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ABSTRACT
Autophagy (macroautophagy) is well known as an evolutionarily conserved 

lysosomal degradation process for long-lived proteins and damaged organelles. 
Recently, accumulating evidence has revealed a series of small-molecule compounds 
that may activate or inhibit autophagy for therapeutic potential on human diseases. 
However, targeting autophagy for drug discovery still remains in its infancy. In this 
study, we developed a webserver called Autophagic Compound-Target Prediction 
(ACTP) (http://actp.liu-lab.com/) that could predict autophagic targets and relevant 
pathways for a given compound. The flexible docking of submitted small-molecule 
compound (s) to potential autophagic targets could be performed by backend reverse 
docking. The webpage would return structure-based scores and relevant pathways 
for each predicted target. Thus, these results provide a basis for the rapid prediction 
of potential targets/pathways of possible autophagy-activating or autophagy-
inhibiting compounds without labor-intensive experiments. Moreover, ACTP will be 
helpful to shed light on identifying more novel autophagy-activating or autophagy-
inhibiting compounds for future therapeutic implications.

INTRODUCTION

Autophagy refers to an evolutionarily conserved, 
multi-step lysosomal degradation process, in which a 
cell degrades long-lived proteins and damaged organelles 
[1, 2]. Macroautophagy (hereafter referred to as 
autophagy) is a major, regulated catabolic mechanism that 
involves the delivery of cytoplasmic cargo sequestered 
inside double-membrane vesicles to the lysosome [3], 
and is linked to several pathological processes, including 
cancers and neurodegenerative diseases [4, 5]. Autophagy 
is considered as a physiological mechanism that may 
serve as a means for temporary survival and provide a 
way to recycle macromolecules as an alternative energy 
source. If cellular stress leads to continuous or excessively 
induced autophagy, cell death will ensue [6, 7]. Several 
studies have reconciled the opposing roles of autophagy in 
diseases and demonstrated that autophagy can act as either 

a guardian or executioner [8–11]. The different roles of 
autophagy depend on disease stages, surrounding cellular 
environment, and attempted therapeutic interventions 
[12–15]. 

Accordingly, targeting autophagy may be a promising 
therapeutic strategy for treatment of diseases. Recently, 
accumulating evidence has revealed many small-molecule 
compounds that can activate or inhibit autophagy and may 
therefore have remarkable therapeutic potential on diseases, 
such as cancers and neurodegenerative diseases [16, 17]. 
However, targeting autophagy for drug development 
remains in its infancy. Here, we designed a webserver called 
Autophagic Compound-Target Prediction (ACTP) (http://
actp.liu-lab.com/) that can predict potential autophagic 
targets and relevant pathways for given compound (s). 
The ACTP webserver will help to explore more possible 
autophagy-activating or autophagy-inhibiting drugs for 
potential therapeutic purposes.
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RESULTS

Potential autophagic targets in ACTP

We collected 430 target proteins (199 were reviewed, 
and 231 were unreviewed) from Uniprot. The basic protein 
information included the accession number, full name, 
and molecular function. We identified GO annotation 
terms and related diseases information from the Online 
Mendelian Inheritance in Man (OMIM) database. Crystal 
structures of 86 targets were downloaded from the Protein 
Data Bank (PDB) and saved as 948 PDB files. Six hundred 
and fifteen PDB structures were selected as available 
structures for docking, and their PDB codes were also 
saved (Table 1 and Supplementary Table S1). We prefer to 
retain PDBs that have both high resolution and complete 
amino acid motif covering active sites and compound-
binding sites. For those PDBs have better resolution and 
worst coverage than a second one, we will firstly consider 
the sequence integrity (that means the PDB entry has a 
complete amino acid motif covering active sites and 
compound-binding sites) rather than resolution; thus, we 
will retain PDBs have complete amino acids motif even if 
they have relative lower resolution. For those PDBs have 
lower resolution and worst coverage, we will perform 
homology modeling instead of using these PDBs. These 
proteins were assigned to the following 9 functional target 
groups: antigen, enzyme, kinase, receptor, protein binding, 
nucleotide binding, transcription factor binding, tubulin 
binding, and others (Figure 1). For reviewed proteins 
without available crystal structures and the BLAST result 
with the template shown > 30% similarity, we performed 
homology modeling to generate predicted structures 
using Discovery Studio 3.5 (Supplementary Table S2 and 
Supplementary Table S3). 109 protein sequence files were 
downloaded from Uniprot and saved in FASTA format. 
Then, the templates were found using BLAST. Finally, the 
structures of 109 targets were generated and saved in PDB 
format. In addition, the PDB files were available from the 
corresponding PDB number hyperlink on the result page 
of the webserver. For example, the mTOR file contains the 
following information: the accession number, “P42345”; 
the name, “Serine/threonine-protein kinase mTOR 
(Mechanistic target of rapamycin)”; and the function, 
“Serine/threonine protein kinase is a central regulator of 
cellular metabolism, growth and survival in response to 
hormones, growth factors, nutrients, energy, and stress 
signals. mTOR can activate or inhibit the phosphorylation 
of at least 800 proteins directly or indirectly.” The PDB 
accession number for mTOR is 4dri, and the PDB file 
was downloaded from http://rcsb.org. Discovery Studio 
3.5 was then used to prepare the PDB file for docking 
by deleting water, cleaning the protein, and detecting the 
interaction site.

Target prediction and pathways for 
autophagy-activating or autophagy- 
inhibiting compounds

The docking results were shown in a table of target 
proteins and include the top 10 docking scores and the 
P-value of the score. In this study, we used rapamycin 
and LY294002 as an example. We found that mTOR has 
the best binding score with rapamycin, 151.062; while 
PI3K has the best binding score with LY294002, 162.157 
(Figure 2A). Rapamycin and LY294002 bound perfectly 
in the mTOR and PI3K inhibitor pocket, respectively. 
Moreover both of them had a similar conformation in 
different docking algorithms (Figure 2B). 

To construct the global human PPI network based 
on PrePPI, we collected 24,035 human protein accession 
numbers from Uniprot and saved them in a text file. 
The results page was created using PHP with accession 
numbers from the text file and request interaction data. All 
the information were imported into MySQL database. As 
a result, 1.1 million PPIs were collected to construct the 
global network. We generated the ARP subnetwork and 
created the autophagy subnetwork, which contains 93,532 
PPIs. The autophagy subnetwork data were also available 
on the “download” page. It was combined with PHP and 
MySQL web2.0 to generate a dynamic graphical network. 
For example, mTOR has 308 PPIs and PI3K has 60 PPIs 
in their cytoscape visual network. The target was in the 
center and was marked in yellow. The targets of high 
and low credible level ARP were displayed in green and 
gray, respectively (Figure 2C). Moreover we carried out 
an additional blind-test with 15 compounds with known 
targets (Supplementary Table S4). And, the result showed 
the predict targets with the significant Libdock score of 
14 compounds contained the real target of the compound  
(10 compounds’ real target had the top Libdock score). 
Only one compound’s predicted targets result did not 
contain the real target. Thus, it suggests that ACTP has 
a reliable accuracy for predict the target of autophagy-
activating or autophagy-inhibiting compounds.

Webserver development

Based upon the above-mentioned results, we 
developed the ACTP webserver to offer a simple interface 
for users to submit compounds and predict their potential 
targets. For the first time, a user should create an account 
to submit compounds and view the results though the 
user interface. We support either CAS number or mol/
mol2 files as the submission format. When submitted, 
the compound is sent to the Discovery Studio to perform 
virtual screening with ARPs. We would notify the users 
when the job is complete. If a user has submitted any 
compound previously, the webserver will display the 
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Table 1: Structure-based autophagic targets (Reviewed)

Uniprot ID Uniprot 
Accession

Number 
of PDBs Target type Uniprot ID Uniprot 

Accession
Number 
of PDBs Target type

P53_HUMAN P04637 74 antigen 5HT2B_HUMAN P41595 2 receptor

DRA_HUMAN P01903 55 antigen NR1D1_HUMAN P20393 5 receptor

2B11_HUMAN P04229 34 antigen B2CL1_HUMAN Q07817 38 protein binding

2B14_HUMAN P13760 9 antigen RGS19_HUMAN P49795 1 others

DRB5_HUMAN Q30154 4 antigen BAD_HUMAN Q92934 1 protein binding

ITB4_HUMAN P16144 8 antigen BCL2_HUMAN P10415 11 protein binding

DRB3_HUMAN P79483 3 antigen TAU_HUMAN P10636 6 protein binding

DPB1_HUMAN P04440 3 antigen S100A9_HUMAN P06702 3 others

DPA1_HUMAN P20036 3 antigen PARK7_HUMAN Q99497 26 others

PRKN2_HUMAN O60260 4 enzyme S100A8_HUMAN P05109 3 others

SIR2_HUMAN Q8IXJ6 5 enzyme SQSTM_HUMAN Q13501 5 protein binding

CATD_HUMAN P07339 4 enzyme MLP3B_HUMAN Q9GZQ8 6 others

ATG4B_HUMAN Q9Y4P1 4 enzyme PA1B2_HUMAN P68402 1 others

ATG4A_HUMAN Q8WYN0 2 enzyme NBR1_HUMAN Q14596 8 others

UBP13_HUMAN Q92995 2 enzyme GOPC_HUMAN Q9HD26 8 others

HDAC6_HUMAN Q9UBN7 3 enzyme SPT5H_HUMAN O00267 5 protein binding

TIGAR_HUMAN Q9NQ88 1 enzyme MT3_HUMAN P25713 2 others

SIR1_HUMAN Q96EB6 4 enzyme RAB1A_HUMAN P62820 8 nucleotide binding

ATG3_HUMAN Q9NT62 1 enzyme BNIP3_HUMAN Q12983 2 protein binding

HERC1_HUMAN Q15751 2 enzyme PSN1_HUMAN P49768 1 protein binding

EPM2A_HUMAN O95278 2 enzyme GBRL1_HUMAN Q9H0R8 2 tubulin binding

MK14_HUMAN Q16539 103 kinase GATA4_HUMAN P43694 1 transcription factor 
binding

AKT1_HUMAN P31749 13 kinase IF16_HUMAN Q16666 4 others

CDK5_HUMAN Q00535 5 kinase BECN1_HUMAN Q14457 5 others

DAPK1_HUMAN P53355 21 kinase TBC14_HUMAN Q9P2M4 1 others

KPYM_HUMAN P14618 16 kinase FOXO1_HUMAN Q12778 2 others

MK08_HUMAN P45983 20 kinase MLP3A_HUMAN Q9H492 2 others

DAPK2_HUMAN Q9UIK4 7 kinase ACBD5_HUMAN Q5T8D3 1 others

DAPK3_HUMAN O43293 4 kinase CISD2_HUMAN Q8N5K1 2 others

ABL2_HUMAN P42684 7 kinase NPC1_HUMAN O15118 1 others

AAKB2_HUMAN O43741 8 kinase ZC12A_HUMAN Q5D1E8 1 ion binding

AAPK2_HUMAN P54646 5 kinase MLP3C_HUMAN Q9BXW4 2 others

PIM2_HUMAN Q9P1W9 2 kinase ATG13_HUMAN O75143 1 others

AAKG1_HUMAN P54619 3 kinase WDFY3_HUMAN Q8IZQ1 1 others

STK11_HUMAN Q15831 1 kinase GBRL2_HUMAN P60520 1 protein binding

LRRK2_HUMAN Q5S007 2 kinase ATG12_HUMAN O94817 2 others

PK3C3_HUMAN Q8NEB9 5 kinase A16L1_HUMAN Q676U5 3 others

AAKB1_HUMAN Q9Y478 1 kinase ATG5_HUMAN Q9H1Y0 3 others

TBK1_HUMAN Q9UHD2 4 kinase VPS51_HUMAN Q9UID3 1 others
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results directly. The results page includes not only the 
docking scores and a snap-shot, but important information 
about the target proteins. For example, if rapamycin was 
submitted, the input can be either 53123–88–9 or a mol/
mol2 file. Then, the task and process stage are shown on 
a user dashboard. When the task is complete, the user can 
click “VIEW” to see the score table, target information 
and PPIs (Figure 3). Currently, a due to the limitation of 
server is that a user could only submit 5 tasks per day.

DISCUSSION

Autophagy may possess the contradictory functions 
because in addition to being primarily a survival 
mechanism, it can also lead to type II programmed cell 
death (type II PCD) under certain conditions [18, 19]. Our 
understanding of the relationship between autophagy and 
diseases has benefited from the availability of rapamycin 
and other autophagy-activating or autophagy-inhibiting 
agents, such as tamoxifen, chloroquine and resveratrol, 
which have been approved for potential clinical use [20, 21]. 
Several small-molecule compounds have been reported to 
activate or inhibit autophagy in different diseases. However, 

few of them has been purposefully designed as autophagic 
activators or inhibitors. Thus, it is urgent to find an avenue 
for rapidly screening and identifying a wealth of possible 
autophagy-activating or autophagy-inhibiting compounds 
without labor-intensive experiments.

Herein, we designed the Autophagic Compound-
Target Prediction (ACTP) (http://actp.liu-lab.com/) 
webserver, which can predict a specific compound’s 
autophagic targets and relevant pathways. We used a 
series of bioinformatics methods to assemble together 
for solving only one problem. When a given compound 
has been submitted, we could correspondingly predict 
its potential autophagic targets and relevant pathways 
for therapeutic purposes. There are some key points for 
our methods to construct the ACTP webserver. Firstly, 
the autophagy-related protein (ARP) data were collected 
and classified into different subclasses for accurate target 
identification. Secondly, autophagic targets and their 
relevant pathways were provided for possible mechanism 
analysis. Lastly but most importantly, autophagic 
targets and relevant pathways could be predicted 
according to given compounds by structure-based docking 
technique. Interestingly, the ACTP could provide a clue 

AAPK1_HUMAN Q13131 1 kinase FBX7_HUMAN Q9Y3I1 1 others

ULK1_HUMAN O75385 1 kinase LYRIC_HUMAN Q86UE4 1 transcription factor 
binding

ABL1_HUMAN P00519 30 kinase TCPR1_HUMAN Q7Z6L1 1 others

MTOR_HUMAN P42345 12 kinase STX17_HUMAN P56962 1 others

GBRAP_HUMAN O95166 7 receptor VAMP8_HUMAN Q9BV40 1 others

OPTN_HUMAN Q96CV9 3 receptor SNP29_HUMAN O95721 1 others

Figure 1: Molecular classification of potential autophagic targets. Herein, 86 targets with crystal structures were assigned to 
the following groups: peptide antigen binding, other enzymes, kinases, receptors, transcription factor binding, protein binding, nucleotide 
binding, tubulin binding and others. Groups are marked with different colors. The number of targets contained in each group is displayed 
in the pie chart.
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Figure 3: The ACTP user interface. The simple user interface enables task submitting by inputting the compound name, CAS number, 
or by uploading a mol/mol2 formatted file. The pre-input example and tips help users become accustomed to the input format. 

Figure 2: Predicted autophagic targets and related pathways from ACTP result page. (A) The output pages for (a) rapamycin 
(CAS number: 53123–88–9) and (b) LY294002 (CAS number: 154447–36–6) were displayed. The dock scoring table displayed on the page 
shows the top 10 possible targets according to the dock score. (B) Snapshots of (a) rapamycin docked with mTOR and (b) LY294002 docked 
with PI3K (the highest scored target in the result table) were also shown. (C) Users can also see the target PPI network graphically by 
clicking the view PPI hyperlink in the superscript of the target Uniprot AC, (a) mTOR, (b) PI3K. The PPI network is displayed by the 
cytoscape web plugin.



Oncotarget10020www.impactjournals.com/oncotarget

for themselves prone to activators or inhibitors of these 
predicted autophagic targets. 

Of course, there are some limitations for ACTP. The 
binding sites of the reviewed targets are directly imported 
from PDB files; thus, ACTP cannot predict the binding of 
compounds to other pockets. Moreover, for many proteins, 
the structures are not available yet, and the homology 
modeling is not sufficiently accurate for prediction. 
Therefore, ACTP cannot currently confirm the results 
for these proteins. However, with a growing number of 
protein structures to be analyzed, we will continue to add 
some new protein structures, which could be used for 
accurate target prediction. Moreover, we plan to update 
the latest data every two months, enabling continuous 
improvement of the webserver and processes.

In summary, Autophagic Compound-Target 
Prediction (ACTP) may provide a basis for the rapid 
prediction of potential targets and relevant pathways for a 
given autophagy-modulating compound. These results 
will help a user to assess whether the submitted compound 
can activate or inhibit autophagy by targeting which kind 
of key autophagic proteins and also has a therapeutic 
potential on diseases. Importantly, ACTP will also provide 
a clue to guide further experimental validation on one 
or more autophagy-activating or autophagy-inhibiting 
compounds for future drug discovery.

MATERIALS AND METHODS

Target protein information collection and 
preprocessing

Autophagy-related proteins (ARPs) included genes 
or proteins that are associated with the Gene Ontology 
(GO) term “autophagy” (http://www.geneontology.org) 
[22]. The useful information on ARPs was extracted from 
Uniprot database (http://www.uniprot.org). Autophagic 
targets were classified based on their molecular functions. 
Targets were assigned to 9 functional target groups. 
Cluster analysis was deemed to be relevant if the over-
represented functional groups contained at least 5 targets. 
Moreover, functional clustering was performed by the 
DAVID functional annotation tool (http://david.abcc.
ncifcrf.gov/). The functional categories were GO terms 
that is related to molecular function (MF). Specific 
docking strategies were employed for different groups. 
For instance, kinase binding pockets were focused on 
the active sites, while antigens were focused on their 
interaction surfaces with other proteins. It may reduce 
the number of false positive results in in silico analysis  
[23, 24]. Also, the active sites were divided into two 
groups by their position for predicting if a compound is an 
inhibitor or agonist of the target [25, 26]. Taken a kinase 
as an example, inhibitors targeting active sites for kinases, 
the agonists were chose screening sites for according to the 
different regulation mechanism of kinases. For example, 

the AMPK agonist named compound 991 is envisaged 
to strengthen the interaction between the kinase and 
carbohydrate-binding module (CBM) to protect a major 
proportion of the active enzyme against dephosphorylation 
[25]. If available, ARP crystal structures were downloaded 
from the Protein Data Bank (PDB) website (www.rcsb.
org) [27]. For proteins that have more than one PDB entry, 
we screened the PDB files by resolution and sequence 
length until only one PDB entry remained. For proteins 
without crystal structure, we created homology modeling 
from sequences using Discovery Studio 3.5 (Accelrys, 
San Diego, California, United States). Sequence data 
were downloaded from Uniprot in FASTA format, and 
the templates were identified using BLASTP (Basic Local 
Alignment Search Tool) (http://blast.ncbi.nlm.nih.gov). 
ARPs were divided into two credibility levels (high and 
low) according to their review status in Uniprot.

Protein-protein interaction (PPI) network 
construction

The cellular biological processes of specific targets 
were predicted based on the global architecture of PPI 
network. We used an in-house PHP script to construct 
Autophagy interaction networks (AINs) based on the 
global PPI network were from PrePPI database (https://
bhapp.c2b2.columbia.edu/PrePPI) [28] and Uniprot 
accession numbers. The ARP accession numbers were 
used to generate an AIN subnetwork. PPIs with different 
credible levels were marked in ACTP. The interactions 
were recorded in SQL format, which could be imported 
into MySQL database. The Cytoscape web plug-in was 
used to visualize the interactions [29].

Webserver generation

The ACTP webserver was generated with Linux, 
Apache, MySQL and PHP. Users can inquiry the database 
with their private data through the web interface. 
Currently, all major web browsers are supported. The 
processed results will be returned to the website. Web 
2.0 technologies (i.e., JavaScript/AJAX and CSS 
functionalities) enables interactive data analysis. For 
example, based on AJAX and flash, ARP interaction 
networks can be indexed by accession numbers and 
visualized on the web page with Cytoscape web.

Reverse docking 

Reverse docking is the virtual screening of targets 
by given compounds based on various scoring functions. 
Reverse docking allows a user to find the protein targets 
which can bind to a particular ligand [30]. We performed 
reverse docking with Libdock protocol [31], which is a 
high-throughput docking algorithm that positions catalyst-
generated compound conformations in protein hotspots. 
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Before docking, force fields including energies and forces 
on each particle in a system were applied with CHARMM 
[32] to define the positional relationships among atoms 
and to detect their energy. The binding site image consists 
of a list of non-polar hot spots, and positions in the binding 
site that were favorable for a non-polar atom to bind. Polar 
hot spot positions in the binding site were favorable for 
the binding of a hydrogen bond donor or acceptor. For 
Libdock algorithm, a given ligand conformation was put 
into the binding site as a rigid body and the atoms of the 
ligand were matched to the appropriate hot spots. The 
conformations were ranked using the following score:

0.1= −Score Strain XSASA
where SASA is the solvent accessible surface area of 

a particular conformation measured in Å2 and the strain is 
in units of kcal/mol. A match then determines the unique 
rigid body transformation that minimizes the following 
equation:
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where R is a 3 × 3 rotation matrix and T is a 
translation vector. A single conformation can produce up 
to 10,000 matches. Thus, in the final stage, the matches 
were clustered after ranking, and only the top 25–100 
entries were chosen for the next stage. Two values were 
reported as the measures of success of the two scores 
in pulling out active compounds. The first step of these 
measurements is the enrichment factor and is given by the 
following equation:

/
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N is the number of compounds in the library; A is 
the number of active compounds; and a is the number of 
active compounds in the top n compounds. The second 
value is the statistical significance of the enrichment and 
is given by the following equation:
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N, A, n, and a are defined as the enrichment. 
Comparing with other dock algorithm Libdock is quicker 
and support concurrent computation as well. Moreover 
protocol in Discovery Studio can be used to perform the 
Libdock algorithm for a series of proteins. Thus, Libdock 
is a suitable algorithm for high throughput identifying the 

various conformations of compounds within a receptor. 
Target-compound interactions were further optimized 
by molecular dynamics using CHARMM and Clean 
Geometry function of Discovery Studio. A T-test was also 
add to analyze the significance of the Libdock score of 
each target. 
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