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ABSTRACT

Long noncoding RNAs (lncRNAs), which are noncoding RNAs (ncRNAs) with 
length more than 200 nucleotides (nt), have been demonstrated to be involved in 
various types of cancer. Consequently, it has been frequently discussed that lncRNAs 
with aberrant expression in cancer serve as potential diagnostic biomarkers and 
therapeutic targets. However, one major challenge of developing cancer biomarkers is 
tumor heterogeneity which means that tumor cells show different cellular morphology, 
metastatic potential as well as gene expression. In this study, a custom designed 
microarray platform covering both mRNAs and lncRNAs was applied to tumor tissues 
of gastric, colon, liver and lung. 316 and 157 differentially expressed (DE-) protein 
coding genes and lncRNAs common to these four types of cancer were identified 
respectively. Besides, the functional roles of common DE-lncRNAs were inferred based 
on their expression and genomic position correlation with mRNAs. Moreover, mRNAs 
and lncRNAs with tissue specificity were also identified, suggesting their particular 
roles with regard to specific biogenesis and functions of different organs. Based on 
the large-scale survey of mRNAs and lncRNAs in four types of cancer, this study may 
offer new biomarkers common or specific for various types of cancer.

INTRODUCTION

Cancer has been a major health problem worldwide, 
with an estimate of more than 4,500 new cases each day 
in 2014 [1]. Numerous factors, including environment 
[2], lifestyle [3] and genetic defects [4, 5], contribute to 
tumorigenesis and development of cancer. The development 
of high-throughput profiling technology has enabled 

characterization of cancer cells from perspective of genome, 
epigenome and transcriptome [6, 7]. Several studies have 
succeeded in identifying tumor biomarkers for cancer 
detection, diagnosis or prognosis determination for specific 
types of cancer, such as estrogen receptor and progesterone 
receptor in breast cancer [8] and prostate-specific antigen 
in prostate cancer [9]. Although high heterogeneity was 
observed between the transcriptomic landscape of distinct 
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types of cancer [10], cancer cells share characteristics 
such as dys-regulated cell growth and potential to invade 
compared to normal cells [11]. Consequently, biomarkers 
might be either specific to a particular type of cancer or 
general to multiple types of cancer. 

The majority of previous efforts have focused on 
protein coding genes (PCGs). However, since lncRNAs 
have been implicated to play important roles in multiple 
biological processes such as cell cycle [12], cell apoptosis 
[13] as well as signal pathway [14, 15], lncRNAs might 
function as tumor suppressors or oncogenic drivers [16]. 
Dys-regulated expression of some lncRNAs, such as 
HOTAIR, PCAT1 and SNHG1, has been considered as 
indicator of several human cancers [17–19]. However, 
the molecular mechanism of lncRNA functions in cancer 
biology is still poorly understood. 

In this study, microarray test was applied to obtain 
expression profiles of both protein coding genes and 
lncRNAs in tumor and paired adjacent non-tumor tissues 
from 76 patients (20 with gastric cancer, 20 with colon 
cancer, 16 with liver cancer and 20 with lung cancer). 
The microarray platform is custom designed covering 
both kind of transcripts of 21,789 mRNAs and 39,311 
lncRNAs. A collection of 157 lncRNAs as well as 316 
PCGs with dys-regulated expression in tumor tissues 
compared with adjacent non-tumor tissues in all of four 
types of cancer was observed. The possible functions of 
the identified 157 common DE-lncRNAs were further 
inferred based on their correlation with PCGs from both 
perspective of expression and genomic coordinates. 
Besides, PCGs and lncRNAs whose expression showed 
tissue specifity in any type of cancer were also identified. 
Part of the results were validated by quantitative PCR 
(qPCR) in external patient samples. In summary, this study 
has discovered cancer- and tissue- associated PCGs and 
lncRNAs through integrative analysis of expression profile 
revealed by custom designed microarray, thus providing a 
systematic summary of expression pattern and biological 
relevance of lncRNAs in cancer. 

RESULTS 

Identification of PCGs and lncRNAs as 
candidate common biomarkers for cancer

The global expression profile of both PCGs and 
lncRNAs in four types of cancer tissues (gastric, colon, 
liver, and lung) and adjacent non-cancerous tissues were 
examined by a custom microarray platform (see Methods 
for details). Hundreds of PCGs and lncRNAs show 
differential expression in each type of cancer (Figure 1A). 

We first examined the expression patterns of 
several well-known cancer-related lncRNAs revealed 
by our microarray experiments [20]. Notably, 8 of the 
12 lncRNAs examined showed differential expression 
between tumors and non-tumor tissues in at least one type 

of cancer (Supplementary Figure S1). However, they could 
hardly serve as biomarkers common to multiple types of 
cancer other than a few examples. Besides, several of them 
might produce confusion. For example, as shown in our 
data, HOTTIP was indicated to have potential oncogenic 
function in liver cancer and gastric cancer as it showed  
up-regulated expression in tumors compared to adjacent 
non-tumor tissues while its association with colon cancer 
and lung cancer was not found. UCA1 is a lncRNA 
reported to promote cell proliferation in both breast cancer 
[21] and bladder cancer [22]. Of the cancer types used in 
our microarray experiments, UCA1 showed its oncogenic 
potential in gastric, colon and lung but had expression 
characteristic of tumor suppressor in liver. Although such 
lncRNAs might explain complex and heterogeneous nature 
of different cancer types [23], it would be more desirable to 
discover PCGs or lncRNAs as indicators in various types 
of cancer. As a consequence, further efforts were taken to 
identify PCGs and lncRNAs with up-regulated or down-
regulated expression in all of four cancer types (Student 
t-test, false discovery rate (FDR) < 0.05, fold change  
(FC) > 1.5), resulting in 207 PCGs and 71 lncRNAs as 
potential oncogenes and 109 PCGs and 86 lncRNAs as 
potential tumor suppressors common to these four cancer 
types (Figure 1B, Supplementary File 1). These include 
some known cancer biomarkers such as PCGs CDK1  
[24, 25] and TGFBR3 [26], as well lncRNAs PVT1  
[27, 28] and ADAMTS9-AS2 [29]. In order to validate the 
alterations of PCG and lncRNA expression obtained from 
microarray data, we validated a subset of them across a 
panel of external samples by qRT-PCR (Figure 2A; the 
validation in gastric cancer was absent due to lack of 
additional samples). The qRT-PCR result showed high 
consistency with microarray data (Figure 2B). 

Next, gene ontology enrichment analysis was 
performed in the common DE-PCGs (Figure 3A).  
Up-regulated PCGs were enriched in cell cycle related 
biological processes while down-regulated PCGs were 
associated with cell adhesion, consistent with the common 
characteristics of cancer which refer to promoted cell 
proliferation and activated cell migration. Similarly, it 
could be inferred that common DE-lncRNAs might also 
play important roles in regulating essential biological 
processes and dys-regulated expression of them would 
lead to abnormality. 

Classifying lncRNAs into different subgroups 
according to their genomic context association with PCGs 
results in the largest subgroup to be intergenic lncRNAs 
[30, 31]. Similar proportion of different subgroups was 
observed in these 157 common DE-lncRNAs (Figure 3B). 

Functional prediction of common DE-lncRNAs 

Gene Set Enrichment Analysis (GSEA) [32, 33] 
was performed in order to gain insights into the biological 
significance of the identified DE-lncRNAs which might 
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Figure 1: Altered expression of mRNAs and lncRNAs across cancer types. (A) Hierarchically clustered heatmaps of mRNAs 
and lncRNAs that are differentially expressed (student t-test corrected p-value < 0.05 and fold change > 1.5) in each type of cancer tissues 
compared to adjacent non-cancerous tissues. (B) Venn diagrams showing up-regulated and down-regulated mRNAs and lncRNAs whose 
dys-regulated expression pattern was shared by four types of cancer. Literature curated cancer biomarkers were indicated as examples.
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Figure 2: qRT-PCR validation of lncRNA and mRNA expression in samples from external patients. (A) Expression 
of common DE-mRNAs/lncRNAs (upper panel representing a mRNA and lower panel representing a lncRNA). (B) Boxplots represent 
common DE-mRNAs/lncRNAs’ expression based on the microarray data. (upper panel representing a mRNA and lower panel representing 
a lncRNA).
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serve as biomarkers common to four types of cancer. 
Pearson correlation coefficients between expression profiles 
of mRNAs and common DE-lncRNAs across all tissues 
were calculated based on which common DE-lncRNAs 
associated gene sets were identified. Unsupervised 
hierarchical clustering of enrichment score of KEGG 
pathways clearly separated common up-regulated lncRNAs 
from common down-regulated lncRNAs (Figure 4). 
Particularly, the majority of common up-regulated lncRNAs 
were significantly associated with cell cycle, similar to the 
function enrichment result of common up-regulated PCGs. 
Besides, some of the common up-regulated lncRNAs 
were functionally related to spliceosome. The signaling 
pathways including WNT pathways and MAPK pathways, 
which these common DE-lncRNAs might be involved in, 
were also indicated. Since our knowledge of lncRNAs had 
been far less than PCGs, the expression profile association 
between lncRNAs and PCGs would be beneficial clues to 
understand functions of lncRNAs. 

Another aspect of association between lncRNAs 
and PCGs is about genomic coordinates. Several lncRNAs 

have been known to function by cis-acting mechanism 
[34–36]. For example, Kcnq1ot1 has a negative control 
of its neighboring PCGs [37, 38]. In order to figure out 
the possibility that the common DE-lncRNAs function 
in cis, the expression correlation between the common 
DE-lncRNAs and their genomic neighbor genes (the 
nearest PCGs for intergenic lncRNAs, the PCGs on the 
opposite strand of antisense lncRNAs, the host PCGs 
of intronic lncRNAs and overlapping PCG for sense-
exonic lncRNAs) was investigated. Compared with the 
expression correlation with neighbor PCGs of genome-
wide lncRNAs covered by the microarray platform, 
there is a significant positive correlation for that of 
common DE-lncRNAs (Supplementary Figure S2).  
Examples representing common DE-lncRNAs which 
might have a role of regulating gene expression in cis 
were also shown (Figure 5). 

Some lncRNAs are reported to play important roles 
in tumorigenesis by acting as competing endogenous 
RNAs (ceRNAs) [39–42]. In order to explore the 
possibility that lncRNAs might regulate the expression 

Figure 3: Signatures of common dys-regulated mRNAs and lncRNAs. (A) Functional enrichment result by DAVID for common 
up-regulated and down-regulated PCGs respectively. The resulted GO terms of biological processes with a FDR < 0.1 were considered 
statistically significant and depicted. (B) Distribution of common up-regulated and down-regulated lncRNAs according to their genomic 
context association with PCGs.
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level of neighboring PCGs via ceRNA pathway, a tri-color 
network was constructed to elucidate interactions among 
common DE-lncRNAs, neighboring PCGs and miRNAs 
(Figure 6A). Interactions between common DE-lncRNAs 
and neighboring PCGs involved both their genomic 
position interaction and expression profile correlation 
(correlation coefficient > 0.45 and p-value < 0.01)  
while miRNA targets prediction result by miRanda  
[43, 44] linked miRNAs and DE-lncRNAs or neighboring 
PCGs. Minimum tri-color submotifs were identified. For 
example, CCT5 and its antisense lncRNA (RNA58651 

nominated in-house) had positively correlated expression 
profile and both of them were predicted to be targeted by 
miR-1183 (Figure 6B). Another example is RNA34433, a 
novel intergenic lncRNA located downstream of NTRK3. 
RNA34433 showed down-regulated expression in tumor 
tissues compared to adjacent non-tumor tissues in four 
types of cancer while NTRK3 had been reported to be 
a potential tumor suppressor [45]. Both RNA34433 and 
NTRK3 were predicted to be targeted by has-miR-297 
(Figure 6C), whose potential role in cancer genesis should 
be further investigated. MiR-34a, a literature-curated 

Figure 4: Heatmap of clustered pathway enrichment scores for common DE-lncRNAs. Red (green) denotes positive 
(negative) nominal enrichment scores in gene set enrichment analysis (GSEA) for KEGG pathways.

Figure 5: Three examples depicting potential cis regulation of common DE-lncRNAs on mRNAs. Upper panel is simplified 
schematic diagram representing the relative genomic location of lncRNAs and their neighboring PCGs (left: antisense; middle: intergenic; 
right: intronic); lower panel is scatter plot characterizing the expression profile correlation of the pair of genomic interacting lncRNA and 
mRNA (red and blue representing cancer tissues and adjacent non-cancerous tissues respectively).
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tumor suppressor [46–48], had a higher degree than 
other miRNAs in the network. Moreover, a significant 
enrichment of experimentally determined miR-34a 
targets was obtained in neighboring PCGs of common  
up-regulated lncRNAs (Supplementary Figure S3) through 
Gene ontology enrichment analysis [49]. 

Identification of tissue-specific PCGs and 
lncRNAs

Unsupervised hierarchical clustering of all tissues 
using common DE-lncRNAs apparently separated cancer 
tissues from adjacent non-cancerous tissues, but hardly 
distinguish different tissues (Supplementary Figure S4). 
Yet, higher degree of similarity between gastric and colon, 
as well as that between liver and lung, was observed in 
both cancer tissues and adjacent non-cancerous tissues, 
suggesting the indicative potential of lncRNAs for the 
origins and functions of different tissues. Consequently, 
a self-organizing map (SOM) based approach was applied 
in order to identify lncRNAs and mRNAs which might 
explain the specific characteristics of each type of gastric, 
colon, liver and lung tissues. lncRNAs and PCGs were first 
classified into hexagonal units, each of which represented 
a set of lncRNAs and PCGs whose expression profile are 
most similar to each other (Supplementary Figure S5).  
Then the color of each unit was assigned according to 
the overall expression level of lncRNAs and PCGs, 
brighter color representing higher expression while darker 
representing lower. Units with higher overall expression 
level in one type of tissues than others were determined to 

comprise lncRNAs and PCGs with tissue specificity which 
was subjected to later functional enrichment analysis 
(Figure 7A). Take gastric as an example, three units 
numbered 102, 103 and 104 respectively had obviously 
brighter color representing higher overall expression 
level in gastric tissues than other three types of tissues. 
An enrichment of digestion function was observed for the  
41 PCGs, suggesting that the 35 lncRNAs in the same unit 
might also participate in the gastric-specific physiological 
process. Similarly, lncRNAs and PCGs with expression 
specificity in colon, liver and lung were identified 
respectively (see full list of tissue-specific lncRNAs and 
mRNAs in Supplementary File 2). qRT-PCR validation 
was performed on random selected tissue-specific 
lncRNAs and was in good agreement with microarray 
result (Figure 7B and Supplementary Figure S6).

DISCUSSION

Previous efforts to study the pathogenesis of 
diseases have been focused on PCGs. However, the 
accumulating discoveries of lncRNA functions in various 
biological processes have revealed the potential of 
lncRNAs acting as cancer biomarkers. The majority of 
biomarker lncRNAs reported by now are derived from 
researches based on particular type of cancer, such as 
SChLAP1 to be identified as a prostate cancer–associated 
lncRNA [50]. Considering that different types of cancer 
share common characteristics, we launched this study 
in order to identify lncRNAs with the potential to serve 
as common biomarkers for multiple types of cancer.  

Figure 6: Prediction of lncRNAs as ceRNAs of their cis mRNAs. (A) Tri-color network consisting of lncRNAs (red), mRNAs 
(yellow) and miRNAs (blue). (B and C) Two examples showing the minimal ceRNA motif (In the scatter plot, red and blue representing 
cancer tissues and adjacent non-cancerous tissues respectively, same with that of Figure 5) (B) an antisense lncRNA with oncogenic 
expression profile. (C) an intergenic lncRNA with tumor suppressor-like expression profile.
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Figure 7: Transcriptome comparison by the self-organizing map (SOM). (A) Schematic illustration of expression profiles 
of four types of tissues depicted by SOM. Each hexagonal grid is a cluster of lncRNAs and PCGs (see also Figure S5). Grids showing 
significant expression specificity in each type of tissues were circled. Significantly enriched Gene Ontology (GO) terms for PCGs of circled 
clusters were indicated. (B) Expression of tissue-specific lncRNAs (upper, middle and lower panel representing an example of lncRNA 
specifically expressed in liver cancer, lung cancer and colon cancer, respectively).
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By incorporating gastric, colon, liver and lung cancer 
tissues accompanied with paired control non-cancerous 
tissues into gene expression detection by a custom 
designed microarray platform covering 39,311 lncRNA 
transcripts, a total of 157 lncRNAs were identified as 
potential common biomarkers with expression pattern of 
either oncogenes or tumor suppressors. On the other hand, 
we also generated a list of lncRNAs and PCGs whose 
expression might explain the specific origins or functions 
of different tissues. 

Despite the potential role of the identified common 
DE-lncRNAs as biomarkers general to different types of 
cancer, how the dys-regulation of their expression would 
prompt tumorigenesis remains a challenging problem. In 
this study, the association between lncRNAs and PCGs 
was established from the perspective of both expression 
correlation and genomic interaction in order to infer 
the possible functions of the common DE-lncRNAs. 
However, the mechanisms by which the lncRNAs function 
should still be further explored by taking advantage of 
experimental approaches. Both microarray and RNA-seq 
are high-throughput technologies for reliable assessment 
of transcript abundance [51]. Microarray was chosen in 
this study for its low cost as well as flexibility compared 
with RNA-seq. Meanwhile, an integrative application 
of high-throughput sequencing data beyond level of 
gene expression, such as PARS-Seq [52] which enables 
genome-scale reconstruction of RNA secondary structure 
and CLIP-Seq [53] which allows detection of massive 
interacting RNAs for a specific protein, will contribute 
to better understanding of the functions and regulatory 
mechanisms of lncRNAs.

CONCLUSIONS

In conclusion, we identified lncRNAs whose 
dys-regulated expression was shared among four types 
of cancer as well as lncRNAs whose expression was 
specifically active in specific type of cancer, suggesting 
potential contribution of lncRNAs to tumorigenesis and 
histogenesis of different tissues. In addition, due to the lack 
of sufficient knowledge about functions and mechanisms 
of the majority of lncRNAs, we inferred the possible 
functions of common DE-lncRNAs by establishing their 
association with PCGs, thus providing clues for further 
mechanism exploration by experimental approaches. 

MATERIALS AND METHODS

Tissue samples

Paired cancer and adjacent non-cancerous tissues 
from 20 patients with gastric cancer, 20 patients with colon 
cancer, 16 patients with liver cancer and 20 patients with 
lung cancer were collected with informed consent from 
Chinese PLA General Hospital and Peking University 

Cancer Hospital & Institute. 30 paired samples of patients 
with liver, lung and colon cancer for external validation 
were gathered from First People’s Hospital of Foshan. All 
samples were collected by surgical operation and quickly 
stored in −80°C. 

RNA extraction and reverse transcription

Frozen tissue was cut into 2−4mm3 for 
homogenization. Total RNA was isolated with TRIzol 
reagent (Invitrogen, 15596–018) according to the 
manufacturer’s instruction. Genomic DNA was removed 
using recombinant DNase I system (Ambion AM2235, 
Ambion), The RNA quantity was measured by NanoDrop 
spectrophotometer (Thermo Scientific, USA) and the 
integrity was assessed using agarose gel electrophoresis, 
the 28S/18S ratio was about equal to 2.0. All steps were 
performed under RNase-free conditions. 

5 ug total RNA of each sample was reverse 
transcribed into cDNA with the SuperScript III First-
strand synthesis system (Invitrogen, 18080–051) using 
random hexamers following the manufacture’s protocol.

The custom designed microarray platform

The custom designed microarray platform was 
manufactured by Agilent, consisting of probes for 21,789 
PCGs and 39,311 lncRNA transcripts. LncRNA transcripts 
were collected from a number of different sources including 
NONCODE [31], H-InvDB [54], UCSC, Ensembl [55], 
LincRNA Catalog [56] and so on (see Supplementary 
File 4 for details about lncRNA collection). At least one 
probe was designed for each lncRNA transcript. Of all of 
the probes designed for lncRNA transcripts, 28,937 are 
specific for lncRNA transcripts and do not overlap with 
protein coding loci. These lncRNA transcripts with unique 
probes were subjected to further analysis.

Bioinformatics analysis of microarray data

The expression of lncRNAs and PCGs in obtained 
samples was examined using the microarray platform 
described above. Feature Extraction (Agilent Technologies, 
CA) software was used to extract all features of the data 
obtained from the scanned images. The lncRNA + mRNA 
array data were subjected for background subtraction and 
quality control by the GeneSpring software (Agilent). 
Quantile normalization was carried out on the whole set of 
probes for PCGs and unique probes for lncRNA transcripts 
for each type of tissues. Expression values were log2-scale 
transformed and then probes for mRNAs were collapsed 
down to gene level. 

Hierarchical clustering was performed using cluster 
3.0 [57] with complete linkage and centred Pearson 
correlation. The normalized and log2-scaled expression 
values were centred on the median before performing 
unsupervised hierarchical clustering. PCGs and lncRNAs 
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were determined to be differentially expressed with 
two-tailed Student’s t-test p-value < 0.05 (after FDR 
correction) and fold change greater than 1.5 between 
tumor samples and adjacent control samples. 

Construction of tri-color network

The construction of tri-color network consists of 
three steps: (i) prediction of miRNA targets of mRNAs 
and lncRNAs by miRanda; (ii) for each of the common  
DE-lncRNAs, calculate its expression profile correlation 
with its genomic nearest neighboring PCG; (iii) 
visualization of network by Cytoscape [58]. In the 
network, different types of RNAs were discriminated from 
each other by different colors (red, yellow, blue represents 
lncRNA, mRNA and miRNA respectively). Different color 
of edges represents different types of interactions. miRNA 
targeting of lncRNAs or mRNAs were represented by 
red lines while the genomic interaction and expression 
correlation between lncRNAs and mRNAs were 
represented by blue and light green respectively. 

Quantitative real-time PCR

Microarray data were validated by quantitative real-
time PCR (qRT-PCR). The primers for validating selected 
genes were designed by software primer premier 5.0 and 
the IDT web server (http://sg.idtdna.com/Primerquest/
Home/Index). The specificity of all the primers was 
confirmed by UCSC BLAT tool (http://genome.ucsc.edu/
cgi-bin/hgBlat). All the primers were tested in Trans-Start 
top Green qPCR Supermix reaction (TransGen Biotech, 
AQ131–03) following the manufacture’s protocol. The 
optimal primers were selected for quantitative validation. 

The qRT-PCR assays were carried out on the 
Rotor-Gene Q real-time PCR cycler (Qiagen, 9001630) 
according to manufacturer’s instruction. For each 
gene, qRT-PCR reactions were performed in technical 
triplicate, with 18S rRNA as internal control gene for 
normalization. The relative expression was calculated with 
the 2−ΔΔCT method. The primer sequences were listed in 
Supplementary File 3. 

Functional enrichment analysis

Functional enrichment analysis of DE-PCGs 
were performed using the DAVID Bioinformatics Tool 
[59]. Gene set enrichment analysis was performed for 
common DE-lncRNAs as previously described [32]. For 
each lncRNA, the Pearson correlation coefficients with 
all PCGs based on their expression in all samples were 
calculated as the weight subjected to GSEA. Then the 
degree to which a specific pathway related genes were 
overrepresented was calculated as the enrichment score 
representing the correlation between the lncRNA and 
the pathways. A positive/negative enrichment score with 
higher value means higher positive/negative correlation 

between the lncRNA and the pathway. The GSEA software 
and the gene set database were downloaded from http://
www.broadinstitute.org/gsea/. 

Accession numbers

The NCBI GEO accession number for the 
microarray data reported in this paper is GSE70880.
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