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ABSTRACT
The emergence of vascular disrupting agents (VDAs) is a significant advance in 

the treatment of solid tumors. VDAs induce rapid and selective shutdown of tumor 
blood flow resulting in massive necrosis. However, a viable marginal tumor rim always 
remains after VDA treatment and is a major cause of recurrence. In this review, we 
discuss the mechanisms involved in the resistance of solid tumors to VDAs. Hypoxia, 
tumor-associated macrophages, and bone marrow-derived circulating endothelial 
progenitor cells all may contribute to resistance. Resistance can be monitored using 
magnetic resonance imaging markers. The various solutions proposed to manage 
tumor resistance to VDAs emphasize combining these agents with other approaches 
including antiangiogenic agents, chemotherapy, radiotherapy, radioimmunotherapy, 
and sequential dual-targeting internal radiotherapy.

INTRODUCTION

The emergence of small molecule agents that target 
the tumor vasculature is an advance in the treatment of 
malignant solid tumors [1-3]. Antivascular drugs can 
be divided into two types according to the molecular 
target strategy: antiangiogenic agents and vascular 
disrupting agents (VDAs). Antiangiogenic agents act on 
the signaling pathways between tumor cells, endothelial 
cells (ECs), and stromal cells to inhibit the formation 
of new blood vessels [4, 5]. The United States Food 
and Drug Administration (FDA) has approved several 
antiangiogenic agents such as bevacizumab, sunitinib, 
and sorafenib. However, they are not the focus of this 
review. Small molecule VDAs kill tumor cells by 
inducing rapid and selective shutdown of tumor blood 
flow. Although VDAs have not been approved by the 
FDA, they have shown significant therapeutic potential 
and are a focus of current research [6]. VDAs mainly 
include tubulin-binding agents such as combretastatins 
and drugs related to 5, 6-dimethylxanthenone-4-acetic 
acid (DMXAA). Combretastatin A-4 3-O-phosphate 
(CA4P; the lead combretastatin) and its derivatives such 
as the more effective CA1P (Oxi4503) and synthetic 
analogue AVE8062 are currently in preclinical and clinical 
development [6]. Despite the encouraging therapeutic 
effects of VDAs, clinical trials have shown that residual 

marginal tumor cells are less sensitive to CA4P [7] and can 
survive nutrient-deficient conditions. Moreover, the viable 
marginal tumor cells are a major cause of recurrence and 
metastasis [6, 7] and are indicative of resistance to VDAs 
[8, 9]. 

In this review, we summarize the mechanisms 
involved in the resistance of solid tumors to VDAs, the 
role of imaging markers in visualizing and understanding 
resistance, and the various solutions proposed to overcome 
tumor resistance to VDAs.

MECHANISMS OF SOLID TUMOR 
RESISTANCE TO VASCULAR 
DISRUPTING AGENTS

Residual viable tumor rim and hypoxia

The VDA-induced rapid shutdown of the tumor 
vasculature leads to massive central tumor necrosis. 
The entire tumor, including the necrotic portion and 
residual viable rim, become hypoxic due to the reduced 
blood supply [10, 11]. Thus, hypoxia may be one of the 
key factors that contribute to VDA resistance. Since 
the residual viable tumor cells may obtain oxygen and 
nutrients from nearby blood vessels in the normal tissue, 
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they can metabolically adapt to hypoxic conditions and 
become hypoxia-tolerant. According to El-Emir et al. 
[11], hypoxia reaches a maximum at both the central 
and peripheral portions of a tumor 1 hour after CA-4P 
administration. It is then alleviated after 24 hours and 
is restricted to regions adjacent to the central necrotic 
area. Hypoxia results in upregulation of the expression 
of hypoxia inducible factor 1α (HIF-α), which activates 
transcription of a large panel of genes involved in 
angiogenesis and increases the levels of circulating 
proangiogenic cytokines including vascular endothelial 
growth factor (VEGF) and stromal derived factor 1α 
(SDF-1α) [12]. Experiments with tumor-bearing animals 
have confirmed that after VDA treatment, the levels 
of VEGF and basic fibroblast growth factor increased 
significantly [13-15]. Newly formed tumor vessels provide 
nutrients for residual peripheral tumor cells and promote 
growth and proliferation. Under hypoxic conditions, HIF-
1α is also involved in glycolysis and the microenvironment 
acidification of tumors, which influence both cell survival 
and cell death. Thus, HIF-1α drives tumorigenesis and 
metastasis [16, 17]. 

Long-term follow-up of clear-cell carcinoma 
patients who underwent radical nephrectomy showed that 
VEGF and HIF-1α were closely related to prognosis, and 
that VEGF was an independent predictor of prognosis 
[18]. The enhanced invasiveness of HIF-1α-induced tumor 
cells has been demonstrated in vitro [19]. Another study 
confirmed that HIF-1α could independently increase the 
malignant potential of a hypoxia-tolerant tumor cell line 
[20]. Under anoxic conditions, tumor cells have been 
shown to express C-X-C chemokine receptor type 4, 
which may also enhance the malignant potential of tumor 
cells via the relevant signaling pathways [21-23]. 

Tumor-associated macrophages

Tumor-associated macrophages (TAMs) are 
circulating monocyte- or resident tissue macrophage-
derived cells. Although TAMs are thought to promote 
angiogenesis, they may function antagonistically (i.e., 
exert either pro- or antitumor effects). For instance, 
Welford et al. [24] showed that there was an increase in 
SDF-1- and TIE2-expressing macrophages (TEMs), a 
proangiogenic subset of TAMs, with CA4P treatment, 
suggesting that TEMs could limit the therapeutic efficacy 
of CA4P in tumor-bearing mice. Other studies have 
demonstrated similar results [25, 26]. However, Jassar 
et al. [27] showed that DMXAA directly activates TAMs 
and induces an effective antitumor response in murine 
models of lung cancer and mesothelioma. Wallace et 
al. [28] confirmed the finding that DMXAA activates 
dendritic cells and induces cytotoxic antitumor effects. 
Therefore, TAMs may have different roles with respect to 
the therapeutic effects of VDAs. 

Bone marrow-derived circulating endothelial 
progenitor cells

Circulating endothelial progenitor cells (CEPs) are 
bone marrow (BM)-derived immature endothelial cells in 
the peripheral blood and account for a small proportion of 
circulating endothelial cells (CECs). CEPs are defined by 
cell surface expression of vascular endothelial cadherin, 
dim CD31 and CD45, CD34, CD133, and vascular 
endothelial growth factor receptor-2 (VEGFR-2 or KDR 
in humans; flk-1 in mice) [29-31]. The VDA-induced 
mobilization of BM-derived CEPs was first reported in 
an animal study [32]. After tumor-bearing mice were 
treated with the VDA derivative OXi-4503, the CEP count 
increased significantly and reached a peak 4 hours after 
treatment. The CEPs appeared to home to sites of viable 
tumor cells where they incorporated into the endothelial 
cells of tumor vessels and promoted tumor vasculogenesis 
[32]. Thus, tumors may become resistant to VDAs through 
a CEP-related mechanism. 

The phenomenon of VDA-induced CEP 
mobilization has also been reported in humans. For 
example, Farace et al. [33] determined that CEP levels 
increased to various extents 3 to 7 days after treatment 
with AVE8062 in patients with solid tumors. In contrast 
to the findings of Shaked et al. [29] and Farace et al. [32, 
33], Taylor et al. [8] observed two spikes in CEP levels 
in different tumor-bearing animal models in which the 
animals were treated with VDAs. An early increase in CEP 
levels was observed 2 to 4 hours after CA4P treatment, 
and a rapid and significant rise in CEP levels occurred 72 
or 96 hours after CA4P treatment compared to the levels 
after 4 hours. The early CEP peak suggested a general 
host response to CA4P because it was detected in both 
tumor- and non-tumor-bearing animals. However, the 
late increase in CEPs reflected the specific VDA-induced 
tumor responses of vascular repair and regrowth because 
the delayed increase in CEP levels was exclusively 
observed in tumor-bearing animals, and was verified in 
different animal species and tumor models [8]. The second 
spike in CEPs reportedly parallels elevated levels of serum 
granulocyte colony-stimulating factor (G-CSF), matrix 
metallopeptidase-9 (MMP-9), and bone marrow stromal-
derived factor-1 (SDF-1) [34-37], suggesting that these 
three proteins could promote the delayed mobilization of 
CEPs to the peripheral circulation after VDA treatment.

The theory of VDA-induced CEP mobilization 
has been challenged by the conflicting results of other 
studies [8, 38, 39]. Ziegelhoeffer et al. [40] investigated 
the relationship between BM-derived cells expressing 
enhanced green fluorescent protein (GFP) and new 
vessels in murine hind limb ischemia and tumor models, 
and failed to find any endothelial or smooth muscle cells 
displaying GFP signals. Although some GFP-positive 
cells were observed in the local ischemic area, they were 
identified as fibroblasts, pericytes, or leukocytes rather 
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than endothelial cells. They concluded that BM-derived 
cells do not incorporate into the adult growing vasculature, 
but may function as supporting cells. Göthert et al. [41] 
traced the origin of the tumor endothelium in a transgenic 
murine model and determined that no BM-derived cells 
contributed to the tumor endothelium. 

Purhonen et al. [39] induced angiogenesis in 
four different genetically tagged mouse models and 
studied the mobilization of BM-derived cells to the 
endothelium activated by VEGF and tumors. Interestingly, 
they observed many BM-derived cells surrounding 

endothelial cells in blood vessel walls, but did not 
observe incorporation of these cells into the endothelium. 
They also did not observe mobilization of BM-derived 
VEGFR-2+ cells into the circulation and concluded that 
tumor growth does not require BM-derived CEPs. Many 
of these studies challenged the theory that CEPs are 
involved in tumor vasculogenesis, although VDAs were 
not used to induce BM-derived CEP mobilization in these 
studies. However, in a rat liver xenograft tumor model 
treated with ZD6126, Chen et al. [12] found that VDA 
treatment did not induce a significant increase in CEPs or 

Figure 1: Diagram illustrating the mechanisms of tumor resistance to vascular disrupting agents. A. Solid tumor treated 
with a VDA. B. VDA-induced central necrosis and a residual viable tumor rim. Hypoxia upregulates the expression of HIF-1α, which 
increases the levels of a number of circulating proangiogenic cytokines and chemokines. C. Activation of proangiogenic pathways mobilizes 
BM-derived CEPs into the circulation, and is accompanied by increases in serum G-CSF, MMP-9, and SDF-1α. CEC levels increase due 
to irreversible injury of the tumor vasculature caused by VDA treatment. D. CEPs are attracted to the tumor where they incorporate into 
the endothelial cells of tumor vessels and promote vasculogenesis. The increased levels of TAMs and TEMs induced by VDAs limit the 
therapeutic efficacy. Thus, all of these factors contribute to the resistance of tumors to VDAs. Adapted from Health VL, Bicknell, R. 
Anticancer strategies involving the vasculature. Nature Reviews Clinical Oncology. 2009; 6: 395-404 (Figure 1) and Schmid MC, Varner 
JA. Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. Journal of Oncology. 2010; 
201026: 1-10 (Figure 2).
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plasma SDF-1α 4 hours or 2 days following therapy.
There are a number of possible explanations for the 

above-mentioned conflicting results. First, there may have 
been some false-positives regarding the identification of 
CEPs in earlier studies due to the signal superimposition 
of vessel wall CEPs and adjacent hematopoietic cells 
[40]. Second, as reported in some studies [39, 40], 
BM-derived cells were recruited only as perivascular 
supporting cells or pericytes. They occasionally expressed 
CEP markers, but did not form part of the endothelium 

during angiogenesis. Therefore, pericytes that originated 
from hematopoietic cells may have been misidentified as 
BM-derived CEPs. Third, several reports have indicated 
that mobilization of BM-derived CEPs only occurs 
in certain tumors [34], and little is known about which 
types of tumors are mainly reliant on CEPs for growth 
[31]. In addition, the VDA-induced mobilization of CEPs 
has been observed in murine models and human studies 
[32, 33], but not in rat studies [12]. Therefore, it is still 
unclear whether the response of CEPs to VDA treatment 

Figure 2: Imaging of tumor resistance to vascular disrupting agents in a rat liver tumor model. A. MRI T2WIs show the 
tumor (arrow), central necrosis (n), and the viable rim (arrowhead) 2 days after ZD6126 treatment. Note the rapid regrowth of the tumor rim 
from 4 hours (h) to 12 days (d). B. On CE-T1WIs, the tumor rim (arrowhead) exhibits hyperintense enhancement after injection of a contrast 
agent, indicating it is rich in blood vessels. C. On ADC maps derived from diffusion-weighted MR images, the tumor rim (arrowhead) 
exhibits a decreased ADC, indicating increased cellularity due to tumor regrowth, with an elevated ADC in the central necrotic area (n). 
D. MRI findings of tumor rim enlargement (arrowhead) and central necrosis (n) 12 days after treatment are confirmed in the macroscopic 
tumor section. E. Dynamic changes in Ktrans in a liver tumor model in another rat. The tumor (arrows) exhibits an abundant blood supply 
with high Ktrans before treatment (pre). Six hours after CA4P treatment, vascular shutdown is indicated by a low Ktrans in the central region 
surrounded by residual tumor at the periphery with a moderate Ktrans. Two days after treatment, tumor recurrence is evident at the periphery 
with a rebounding Ktrans. Figure 2E was reprinted and adapted with permission from Wang HJ, Marchal G, Ni Y. Multiparametric MRI 
biomarkers for measuring vascular disrupting effect on cancer. World J Radiol. 2011; 3: 1-16.
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is species-dependent.
Mature CECs, which are usually defined 

phenotypically by the expression of membrane 
glycoprotein CD146, are a newly recognized population 
of non-hematopoietic cells in the blood [42]. As CEPs, 
they are rare in the blood of healthy individuals (0.01%), 
and are derived from existing vasculature. They may be 
sloughed off in a wide variety of pathological conditions 
including inflammatory, infectious, and vascular diseases. 
Therefore, an increase in CECs has been reported as a 
biomarker for assessing vascular insult. Beaudry et al. 
[43] reported that mature CECs were increased in mice 
with Lewis lung carcinoma 3 days after treatment with 
a VDA (ZD6126). Beerepoot et al. [44] also observed 
a VDA-induced increase in CECs in a clinical study. In 
another study of patients with advanced solid tumors 
[45], 18 out of 19 (95%) patients showed a significant 
increase in CECs 2 to 8 hours after infusion of ZD6126. 
A rapid increase in the CEC level could also be induced 
by treatment with taxane-based chemotherapy in patients 
with various solid tumors. Since no changes in CEC 
levels were detected in non-tumor-bearing VDA-treated 
mice or tumor-bearing vehicle-treated mice [8, 43], it was 
suggested that the increase in CEC level was the direct 
consequence of irreversible VDA-induced injury to the 
tumor vasculature [46]. Based on these findings, Bhatt 
et al. [47] hypothesized that the early increase in CECs 
induced by VDA therapy represents a parallel increase in 
the number of apoptotic CECs. Despite these findings, it is 
not clear whether CECs may be mobilized from the bone 
marrow by cytokines [45] and enhance tumor angiogenesis 
[48].

IMAGING BIOMARKERS OF TUMOR 
RESISTANCE TO VASCULAR DISRUPTING 
AGENTS

Advances in the development of new anti-vascular 
therapies for solid tumors highlight the need for non-
invasive imaging methods to evaluate therapeutic 
efficacy. Magnetic resonance imaging (MRI) is an 
established tool for the in vivo monitoring of anatomical 
and functional changes in tumors after treatment with 
novel molecular targeting drugs. MRI has superb soft 
tissue contrast, excellent temporal and spatial resolution, 
and is noninvasive. A multi-parametric MRI approach 
has been widely used to evaluate the therapeutic effects 
of VDAs, and typically includes the following imaging 
sequences: conventional anatomical imaging (i.e., T1-
weighted imaging [T1WI] and T2-weighted imaging 
[T2WI]), functional imaging such as diffusion-weighted 
imaging (DWI), T1-weighted dynamic contrast-enhanced 
MRI (DCE-MRI), T2*-weighted dynamic susceptibility 
contrast-enhanced MRI (DSC-MRI), and contrast-
enhanced T1WI (CE-T1WI). For a basic understanding 
of the MRI and sequences, please refer to detailed 

explanations elsewhere [49, 50].
A variety of imaging markers can be used to 

evaluate tumor resistance to VDAs. Although a single-
dose of a VDA can cause extensive central necrosis of the 
tumor, a small solid rim always remains in the periphery, 
even in the most responsive tumors [6]. In preclinical 
studies, the viable tumor rim appeared 2 to 3 days after 
CA4P or ZD6126 treatment. The initial rim is typically 
several millimeters in width and will grow in a centrifugal 
manner over time toward the necrotic area, while the 
tumor volume may remain unchanged. The residual 
rim has been histologically verified to be the regrowth 
of tumor cells. On MRI, an enhanced rim on CE-T1WI 
after intravenous injection of a contrast agent reflects the 
sparing of viable tumor cells.

In addition to this morphological marker, functional 
imaging markers can also be used to evaluate tumor 
resistance to VDAs. DWI is a MRI technique that can 
be used to quantify the mobility of water molecules in 
vivo. By measuring the DWI-derived apparent diffusion 
coefficient (ADC) of the tissue, quantitative information 
on the movement of water molecules can be obtained. 
Regrowth of tumors that are resistant to VDAs may 
increase the cellularity, and the interstitial pressure can 
also be high [51]. This results in the restricted diffusivity 
of water molecules and a lower ADC in tumors compared 
to previous values or the pretreatment ADC. Thus, a 
decrease in the ADC of the tumor after VDA treatment is 
indicative of regrowth [52].

Tumor blood vessels are immature and disorganized, 
often with poorly developed endothelial cell-lined 
basement membranes. Therefore, they have high 
permeability and high interstitial fluid pressure. This 
intrinsic feature of the tumor vascular can be evaluated 
using a parameter of permeability (i.e., Ktrans [unit/
min], the volume transfer constant of the contrast agent 
derived from DCE-MRI). An increase in Ktrans can be an 
indicator of VDA-resistance. Increased interstitial fluid 
pressure can be assessed using another parameter, Ve 
(unit %), the extravascular extracellular volume fraction. 
Additionally, blood flow in the tumor vascular network is 
heterogeneous, low, and can be intermittent, although the 
blood volume may increase with tumor regrowth.

As an example, despite the rapid disruption of tumor 
blood vessels and extensive necrosis after treatment with 
VDAs, a ring of viable tumor cells has invariably been 
shown to appear at the tumor periphery after 2 to 3 days in 
a variety of preclinical tumor models [6, 51, 53-56]. The 
rim becomes more significant 9 to 12 days after treatment 
[12, 51] and it can remain even after a third administration 
of CA4P [53]. During this process, the ADC and blood 
perfusion-related parameters (Ktrans, ADCperf, initial slope) 
show a transient reduction from 1 to 6 hours as a result 
of the shutdown of blood vessels. This is followed by an 
increase in the ADC primarily in the center of the tumors 
at approximately 2 days, which is indicative of necrosis 
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[51]. However, the decrease in the ADC and increase in 
Ktrans, blood flow, and blood volume at the tumor periphery 
from 2 to 9 or 12 days suggests the early recovery of 
perfusion and relapse of the tumor [12, 51]. All of these 
imaging markers of tumor resistance to VDAs have been 
found to be consistent with tumor relapse in the periphery 
and confirmed by histopathological examination.

Since genotypic heterogeneity within a solid tumor 
can greatly influence tumor growth and therapeutic 
response [57], spatial heterogeneity is common between 
and within tumors. This prevents adequate evaluation of 
therapeutic effects and is a key point in tumor resistance 
[58, 59]. Conventional imaging measurements using only 
the tumor size or average parameter values neglect the 
rich spatial information inherent to tumors. Additional 
quantitative MRI approaches have been used to overcome 
this problem. For instance, histogram analysis can be 
used to characterize and compare the distribution of 
tumor imaging markers by quantifying the number of 
pixels according to each intensity level in the entire 

tumor. Baek et al. [60] reported that the percent change 
of histogram-derived skewness and kurtosis of perfusion 
can be used to differentiate early tumor progression from 
pseudoprogression in patients with glioblastoma. In a 
study by Ahn et al. [61], histogram analysis of ADC maps 
was successfully used to differentiate histological grades 
of head and neck squamous cell carcinoma. The functional 
diffusion map (fDM) derived from DWI [62, 63], or 
parameter response maps (PRMs) derived from DSC-
MRI [64] or DCE-MRI [65], are voxel-based analytical 
methods that use registered functional parameter maps 
before and after treatment. They allow categorization of 
the individual tumor voxel into three groups (increased, 
unchanged, decreased) based on the extent of the changes 
in parameter values during therapy. In an animal tumor 
model, fDM has demonstrated the potential to detect the 
emergence of resistance in real-time [66]. Thus, spatially 
heterogeneous regions that exhibit either responsive or 
early emergence of VDA-resistant cell populations within 
a tumor can be quantified by fDM or PRM.

Figure 3: CA4P in combination with necrosis-targeted radiotherapy with 131I-Hyp-labeled hypericin. First two rows. 
MR images of representative tumors from the two groups show increased tumor volume as well as intratumoral necrosis. On day 0, a 
hyperintense rim is observed surrounding the hypointense necrotic tumor. As compared with the CA4P control group, tumor growth in the 
131I-Hyp group was much slower, with intratumoral necrosis present until 12 days. A., B. Photomicrographs of 5 μm tumor sections sampled 
from the interface between necrotic (N) and viable tumor cells (V). In the CA4P control group (A), viable and dead cells coexist with 
new vessels. Ionizing radiation of tumor cells exposed to 131I-Hyp causes marked cell death characterized by cell membrane damage and 
extensive tumor damage (B). C. Twelve days after administration of 131I-Hyp, foci indicative of radiation-induced cell death are observed 
inside the viable tumor rim in MR images (red arrow), which corresponded to nests of relative high radioactivity in autoradiograms of 
the same sections. The liver (L) displays much lower radioactivity compared to the viable tumor (V), and the intratumoral necrosis (N). 
Reprinted with permission from Li J, Cona MM, Chen F, Feng Y, Zhou L, Yu J, Nuyts J, de Witte P, Zhang J, Himmelreich U, Verbruggen 
A, Ni Y. Theranostics. 2012; 2: 1010-1019.
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Table 1. Representative solutions for tumor resistance to vascular disrupting agents (VDAs)

Author Year Subject VDA Combination
therapy

Sequence of 
therapies Outcomes Ref

Siemann 
DW et al 2004 nude 

mice ZD6126 Antiangiogenic agents 
(AA): ZD6474 AA + VDA tumor growth 

delay [65]

Shaked Y 
et al 2006 nude 

mice Oxi-4503 AA: DC101 AA + VDA reduction in tumor 
rim and blood flow [29]

Chen F et 
al 2012 rat ZD6126 AA: Thalidomide AA + VDA

reduction in 
tumor rim and 
hemodynamic 
index

[10]

Siemann 
DW et al 2002 nude 

mice
DMXAA,
CA4P

Chemotherapy 
(Chem): cisplatin, 
cyclophosphamide

Chem + VDA

extensive 
hemorrhagic 
necrosis, dose 
dependent tumor 
cell death

[88]

Martinelli 
M, et al 2007 nude 

mice ZD6126 Chemo: paclitaxel VDA + Chem 50-57% tumors 
regressing [92]

Daenen 
LG et al 2009

nude & 
SCID 
mice

OXi4503
Chemo: Low-
dose metronomic 
cyclophosphamide

Chem + VDA
decrease of tumor 
rim and marked 
suppression of 
tumor growth

[71]

Li J et al 1998 mice CA4P Radiotherapy (Radio) Radio + VDA
enhancements in 
tumor cell killing 
& antitumor 
effects of 
radiotherapy

[100]

Murata R 
et al 2001 mice DMXAA Radio Radio + VDA enhancement of 

tumor radiation 
damage

[91]

Ng QS et 
al 2012

phase Ib 
trial in 
NSCLC 
patients

CA4P Radio Radio + VDA
well tolerated in 
most patients; 7 
responses out of 
18 patients

[72]

Iversen 
AB et al 2013 mice

DMXAA
CA4P
OXi4503

Radio: single or 
fractionated radiation

Radio + VDA

VDA + Radio

increased 
antitumor effects;
increased response 
only seen in 
OXi4503

[101]

Pedley 
RB et al 2001 nude 

mice CA4P
Radioimmuno-
Therapy (RIT): 131I 
labled-antibody-
targeted

RIT + VDA
complete tumor 
cures in five of six 
mice

[74]

Meyer T 
et al 2009

phase I 
trial in 
advanced 
cancers 

CA4P RIT: 131I labled- 
antibody-targeted RIT + VDA

a partial response 
shown in one out 
of ten patients

[73]

Li J et al 2011 rat CA4P
131I labled necrosis 
targeting hypericin (131I 
–hypericin)

VDA + 
131I-hypericin

kill of residual 
tumor cells & 
inhibited tumor 
regrowth

[78]

Shao H et 
al 2015 rabbit CA4P 131I –hypericin VDA + 

131I-hypericin

well inhibited 
viable tumor rims 
& prolonged 
tumor doubling 
time

[80]
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SOLUTIONS FOR TUMOR RESISTANCE 
TO VASCULAR DISRUPTING AGENTS

More potent VDAs have been developed to 
increase the therapeutic efficacy. For example, CA1P, a 
second-generation small molecule derivative of CA4P, 
has been shown to induce a smaller viable tumor rim. 
Another synthetic CA4P derivative, AVE8062, has also 
demonstrated enhanced antitumor activity by more 
substantially decreasing tumor blood flow [6, 67, 68]. 
Many strategies have been proposed to improve VDA 
effectiveness. Current efforts have predominantly 
involved combining VDAs with other approaches such 
as antiangiogenic agents [12, 32, 68-71], conventional 
chemotherapy [72-75], radiotherapy [67, 76], 
radioimmunotherapy [77-79], or dual-targeting therapy 
[80-84].

Vascular disrupting agents combined with 
antiangiogenic agents

In theory, VDAs and antiangiogenic agents should 
act synergistically because VDAs induce acute vascular 
shutdown and antiangiogenic agents inhibit the growth 
of new tumor vessels. Many studies have confirmed 
this hypothesis. Siemann et al. [69] treated human renal 
cell carcinoma and Kaposi’s sarcoma in mice with a 
combination of ZD6126 (vascular disrupting) and ZD6474 
(antiangiogenic). The combined therapy resulted in a 
remarkable delay in tumor growth compared to either 
agent alone. Additionally, Shaked et al. [32] treated 
tumor-bearing mice with DC101, an antiangiogenic agent, 
followed by OXi-4503, a VDA, and observed a significant 
reduction in tumor rim size and blood flow. This was a 
result of the suppression of CEP levels and mobilization 
by DC101 [85], which would otherwise home to the viable 
tumor rim and contribute to angiogenesis. In a rodent liver 
tumor model, Chen et al. [12] studied combined treatment 
with ZD6126 and thalidomide, an antiangiogenic agent 
[86]. They observed cumulative tumor apoptosis or 
necrosis, and consequently a decrease in the viable tumor 
rim. The combined approach also prolonged the duration 
of the reduction in Ktrans in the tumor, and improved the 
hemodynamic index. This was most likely a result of the 
transient normalization of tumor vessels [87] induced by 
thalidomide. However, Chen et al. did not observe acute 
mobilization of CEPs after ZD6126 treatment [10]. 

An increase in CECs can result from a direct 
vascular insult, and a VDA-induced rise in CECs has been 
observed in both an animal study [43] and in a clinical 
trial [44]. However, the combined use of an antiangiogenic 
agent with a VDA did not suppress CEC levels. Instead, 
CEC levels could increase [47], although the rapid rise in 
CEPs could be blocked [32]. Thus, both CECs and CEPs 
may be used to monitor the therapeutic effects of anti-

vascular treatments.

Vascular disrupting agents combined with 
chemotherapy

Based on experimental observations, VDAs 
and chemotherapeutic agents can be categorized as 
microtubule-binding agents, and differences in therapeutic 
effects mainly depend on their tubulin binding sites and the 
duration of binding. For instance, most VDAs reversibly 
bind to the colchicine site of tubulin, whereas vinblastine 
and paclitaxel bind to the vinca alkaloid and taxane sites, 
respectively, and result in persistent inhibition of mitotic 
processes and proliferation [67]. 

Several mechanisms have been proposed to justify 
the combined regimen of a VDA and chemotherapy. 
First, because VDAs and cytotoxic agents target different 
components of tumors (i.e., the tumor vasculature and 
proliferating tumor cells, respectively), complementary 
benefits are possible [73]. In a Calu-6 model, ZD6126 
combined with cisplatin resulted in enhanced delay of 
tumor growth [72]. A CA4 derivative, AVE8062, in 
combination with docetaxel significantly inhibited the 
growth of chemotherapy-resistant ovarian cancers and 
prolonged survival in HeyA8-injected mice [88]. The 
combination of CA4P with liposomal doxorubicin resulted 
in the greatest delay in tumor growth in a B16-F10 murine 
melanoma model [74]. 

Second, the mobilization of BM-derived CEPs may 
contribute to vasculogenesis. Some chemotherapy drugs 
can inhibit VDA-induced mobilization of BM-derived 
CEPs [35, 89]. Thus, combining these drugs with VDAs 
may amplify the antitumor effects of VDAs. For example, 
administration of cyclophosphamide (CTX) on a regular 
low-dose metronomic schedule resulted in a consistent 
decrease in both the level and viability of CEPs, and 
enhanced inhibition of tumor growth in human lymphoma-
bearing mice [90]. When the VDA OXi4503 was combined 
with CTX to treat primary orthotopic tumors in mice in 
a metronomic manner, a reduction of the residual rim 
and enhanced inhibition of tumor growth was observed 
due to the suppression of the CEP spike and tumor 
colonization induced by OXi4503 [75]. Furthermore, 
low-dose metronomic chemotherapy could induce a 
transient normalization of functional tumor vessels [87] 
that may improve the delivery of chemotherapeutic agents. 
However, only certain chemotherapeutic agents such as 
CTX and gemcitabine can suppress the mobilization 
and increase in CEPs [35]. Other agents including 
paclitaxel, docetaxel, and 5-fluorouracil do not inhibit 
CEP mobilization but can induce a rapid increase in CEPs 
shortly after treatment [35].

Third, the synergistic effect generated by combining 
VDAs and chemotherapeutic agents can be affected by the 
schedule and sequence of administration of the two agents. 
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Theoretically, chemotherapy should be administered 
before the VDA. This would allow the cytotoxic drug 
to be well distributed throughout the tumor through the 
vasculature, and then trapped once the blood vessels are 
shutdown by the VDA [9, 91]. Maximum effects were 
achieved when cisplatin was administered 1 to 3 hours 
before the administration of a VDA [92]. Complications 
can results if a VDA is administered before chemotherapy. 
For example, Siemann et al. [92] reported impaired 
treatment efficacy when cisplatin was administered 1 hour 
after CA4P or 2 hours after DMXAA in a rodent KHT 
sarcoma tumor model. This may be explained by the 
fact that cisplatin delivery to the tumor may be impeded 
shortly after VDA-induced vessel shutdown, and some 
tumor cells may survive under hypoxic conditions after 
VDA treatment [93-95]. However, an enhanced antitumor 
effect, and even complete tumor remission, was achieved 
when paclitaxel was administered 24 hours after ZD6126 
[96]. This relatively long interval may provide additional 
time for the tumor to develop VDA-induced central 
necrosis. Cytotoxic drugs can then be used to target the 
proliferating cells in the residual viable rim [73, 97-99]. 
Thus, pretreatment with a VDA may amplify the effects 
of cytotoxic agents on proliferating cells in the tumor 
periphery [91].

Vascular disrupting agents combined with 
radiotherapy

Only a few clinical trials have evaluated the 
combination of VDAs with radiotherapy [76, 77], though 
preclinical studies have demonstrated the effectiveness 
of combination treatment for solid tumors [67]. The 
resistance of solid tumors to VDAs is primarily the result 
of residual viable cells in the periphery. These viable cells 
are likely to be in a well-oxygenated environment and 
actively proliferating, which makes them more sensitive 
to radiotherapy [69, 79, 100-103]. In addition, tumor cells 
in the G2/M phase of the cell cycle are more sensitive to 
radiotherapy, and VDAs can induce tumor cell arrest in the 
G2/M phase [67].

Treatment with VDAs can induce central necrosis. 
Thus, regions of hypoxia and acidosis develop within the 
tumor. Because oxygen is critical for effective radiation-
induced DNA damage, hypoxia and acidosis may impair 
the effects of radiotherapy on tumors [67]. Therefore, 
it is generally optimal to perform radiotherapy before 
administering a VDA [67]. The first report of such a 
combination by Li et al. [104] showed additive effects in 
a murine tumor model. An enhanced antitumor effect has 
been observed with a range of VDAs (DMXAA, CA4P 
and OXi4503) combined with single or fractionated 
irradiation in a C3H murine mammary carcinoma 
model [105]. Indeed, some studies have confirmed a 
reduced effect when VDAs were administered prior to 

irradiation [95]. However, there are some exceptions. 
For instance, OXi4503 or ZD6126 yielded an increased 
response when administered before radiotherapy [105, 
106]. In KHT sarcomas, an improved antitumor effect 
was observed whether ZD6126 was administered before 
or after radiotherapy [92, 106, 107]. The discrepancy 
in therapeutic responses may be related to the different 
VDAs and different tumor models used in these studies 
[99]. 

Interestingly, combination therapy has been 
particularly effective for the treatment of large tumors, 
which are normally less sensitive to radiotherapy due 
to hypoxia and acidosis caused by increased interstitial 
pressure and impaired blood flow [67, 107, 108]. However, 
VDAs cause extensive central necrosis in tumors and 
allow elimination of residual rim cells with radiotherapy 
[9].

Vascular disrupting agents combined with 
targeting molecules labeled with 131iodine

Two strategies for combining VDAs with targeted 
internal irradiation have been pursued, in light of 
tumor resistance to VDAs and the limited efficacy of 
radioimmunotherapy for the treatment of solid tumors 
(due to poor penetration into the central regions of large 
tumors) and the relative resistance of hypoxic tissue to 
radiotherapy) [67]. 

VASCULAR DISRUPTING 
AGENTS IN COMBINATION WITH 
RADIOIMMUNOTHERAPY

The combination of VDAs and radioimmunotherapy 
has been evaluated using a carcinoembryonic antigen 
(CEA)-positive colorectal xenograft model [78]. The 
study showed that the combination of the 131I-A5B7 
anti-CEA antibody with CA4P eliminated five of six 
tumors. In another animal experiment, the retention of 
the 131I-A5B7 anti-CEA antibody was extended for up to 
4 days in an SW1222 colorectal xenograft when CA-4P 
was administered 2 days after the antibody [109]. Based 
on these preclinical studies, a phase I clinical trial was 
performed using the same combination strategy (i.e., 
131I-A5B7 anti-CEA antibody and CA4P) in patients with 
gastrointestinal adenocarcinoma [77]. However, only 
one of 10 patients showed a partial response. Although 
tumor-specific uptake of 131I-A5B7 was demonstrated, 
no direct comparison of the absorbed doses between the 
target organs and the tumor was provided. In addition, 
dose-limiting myelosuppression was observed in heavily 
pretreated patients.



Oncotarget15453www.impactjournals.com/oncotarget

VASCULAR DISRUPTING AGENTS IN 
COMBINATION WITH A NECROSIS-
TARGETING MOLECULE LABELED WITH 
131IODINE

Recently, a specific antitumor approach has been 
proposed that involves combining a natural necrosis-
targeting molecule labeled with 131iodine with CA4P 
[82]. Hypericin, a polycyclic aromatic compound, is a 
naturally occurring chromophore extracted from the plant 
genus Hypericum perforatum commonly known as St. 
John’s Wort [110]. Hypericin has been used extensively 
in photodynamic therapy as a potent photosensitizer 
due to its high photo-oxidative cellular damaging effect 
[111-113]. However, the applications are limited to only 
superficial tumors because the toxic functions must be 
activated by an external light source. 

More recently, Ni and colleagues [114-118] 
discovered that hypericin has a strong necrosis affinity. 
Although the mechanism responsible for the necrosis-
avid effect has not been fully elucidated, one possibility 
is that hypericin may bind to phosphatidylserine and 
phosphatidylethanolamine in the lipid bilayer of the 
cell [83, 119]. The necrosis-avid feature of hypericin 
is independent of its photosensitivity. In addition, 
a series of radiolabeled hypericin derivatives such 
as 123I-iodohypericine and 131I-iodohypericine have 
shown a similar necrosis affinity in several infarction 
and intratumoral necrosis animal models [114-117]. 
Therefore, there has been increasing interest in hypericin 
as a potential necrosis-targeting therapy. Van de Putte 
et al. [114] verified the necrosis avidity of hypericin 
and the radiotherapeutic effect of 131I-hypericin in nude 
mice bearing radiation-induced fibrosarcoma (RIF-1). 
Significant delays in tumor growth were observed in the 
fluorodeoxyglucose micro-positron emission tomography 
group compared to the control group. 

Ni et al. [80-82] took advantage of the necrosis-
avid feature of hypericin and designed a novel anticancer 
theranostic strategy that combined a VDA (CA4P) and 
131I labeled hypericin (131I-Hyp). In this sequential dual-
targeting approach, a VDA is used to disrupt the tumor 
vessels (the first target) in solid tumors and cause massive 
necrosis. Following VDA treatment, 131I-hypericin is 
injected intravenously and reaches the necrotic zone based 
on its strong necrosis avidity. Accumulated 131I-hypericin 
in CA4P-induced necrotic zones may kill residual cancer 
cells (the second target) with ionizing radiation and 
significantly inhibit tumor relapse. The necrotic avidity of 
131I-hypericin was remarkable, with a necrotic target-to-
liver ratio of more than 20 times, which was approximately 
100 times the cumulative dose of 50 Gy that is necessary 
to elicit a tumor response to radiotherapy. More recently, 
131I-hypericin was administered 24 hours after CA4P in a 
rabbit model of multifocal VX2 tumors [84]. The results 

demonstrated the high targetability of 131I-hypericin 
to tumor necrosis by in vivo single-photon emission 
computed tomography. The accumulation of 131I-hypericin 
was 98 times higher in necrotic tumor areas compared 
to viable tumors and other organs by gamma counting, 
and was confirmed by autoradiography and fluorescence 
microscopy. The necrosis-targeting effect persisted for 
more than 9 days. Tumor growth was significantly reduced 
and the doubling time was significantly increased in 
response to combined VDA 131I-hypericin treatment.

Given that necrosis is common in solid tumors 
treated with anticancer therapies, this sequential dual-
targeting approach may be a novel solution to the problem 
of tumor resistance to VDA therapy. Another advantage 
of this strategy is that the residual viable tumor cells 
following VDA treatment may not only be eradicated, but 
also can be visualized with nuclear imaging modalities as 
radiolabeled hypericin, which exhibits superb sensitivity 
in targeting necrotic tissues [114].

SUMMARY

In summary, preclinical studies and clinical trials 
have demonstrated the existence of a residual viable 
tumor rim after treatment of solid tumors with VDAs. 
Thus, tumor cells may survive despite vascular disruption 
and recur, which is suggestive of tumor resistance to 
these therapeutic agents. Although several mechanisms 
have been proposed to explain tumor resistance, none 
of them can explain the entire phenomenon. A variety of 
MRI markers, particularly functional parameters, can be 
obtained to visualize and quantify the process of tumor 
resistance. Many efforts have been made to improve the 
antitumor effects of VDAs. Current strategies to prevent 
tumor resistance mainly emphasize the combination of 
VDAs with other approaches including antiangiogenic 
agents, chemotherapy, radiotherapy, radioimmunotherapy, 
and sequential dual-targeting internal radiotherapy. 
Most of these combination therapies have demonstrated 
promising effects towards combating the residual viable 
tumor rim. However, much work remains before they can 
be incorporated into routine clinic practice. 
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