
cell renal carcinoma (KIRC), which showed markedly 
elevated immune infiltrates in low ITH tumors (OR = 0.23, 
p=.009). We therefore performed additional multivariable 
survival modeling in KIRC, including immune infiltrate 
data as a covariate, and found that this did not attenuate 
the prognostic strength of ITH (Supplementary Table 
9A). Likewise, for HNSC, where the reverse trend was 
seen - immune and T cell infiltrates were elevated in high 
ITH tumors - we found that immune infiltrate data did not 
attenuate the prognostic strength of ITH (Supplementary 
Table 9B). Taken together, these data indicate that, while 
ITH is associated with the level of immune cell infiltrates, 
immune infiltration does not mediate the poorer survival 
associated with high levels of ITH.

DISCUSSION

Intratumor genetic heterogeneity (ITH) is a 
feature of tumors that refers to the repertoire of co-
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existing genetically distinct subclonal populations. 
ITH is believed to result from a process of branching 
evolution. Mathematical models reveal that some degree 
of ITH is probably present in all large solid tumors 
[33]. The expansion of subclonal populations under 
selective pressure is believed to explain the phenomenon 
of resistance to targeted cancer therapy [17, 19-21, 
34]. However, beyond the context of predicting tumor 
responses to specific therapies, data are limited with 
respect to whether intratumor heterogeneity has prognostic 
value for patient survival, independent of existing clinical 
and pathologic factors. 

Here, in a pan-cancer analysis of over 3300 
tumors, we demonstrate that genetically heterogeneous 
tumors, comprised of multiple subclonal populations, 
tend to be associated with poorer patient survival than 
tumors harboring low/moderate levels of intratumor 
heterogeneity. We found that the prognostic value of ITH 
was significant in many cancer types, and in multivariable 
analyses, remained significant when controlling for other 
relevant clinical, pathologic and molecular features. 

Our analyses integrated SNP array copy number 
and whole exome sequencing mutational data from 
TCGA datasets, to infer the subclonal architecture of 
tumors, and to classify them as having low or high 
degrees of intratumor heterogeneity. These genomic data 
were obtained from sequencing of single tumor regions. 
Therefore, these analyses may potentially understate the 
wider degree of heterogeneity across different spatial 
regions in a tumor. Nevertheless, we found that this 
measure of ITH was sufficiently sensitive to be strongly 
associated with survival outcome in multiple cancer types. 
The association between high ITH and poorer survival 
was most evident in lower grade glioma, prostate, clear 
cell kidney, head and neck, and breast cancers, and 
had borderline significance in melanoma. We applied 
consistent definitions of high ITH to each of these 
different cancers, and observed similar effects on survival 
outcomes. 

It is possible that a more sensitive measure of ITH, 
such as multi-region or single cell sequencing, would 
have stronger prognostic value in additional cancer types. 
Nevertheless, it is particularly compelling for a molecular 
or genetic biomarker to have significant prognostic 
value across diverse types of cancer, suggesting that an 
important aspect of tumor biology can be captured in the 
measurement of ITH within single samples.

These results, showing the independent prognostic 
value of ITH, are consistent with hypotheses and data that 
have been generated by studies within individual cancer 
types. For example, in a study of patients with relapsed 
chronic lymphocytic leukemia, subclonal mutations 
were associated with more aggressive disease [27]. 
Similar findings were observed in 11 patients with lung 
adenocarcinoma: recurrent tumors had more subclonal 
mutations [35]. In a series of head and neck cancers, the 

degree of dispersion in mutation allelic frequencies was 
linked with survival outcome, showing the prognostic 
value of this metric in HNSC, and suggesting that tumors 
with more subclonal populations may have poorer 
outcome [22]. Limitations of these prior studies include 
differing sets of methods used to define ITH, and limited 
patient numbers. Our findings expand on this prior work, 
by applying a unified methodology to measure ITH, across 
a large set of tumors representing a diverse set of cancers. 

In a pan-cancer study examining the landscape 
of ITH, Andor et al did not observe a clear association 
between ITH and survival within individual cancers, but 
did observe that prognosis appeared poorest among tumors 
with intermediate levels of copy number variation. Across 
all tumor samples, survival appeared to be better among 
tumors with lower levels of ITH, but this association was 
confounded by comparing low ITH cancer types (thyroid 
and prostate - cancers with low mortality) to high ITH 
tumor types (melanoma and lung - cancers with higher 
mortality)[15]. Altogether, these preliminary data have 
generated a strong rationale to systematically explore the 
prognostic significance of ITH. The question of whether 
ITH provides truly prognostic information in cancer, 
above and beyond clinical, pathologic and molecular 
factors, had heretofore remained unanswered.

In this study, we first examined subclonal 
populations in HNSC, a cancer type in which prior 
data suggested an association between ITH and clinical 
outcome. We identified a prognostic cutpoint for ITH, 
and applied this same threshold to 8 other cancer types, 
using multivariable regression to adjust for other relevant 
clinicopathologic factors. To rule out the possibility 
that ITH was not per se prognostic, and might merely 
be acting as a surrogate marker of another prognostic 
variable, we examined the association between ITH and 
multiple other factors, such as age, extent of disease, 
tumor size, molecular subtype, genetic features, smoking 
exposure, and types of prior or subsequent treatments. 
ITH and mutational burden were strongly correlated, but 
multivariable models demonstrated that ITH, and not 
mutation number, was the prognostic factor. 

We also noted a tendency for high ITH tumors to 
have lower levels of immune infiltration. This relationship 
was strongest in clear cell renal carcinoma and melanoma, 
cancer types in which immune surveillance is known to be 
functional. Additional multivariable models showed that 
the prognostic impact of ITH was not mediated by these 
differences in immune infiltration. 

These associations are potentially consistent 
with the model of cancer immunoediting, a dynamic 
process proposed by Schreiber, in which the immune 
system sculpts the formation of cancers by eliminating 
(or “editing”) immunogenic components of a tumor. 
Immunoediting has been shown to be largely mediated 
by T-cell recognition of tumor antigens, leading to the 
selective outgrowth of tumor subclones that lack rejection 
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antigens and have lower levels of immunogenicity [36]. 
This mechanism has been recently observed in the 
control of tumor ploidy. An intact immune system, via 
T lymphocytes and interferons, is able to selectively 
eliminate hyperploid cancer cells, in contrast to their 
diploid counterparts [37]. This raises the possibility 
that the immune system might also constrain subclonal 
evolution within tumors. Indeed, our findings suggest 
that low ITH tumors may, in part, reflect the results of 
immunoediting; specifically, the elimination of certain 
immunogenic subclonal populations. Because the ITH 
analysis adjusts for tumor purity, this association does not 
reflect the effects of immune infiltration on mutational 
frequencies. However it is important to note that these 
data are only hypothesis-generating. A genomic analysis 
cannot conclusively demonstrate this process, since 
the key subclonal populations in question are absent. 
We cannot conclude whether they were eliminated by 
the immune system, or were never there to begin with. 
However, if immunoediting can in fact constrain ITH, 
one could speculate that the cancers most likely to benefit 
from immunotherapy would be those with high mutational 
loads (and thus, many neoantigens), but low ITH (thereby, 
having undergone more immunoediting by a functional 
immune surveillance system). Further work will be 
necessary to explore the relationship between immune 
surveillance, immunoediting, and subclonal populations. 

The vast majority of highly prevalent driver 
mutations tended to be clonal events, present in every 
cancer cell, suggestive that these are generally early 
or “trunk” mutational events. In contrast, some lower 
prevalence mutations in driver genes (such as TP53 
in KIRC, or NFE2L2 in LUAD) tended to be mostly 
subclonal. These findings provide empirical evidence for 
recent theoretical models of tumor evolution, showing that 
driver mutations with even a small fitness advantage are 
able to expand and become dominant within a short period 
of time, whereas passenger mutations without a major 
fitness advantage are more likely to remain subclonal 
[38]. However, there are some important exceptions to 
this pattern. We found that clear cell kidney cancers tend 
to have high degrees of ITH, and therefore, most driver 
genes in this cancer type were subclonal. Furthermore, in 
other cancer types, some prevalent driver gene mutations 
appeared to be frequently subclonal. This phenomenon 
has also been observed in a prior study, which reported 
that 15-20% of mutations in driver genes such as IDH1, 
PIK3CA and EGFR were subclonal, and linked many of 
these to a mutational signature of APOBEC-mediated 
mutagenesis [11]. 

There are several caveats to our analysis. First, 
ITH was delineated in single tumor samples, and limited 
to mutations (not including subclonal structural variants 
or copy number alterations). Statistical power was also 
limited by sequencing depth, reducing sensitivity for low 
frequency subclonal events (such as those occurring below 

5-10% variant allele frequency) [39]. These limitations 
would tend to attenuate the strength of associations in 
this study: the measures of ITH in this study are likely 
to be conservative, potentially underestimating the true 
extent of heterogeneity in tumors, as evidenced by studies 
that have sequenced multiple regions of tumors [3-5, 40, 
41]. We do note that other prior studies have used similar 
methodology to our study [10-12, 15, 16], and that single-
sample analyses of ITH using PyClone or EXPANDS 
have been shown to correlate strongly with histologic and 
cellular measures of ITH [15]. Therefore, these analytic 
techniques have been shown to be sufficiently sensitive 
to generate informative ITH data. To generate a truly 
exhaustive picture of ITH may require sequencing at the 
single cell level [7, 42]. Given these limitations, our study 
is likely to underestimate the prognostic value of ITH 
which may in fact be greater, and more generalizable to 
other cancer types, than what we were able to discern. 

On the other hand, an advantage to the exploration 
of ITH in single samples is scale, an important requirement 
when performing multivariable analyses of clinical 
biomarkers. A statistical strength of this study was the 
inclusion of over 3000 tumors. The smaller cohort sizes 
in earlier studies of ITH did not allow for examination of 
potential association with clinical outcomes. At present, 
this study design may be the only opportunity to examine 
the prognostic role of ITH at scale.

In conclusion, our study demonstrates that ITH is 
common in cancer, and that high levels of ITH impact 
survival outcomes negatively in many types of cancer. 
There are several possible explanations for this. Higher 
levels of heterogeneity increase the likelihood of a tumor 
harboring a subclonal population with a driver mutation 
that will be resistant to treatment. More generally, ITH 
may be a marker for a tumor’s potential to evolve under 
selective pressure, and therefore its ability to grow in a 
fluctuating microenvironment. Additionally, high ITH 
may, in some cases, be the result of a tumor escape from 
the immunoediting processes that otherwise eliminate 
tumor cells or constrain clonal evolution. 

In this study, the negative prognostic impact of ITH 
was a general feature of these tumors’ biology, rather than 
attributable to a tumor’s response to specific treatments. 
Indeed, ITH seems to be more than a measurable biologic 
process; our data indicate that it is a major obstacle to 
successful treatment of a patient’s cancer. Ultimately, 
effective precision oncology will require the ability to 
target not only altered driver genes, but also the broad 
processes of tumor evolution. An improved understanding 
of the characteristics and consequences of ITH will be a 
necessary first step to targeting tumor evolution, whether 
with targeted therapy, immunotherapy, or a combination 
of multiple modalities.



Oncotarget10061www.impactjournals.com/oncotarget

MATERIALS AND METHODS

Data Sources

We analyzed data from genomics studies of solid 
tumors performed by The Cancer Genome Atlas Network 
(TCGA), using Affymetrix SNP6 array data for tumor and 
normal samples, clinical data, and exome sequencing data 
in level 3 curated MAF files. We report the results of all 
datasets analyzed. This study adheres to the REMARK 
(Reporting Recommendations for Tumor Marker 
Prognostic Studies) reporting guidelines [23]. A completed 
REMARK checklist is provided as Supplementary Table 
10.

Computational tools and workflow

SNP6 arrays were processed together, quantile-
normalized, and median-polished using Affymetrix Power 
Tools. Allele-specific intensities were determined with the 
bird-seed algorithm, and then segmentation performed 
with allele-specific piecewise constant fitting (ASPCF). 
We used ASCAT 2.1 [24] to generate allele-specific copy 
number segmented information and tumor purity data. To 
infer subclonal populations, we used PyClone 0.12.7 [14]. 
For each non-synonymous single nucleotide variant called 
by TCGA, we input reference allele and variant allele 
read counts into PyClone. At each region, we additionally 
specified the copy number of the major and minor allele 
and estimates of tumor purity, both derived from ASCAT. 
PyClone output data are clustered using a Dirichlet 
process, to generate the number of mutation clusters in 
each sample. For the purposes of this study with a clinical 
endpoint, we considered the most biologically relevant 
clonal expansions as those defined by multiple mutations 
and therefore only included as SCPs clusters containing 
≥2 unique mutations. 

Multivariable models

We used Cox multivariable regression after testing 
the proportional hazards assumption. The prognostic value 
of ITH was first examined in the discovery dataset, HNSC, 
given prior findings suggestive of such an association 
[22, 28]. The current analysis revealed that SCP > 4, 
corresponding to z-score (of log-transformed SCP) +1.75, 
maximized prognostic value in HNSC. We then applied 
the same threshold for high ITH (SCP > 4 ≈ log SCP 
z-score +1.75) in the additional cancer types. In almost 
all cancers, SCP > 4 also approximated z-score +1.75, and 
this cutpoint was used. For BRCA and KIRC, SCP > 4 
did not approximate z-score +1.75, so z-score alone was 
used, corresponding to SCP>2 in BRCA and SCP>5 in 

KIRC. This was due to the distributions of SCPs in BRCA 
and KIRC being skewed differently than other cancers 
(Supplementary Table 2) (e.g. <1% of BRCA tumors had 
>4 SCPs). To rule out the possibility that the prognostic 
significance of ITH in BRCA and KIRC might be due to 
the choice of different SCP numerical thresholds, we ran 
additional analyses with multiple alternative cutpoints for 
high ITH. We found that high ITH remained significantly 
prognostic at each of the alternate SCP thresholds, 
indicating that the impact of ITH is robust and not limited 
to the specific SCP cutpoints (Supplementary Figure 9A-
B).

Immune populations

We used an in silico approach for the decomposition 
of immune cell populations in bulk mRNA-sequenced 
tumors using ssGSEA, methodological details of which 
have been reported separately [32]. The associations 
between immune infiltration, T cell infiltration, and 
interferon gamma signaling, and tumor heterogeneity were 
modeled with bivariate logistic regression controlling for 
cancer type. 
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