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AbstrAct
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important 

mechanism to coordinate cell communication in multicellular organisms. The 
importance of this process has been revealed by the discovery of the prominent 
oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological 
activities, often due to protein overexpression and/or somatic mutation. Recent 
reports suggest that TK oncogenic signaling is also under the control of small adaptor 
proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking 
two functional members of a catalytic pathway. While most adaptors display positive 
regulatory functions, a small group of this family exerts negative regulatory functions 
by targeting several components of the TK signaling cascade. Here, we review how 
these less studied adaptor proteins negatively control TK activities and how their 
loss of function induces abnormal TK signaling, promoting tumor formation. We also 
discuss the therapeutic consequences of this novel regulatory mechanism in human 
oncology.

IntroductIon

Protein phosphorylation on tyrosine residues 
catalyzed by tyrosine kinases (TKs) has evolved as an 
important mechanism to coordinate cell communication 
in multicellular organisms [1]. This molecular process 
is highly regulated in vivo because only less than 1% of 
mammalian proteins are phosphorylated on Tyr residues. 
Tyr phosphorylation (pTyr)-dependent signal transduction 
results from the combination of three molecular actions: 
initiation of the pTyr signal induced by the TK (the 
writer), propagation of the signal through recognition of 
the phosphorylated protein by a SRC Homology 2 (SH2) 
domain-containing protein (the reader) and control of the 
signal by phosphatases that dephosphorylate the substrate 
(the eraser) [1]. The human genome encodes about 
90 TKs, 100 SH2 domain-containing proteins and 40 
tyrosine phosphatases [2]. The tyrosine kinome consists of 
receptor and non-receptor TK families [3]. The Receptor 
TK (RTK) family includes receptors for growth factors 
and factors involved in cell adhesion and motility, cell 
survival and metabolism [4]. The non-receptor TK family 

comprises cytoplasmic TKs (CTKs) that mainly mediate 
signals transduced by receptors devoid of TK activity 
[5]. These non-enzymatic receptors can be activated by 
a large variety of extracellular cues, such as hormones, 
neurotransmitters, cytokines and antigens as well as 
components of the extracellular matrix, to regulate cell 
activity. Deregulation of this pTyr-dependent signaling 
has a strong effect in cancer [6]. Over 50% of TKs display 
aberrant activities in human tumors due to overexpression 
or somatic mutation of the corresponding gene and these 
molecular alterations are thought to be the main cause of 
oncogenic induction driven by abnormal pTyr-dependent 
protein phosphorylation in human cells [6]. Hence, small 
inhibitors or antibodies that target this molecular process 
have become an attractive therapeutic strategy in oncology 
[7]. However, TK inhibitors have shown variable effects in 
the clinic, suggesting that TK deregulation alone may not 
be always sufficient to induce oncogenesis and to predict 
tumor response to TK inhibitors [7].

 In light to the complexity of TK signaling, this 
mechanism has been reported to also be negatively 
controlled by a class of “readers” composed of small 
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adaptor proteins, as originally reported by Yoshimura 
et al [8]. Interestingly, inactivation of this regulatory 
mechanism has recently emerged as an additional 
important mechanism of oncogenic induction driven by 
aberrant TK activities. This review outlines the role of 
this class of adaptors in the control of pTyr-dependent 
signaling in normal and tumorigenic conditions and 
discusses the potential therapeutic implications of these 
novel findings. 

negAtIve regulAtIon of tK 
sIgnAlIng by smAll AdAptors In 
non-trAnsformed cells

Adaptor proteins define an important class of 
“readers” in the transmission of pTyr-dependent signaling. 
These proteins do not have enzymatic/catalytic or 
transcriptional activities, but act as molecular platforms 
that coordinate signaling events [9]. They mostly function 
as flexible molecular scaffolds that mediate protein–
protein and protein–lipid interactions through interaction 
domains and binding motifs in their modular structure. 
These motifs allow specific interactions with effector 
proteins to regulate their localization and/or activities. 
Specifically, by binding to and bringing into proximity 
two or more signaling proteins, they can coordinate and 
regulate signaling events in space and time. Signaling 
proteins with “adaptor” function can be classified in three 
broad families: i) scaffold proteins that regulate a large 
number of effector proteins, ii) transmembrane proteins 
that dock signaling effectors at the plasma membrane, 
and iii) small cytoplasmic adaptors that bind two partners 
together [9]. This review will focus on this last class. The 
first small adaptors identified were either novel regulators 
of cell growth induced by growth factors or oncogenes 
(GRB2 and SHC) [10, 11], or transforming products 
of retroviruses (v-CRK) [12]. It is now established that 
this family of positive regulators includes members 
of the CRK, DAPP1, GRB2, NCK, SHB, SH3BP2, 
SHC, SH2D1-5, SLP76 and STAP families [2]. They 
can function through association with cognate effectors 
and subsequent targeting of the complex to the plasma 
membrane for activation. For example, in the cytoplasm, 
the adaptor GRB2 is constitutively associated with SOS, 
an activator of the small GTP-binding protein RAS, and 
upon growth factor stimulation, the complex is directed to 
the membrane by interaction via the SH2 domain with an 
RTK that enables RAS signaling [13]. 

More recently, a new group of small adaptors has 
emerged that inhibits TK-induced cell responses. One of 
the first examples was cytokine inducible SH2-domain 
containing protein (CIS) [8] that was discovered while 
searching for new immediate early response genes induced 
by cytokines. CIS is a small molecule that contains an SH2 
domain and has some homology with the transcription 
factor STAT5. When overexpressed, the cytokine response 

is inhibited. Since then, several adaptors with similar 
properties have been identified, among which members of 
the SOCS, SLAP, SH2B, GRB7 and MIG6 families are 
included (Figure 1). Except for SOCS family members, 
these adaptors have emerged late during evolution to finely 
tune signaling and to prevent unwanted cellular responses. 
They mostly define feed-back loops, as revealed by loss of 
function experiments in mice combined with biochemical 
studies in cultured cells. They can negatively regulate TK 
signaling through direct inhibition of the TK catalytic 
activity, competitive inhibition of TK association with 
downstream signaling proteins, or destabilization of 
specific components of the pTyr signaling cascade via the 
recruitment of ubiquitination factors (Figure 2). A detailed 
analysis of their role in TK signaling is presented below.

socs family

The Suppressor of Cytokine Signaling (SOCS) 
family was originally identified based on the ability of its 
members to inhibit cytokine signaling and to bind to CTKs 
of the JAK family [14-16]. The mammalian SOCS family 
comprises eight members (SOCS1 to SOCS7 and CIS). 
They are composed of a variable N-terminal sequence, 
a central SH2 domain that shows homology with the 
STAT SH2, and a conserved sequence of about 40 amino 
acids, called “SOCS box” (Figure 1). This last domain is 
involved in the formation of Elongin/Cullin/SOCS box-
type complexes that function as E3 ubiquitin ligases to 
promote the ubiquitination of targeted substrates. SOCS1 
and SOCS3 additionally possess a short motif upstream 
of the SH2 domain that is called kinase-inhibitory region 
(KIR) and is critical for the inhibition of TK activity. 
SOCS proteins have emerged early in the animal kingdom. 
For instance, the C. elegans genome contains a single 
gene similar to SOCS6 and SOCS7, while the Drosophila 
genome already contains three SOCS genes (SOCS16D, 
SOCS36E and SOCS44A) that are homologous to SOCS4-
7. Drosophila SOCS proteins share similar functions 
with their human homologues. SOCS36E is both a target 
and a negative regulator of JAK/STAT signaling, while 
SOCS44A and SOCS36E are regulators of Epidermal 
Growth Factor (EGF) receptor signaling [17]. SOCS 
family members are expressed in a wide range of tissues 
with variations and specificities [18]. Cytokine and growth 
factor receptors induce SOCS gene expression, mostly 
via the STAT pathway, which in turn counteracts their 
signaling activity [19, 20].

Most SOCS family members can link the associated 
substrates to the ubiquitination machinery via the SOCS 
box. A wide range of substrates are targeted for proteolytic 
degradation, including CTKs of the JAK family, JAK-
associated cytokine receptors, RTKs [19, 21], MAL (a 
component of the inflammatory toll-like receptor signaling 
cascade) and IRS1/2 (components of the metabolic insulin 
signaling pathway) [22, 23]. However, SOCS-mediated 
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table 1: status of small adaptors that negatively regulate tK signaling in human cancers. 

Adaptor Status in tumors Type of tumor 

SOCS1

Mutation Lymphoma [144-147], AML [149]

Hypermethylation
AML [148, 149], CML [150], MPN [151], uterine cervical cancer [152], 
Barrett’s adenocarcinoma [154], ovarian cancer [155], esophageal 
squamous cell carcinoma [153], glioblastoma multiforme [157], breast 
cancer [155, 158]

Hypermethylation/Gene loss hepatocellular carcinoma [156]

Down-regulation Colorectal [159], prostate and pancreatic  cancer, myeloma, laryngeal 
carcinoma [194]

Up-regulation Melanoma [168]

SOCS2 Hypermethylation Ovarian cancer  [155]

Hypermethylation/Gene loss MPN  [195, 196]

Down-regulation Hepatocellular carcinoma [197], prostate cancer [198, 199] 

Up-regulation Acromegaly associated colonic polyps [200], CML [201, 202], AML, 
glioblastoma and myeloma [203] 

SOCS3

Mutation MPN [161]

Hypermethylation
MPN [204], hepatocellular carcinoma [162], glioma [163], 
cholangiocarcinoma [164], breast [165], lung [205], prostate [206],  head 
and neck cancer [207]; Barrett’s adenocarcinoma [154]

Up-regulation Follicular lymphoma [169]

Hyperphosphorylation MPN [170]

SOCS4 Hypermethylation Gastric cancer [208] 

SOCS5 Down-regulation Thyroid gland cancer [209] 

SOCS6 Hypermethylation/Gene loss Gastric cancer [210]

Gene loss Colorectal cancer [211] 

Down-regulation Primary lung squamous cell carcinoma [212], prostate cancer [198], 
hepatocellular carcinoma [197], liver and thyroid gland cancer [209]

SOCS7 Down-regulation Breast cancer [158]

SLAP
Down-regulation Colorectal cancer [52], AML, myeloma [51]

Up-regulation CML, chronic lymphocytic leukemia, glioblastoma, prostate cancer [51]

GRB10
Down-regulation Myeloma, bladder, brain, breast, prostate and pancreatic cancer [75]

Up-regulation Cervical squamous carcinoma [174], AML [175]

GRB14
Mutation Colorectal cancer [177]

Up-regulation Thyroid cancer [85]

LNK
Mutation MPN, leukemia [117]

Up-regulation Skin, kidney, ovarian cancer [182]

MIG6

LOH; Gene deletion Glioblastoma [129, 132, 185]

Hypermethylation Papillary thyroid carcinoma [186]

Down-regulation Hepatocellular carcinoma [139], breast [183], lung [184], skin, pancreatic 
and ovarian cancer [140]

Types of tumors where adaptors clearly participate in tumor progression are indicated in italic. LOH, loss of heterozygosity; 
AML, acute myeloid leukemia; CML, chronic myeloid leukemia; MPN, myleoproliferative neoplasms.
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ubiquitination can also promote internalization and 
routing of receptors, for instance growth hormone and 
granulocyte-colony stimulating factor (G-CSF) receptors 
[24, 25]. This results in the receptor and, possibly, JAK 
turnover. SOCS proteins can also suppress signaling by 
competing with downstream signal transducers for binding 
to shared phosphorylated motifs of the activated receptors. 
Particularly, SOCS proteins block STAT recruitment to 
cytokine receptors by masking the STAT binding sites 
of such receptors [26]. Finally, only SOCS1 and SOCS3 
can bind to JAKs via the SH2 domain and directly inhibit 
JAK catalytic activity via the KIR, which acts as a pseudo-
substrate that impairs substrate accessibility [27, 28]. 

SOCS1 can directly bind to the phosphorylated Tyr1007 
residue in JAK2 activation loop [29]. SOCS3 shows 
weak affinity for JAK, but binds to the cytokine receptor 
in close proximity of the kinase. Recent structural and 
mechanistic analyses have revealed the molecular basis 
of JAK inhibition by SOCS3 [30, 31]. Upon binding to 
JAKs, the unstructured KIR domain of SOCS3 adopts 
an extended β-strand-like conformation that sits in the 
catalytic pocket of the kinase, resulting in prevention of 
substrate binding or phosphorylation. SOCS3 can inhibit 
JAK1, JAK2 and TYK2 via its KIR, but not JAK3. This 
is due to the absence of an evolutionarily conserved Gly-
Gln-Met sequence (GQM motif) in JAK3 kinase domain. 

figure 1: modular structure of small adaptors that negatively regulate tK signaling. The size of adaptor proteins (number 
of amino acids), presence of specific homology domains, sequences and myristoylation sites (Myr) are indicated. (*) indicates that the 
adaptor of this subfamily positively regulates TK signaling.
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SOCS3 interacts with this motif through its SH2 and KIR 
domains. To date, there are no structural data on SOCS1, 
but high sequence conservation in the KIR domain with 
SOCS3 suggests that it may inhibit JAKs through the 
same mechanism.

Genetically manipulated mice were used to 
determine the physiological functions of SOCS 
proteins and demonstrated that they have a crucial role 
in immunological processes and in growth control in 
accordance with in vitro observations (for review see 
[18]). For example, Socs1-deficient mice die within three 
weeks of birth due to severe systemic inflammation, 
resulting from uncontrolled interferon-γ (IFN-γ) signaling 
[32, 33]. Mice lacking Socs3 die perinatally due to 
defective placental formation, whereas conditional Socs3 
depletion induces inflammatory and metabolic disorders 
[34-36]. Leukemia Inhibitory Factor Receptor (LIFR) 
gene deficiency was able to rescue the Socs3 knockout 
placental defect and embryonic lethality, establishing 
SOCS3 as an essential regulator of LIFR signaling during 
placental formation [37]. Lethality of Socs1 or Socs3 
deficient mice also revealed specific functions for these 

SOCS proteins that are not compensated by other family 
members. Socs2-deficient mice develop gigantism due to 
enhanced responses to growth hormone [38]. No Cis or 
Socs4 knockout mouse model has been reported by now, 
but Cis transgenic mice exhibit growth retardation [39]. 
Socs5 knockout mice showed no abnormalities, indicating 
possible redundancy between SOCS family members [40]. 
Socs6 deficient mice displayed an 8-10% reduction in body 
weight, but, despite the in vitro data, Socs6 knockout mice 
did not display any alterations in glucose metabolism [41]. 
Again, redundancy between SOCS family members may 
play a role in the absence of a phenotype in these mice. 
Finally, there have been conflicting reports regarding the 
in vivo function of SOCS7, probably due to differences in 
the genetic background of the respective mouse knockouts 
[42, 43]; however these observations suggested a role of 
SOCS7 in insulin signaling, consistent with the findings 
that SOCS7 can interact with the IR and their adaptor 
proteins. 

figure 2: A unifying model on how small adaptors control tK signaling. Sustained receptor stimulation generally induces 
expression of small adaptor proteins. As a result, the adaptor protein can inhibit TK signaling by competing with effectors/substrates 
for receptor binding, by directly inhibiting TK activity, or by promoting substrate/TK degradation via its association with a specific 
ubiquitination factor. 



Oncotarget11038www.impactjournals.com/oncotarget

slAp family

SRC-Like Adaptor Protein (SLAP) was identified by 
yeast two-hybrid genetic screening using the cytoplasmic 
domain of the RTK EPHA2 as bait [44]. SLAP2 was then 
discovered using bioinformatic and functional screening 
approaches [45-47]. SLAP displays considerable structural 
homology with SRC, but lacks the kinase domain. It 
has a unique myristoylated N terminus for membrane 
localization, followed by the SH3 and SH2 domains 
with high homology to those of SRC family TKs (about 
50% identity) and a unique C terminus involved in the 
interaction with downstream signaling proteins, such 
as the ubiquitination factor CBL (Figure 1) [48]. SLAP 
proteins have emerged during vertebrate evolution by 
SRC duplication [2]. SLAP is strongly expressed in the 
hematopoietic system, epithelial intestine, lung and brain 
and more weakly in other tissues. SLAP2 expression 
is more specific to the hematopoietic tissue and lungs 
[48]. SLAP is implicated in the negative regulation 
of RTK and immunoreceptor signaling. Surprisingly, 
the expression of SLAP proteins does not seem to be 
induced by receptor stimulation and, thus, it may not 
define a negative-feedback loop requiring transcriptional 
activation and novel protein synthesis, as reported for 
SOCS proteins. Their expression is rather induced 
during cell differentiation, for instance during thymocyte 
development [49].

SLAP negatively regulates SRC signaling by 
targeting SRC substrates for degradation or by competing 
with SRC for association with upstream receptors. Due 
to the homology with the SRC SH2 domain, SLAP SH2 
competes with SRC SH2 for platelet-derived growth factor 
(PDGF) receptor interaction and thereby impairs SRC-
mediated mitogenic signaling [50]. However, SLAP does 
not share the SRC-binding of FLT3 or EPHA2 suggesting 
that this competitive mechanism does not operate for 
all RTKs [51, 52]. SLAP proteins are also implicated 
in the degradation of SRC-like signaling components 
by facilitating the recruitment of ubiquitin ligases. For 
instance, they inhibit T cell receptor (TCR) and B cell 
receptor (BCR) activities by docking CBL to components 
of these receptor complexes and inducing their degradation 
[45, 53-55]. This mechanism may require phosphorylation 
by the TK LCK and the SLAP SH2 domain [53]. SLAP 
SH3 domain must also be intact for optimal attenuation 
of TCR signaling [56]. A recent structural analysis of 
SLAP2 revealed that the SH3 and SH2 domains directly 
interact through a beta-sheet formation and this may be 
important for SH2 binding activity [57]. Due to the high 
identity between SLAP proteins, this mechanism may 
be also operative in SLAP and could explain, at least in 
part, the important role of SLAP SH3 in TCR signaling. 
In addition to its role in lymphocytes, SLAP also controls 
F-actin assembly induced by PDGF in a CBL-dependent 
manner in fibroblasts, probably through destabilization 

of an upstream regulator of RAC GTPases [58]. Finally, 
SLAP also participates in CBL-dependent ubiquitination, 
internalization and/or degradation of many receptors, 
including GM-CSF receptor [59], FLT3 [51], KIT [60] 
and colony stimulating factor 1 (CSF-1) receptor [61]. 
SLAP also interacts with erythropoietin (EPO) receptor 
and negatively regulates erythroid terminal differentiation 
by unknown mechanisms [62].

Several in vivo SLAP functions have been revealed 
by Slap1 and 2 knockout experiments in mice (for reviews, 
see [48, 64, 65]). Surprisingly, these animals are healthy 
and without apparent physical defects [49, 55, 59] in 
contrast to the embryonic defects observed in Src, Fyn and 
Yes triple knockout mice [63]. These observations suggest 
that, in contrast to SFKs, SLAP proteins are not essential 
for embryonic development. SLAP and SLAP2 functions 
have been most intensely investigated in hematopoietic 
tissue and mainly in the context of lymphocyte signaling 
where they are strongly expressed. These in vivo analyses 
supported a model in which SLAP family members 
dampen immunoreceptor (TCR and BCR) signaling, 
thereby influencing lymphocytes development. For 
instance, disruption of the Slap1 gene showed that SLAP 
participates in a novel mechanism of TCR downregulation 
at the CD4+CD8+ stage and regulates positive selection. 
These in vivo analyses together with results obtained from 
cultured cells support a model in which SLAP regulates 
lymphocytes development by hindering immunoreceptor 
signaling [48, 64, 65]).

grb7 family

The growth factor receptor bound protein-7/10/14 
(GRB7/10/14) adaptors were originally identified 
as partners of activated EGFR [66-68]. Within the 
GRB7/10/14 family, GRB10 and GRB14 are major 
negative regulators of insulin and insulin growth factor 
1 (IGF1) effects on metabolism and growth [69, 70]. 
Conversely, GRB7 is implicated in the transduction of 
FAK- and EPHB1-induced cell migration [71]. Therefore, 
in this review we will focus on GRB10 and GRB14. 
These proteins possess several signaling modules, 
including a poly-Pro region close to their N-terminus, a 
RAS-associating (RA) domain, followed by a Plekstrin 
Homology (PH) and a SH2 domain. They also include a 
region known as BPS (between the PH and SH2 domains) 
or PIR (phosphorylated insulin receptor-interacting 
region), which is unique to this adaptor family (Figure 1). 
Similarly to SLAP, GRB7/10/14 structure and function 
were acquired relatively late, in evolutionary terms 
[69]. GRB10 is an imprinted gene that is predominantly 
expressed from the maternally inherited allele in most 
human and mouse tissues, except brain [72]. GRB10 and 
14 have similar patterns of expression in many tissues, but 
with some differences. Consistent with their role in insulin 
signaling, GRB10 and 14 are highly expressed in two 
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major insulin target tissues: skeletal muscle and adipose 
tissue. GRB10 is also strongly expressed in pancreas, 
moderately in cardiac muscle and brain, and weakly in 
many other tissues. GRB14 is highly expressed in heart 
and liver, and is also detected in pancreas, kidney, gonads, 
brain and placenta [69]. Although it is unknown whether 
GRB10 and 14 are transcriptionally regulated by insulin, 
GRB14 can be up-regulated by insulin [73, 74]. Recently, 
a couple of studies revealed that mTORC1 directly 
phosphorylates GRB10, thereby enhancing its stability 
and, thus, acting as a negative regulator of insulin or IGF-
1 signaling [75, 76].

GRB10 and 14 control TK-dependent signaling 
by a mechanism similar to the one described for SOCS 
proteins. The BPS domain of GRB10 and 14 specifically 
interacts with insulin and IGF-1 receptors (IR and 
IGF-1R) and inhibits their TK activity. Specifically, 
crystallographic studies showed that the BPS region of 
GRB14 acts as a pseudo-substrate that binds to the TK 
domain of IR and inhibits IR catalytic domain [77]. 
The SH2 domain potentiates the inhibitory effect of the 
BPS region by binding to the phosphorylated activation 
loop of the IR catalytic domain, while the RA and PH 
domains are involved in GRB14 membrane recruitment 
and participate in IR negative regulation [77, 78]. The 
interaction between GRB10/14 and IR/IGF-1R can also 
interfere with downstream partners. For example, GRB10 
disrupts the association of insulin receptor substrate 
(IRS) proteins with IR [79]. In cells expressing IR and 
PTP1B, GRB14 co-expression maintains the pTyr of the 
IR activation loop, while favoring dephosphorylation of 
Tyr972 in the juxtamembrane domain [80]. As Tyr972 
is the main docking site for IRS1, this may contribute to 
GRB14 ability to inhibit the association of IRS1 with IR. 
GRB10 might regulate the internalization and degradation 
of its target proteins, such as IGF-1R, by interacting 
with the ubiquitination factor NEDD4 [81-83]. GRB10 
and 14 also regulate signaling initiated by other RTKs 
[70]. For example, GRB14 inhibits Fibroblasts Growth 
Factor (FGF) receptor-mediated signaling by altering 
FGF-induced PLCγ phosphorylation and activation [84]. 
Mechanistically, GRB14 SH2 binding to FGF receptor 
induces a conformational change that unmasks a PLCγ 
binding motif on GRB14, allowing PLCγ trapping and 
inactivation. On the other hand, GRB14 enhances RET-
mediated signaling [85] and GRB10 promotes signaling 
mediated by PDGFR, vascular endothelial growth 
factor receptor (VEGFR) and KIT via not well known 
mechanisms [86-88].

In agreement with their role in insulin signaling, 
Grb10 and Grb14 knockout mice show improved insulin/
IGF sensitivity [89-91]. The Grb10-/- phenotype also 
includes embryo and placenta overgrowth as well as 
increased skeletal muscle and pancreatic β-cell mass 
[92]. Conversely, transgenic mice overexpressing the 
Grb10 maternal allele show postnatal growth retardation, 

hyperinsulinemia, glucose intolerance and insulin 
resistance [93]. Accordingly with mouse phenotypes, 
modulations of GRB10/14 expression in cultured 
cells show that these adaptors inhibit insulin/IGF-
induced receptor activation, revealed by the inhibition 
of endogenous substrate phosphorylation, such as 
IRS1, IRS2, SHC and p62DOK, and the inhibition of 
downstream signaling pathways such as PI3K/AKT and 
ERK1/2 (reviewed in [69, 70]). 

sH2b family

The SH2B adaptor family includes SH2B1, 
APS (SH2B2) and LNK (SH2B3). LNK has a well-
characterized negative function in JAK2 and TCR 
signaling [20, 94, 95], while the negative role of the other 
members remains controversial and may depend on the 
nature of the TK-dependent signaling. The molecular 
bases of these specificities are poorly understood, but 
they may involve alternative splicing of the SH2B1 and 
APS genes [70, 96]. SH2B family members contain an 
N-terminal dimerization domain, Pro-rich regions, a 
central PH domain and an SH2 domain (Figure 1). While 
highly homologous, the SH2 domains of these adaptors 
display distinct biochemical characteristics resulting in 
specific signaling functions. For example, the SH2B1 SH2 
domain binds preferentially to JAK2, whereas the APS 
SH2 domain has higher affinity for the insulin receptor 
[97]. This specificity is attributable to the difference in the 
oligomeric states of the two SH2 domains: monomeric 
for SH2B1 and dimeric for APS [98]. Multiple consensus 
sites for Tyr and Ser/Thr phosphorylation are also found 
in SH2B adaptors. The SH2B family is evolutionarily 
conserved from insects to humans [99, 100]. Drosophila 
has only one dSH2B protein that is structurally similar 
to SH2B1. The core functions of dSH2B (e.g., growth, 
reproduction and metabolism) seem to be evolutionarily 
conserved, but the three mammalian SH2B family 
members also have new specific functions. Indeed, deletion 
of SH2B2 or SH2B3 does not alter growth or glucose 
metabolism in mice, in contrast to SH2B1 knockout 
[101]. LNK is mainly expressed in hematopoietic tissues, 
but also in testis, brain and muscle [102]. Similar to other 
negative regulators, LNK expression is induced following 
JAK/STAT or Tumor Necrosis Factor (TNF) α signaling, 
consistent with the existence of a transcription-dependent 
negative control loop [103, 104]. 

LNK negatively regulates TCR signaling in a 
LCK-dependent manner [95] and the activity of cytokine 
receptors, such as the EPO and thrombopoietin (TPO) 
receptors, in a JAK2-dependent manner [105, 106]. The 
role of LNK in TPO signaling has been especially well 
studied but the molecular mechanism of TPO-mediated 
signaling inhibition by LNK has not been fully elucidated. 
Mechanistically, the LNK SH2 domain binds to a JAK2 
sequence located within the pseudo-kinase domain linker, 
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upon JAK2 phosphorylation on Tyr813 induced by TPO 
[107]. The PH domain of LNK is also involved in this 
regulatory process [108]. As a result, LNK is a potent 
inhibitor of JAK2/STAT signaling during hematopoiesis. 
In hematopoietic stem cells, LNK/JAK2 interaction is 
further negatively regulated by 14-3-3 adaptor proteins. 
Binding of 14-3-3 to LNK requires phosphorylation of 
two serine residues in LNK. This binding abrogates LNK/
JAK2 interaction, thereby affecting its inhibitory function 
[109]. LNK also controls signaling through RTKs, 
including KIT [110, 111], PDGFR [112], FLT3 [113] 
and CSF1 receptor [114]. For instance, the interaction 
of LNK SH2 with the phosphorylated Tyr568 present in 
KIT juxta-membrane domain [115] results in reduction 
of downstream signaling including the attenuation of 
GAB2 phosphorylation and MAPK activation [110]. 
The mechanism underlying this molecular process was 
not further elucidated in this study. Finally, LNK also 
interferes with TRKA signaling, possibly by competing 
with the positive-acting SH2B1 and APS for binding to 
TRKA [116]. 

Consistent with LNK negative role in cytokine 
receptor signaling reported in cell culture, Lnk-deficient 
mice are viable but display abnormal cytokine signaling 
and aberrations in hematopoiesis [102, 110]. Specifically, 
these studies revealed defects during lymphopoiesis, 
erythropoiesis, megakaryopoiesis, mast cell development 
and macrophages proliferation as well as in hematopoietic 
stem cell (HSC) expansion (for review, see [117, 118]). 
Moreover, Lnk and Tpo double-knockout mice revealed 
opposite physiological roles for LNK and TPO in HSC 
expansion [119] and LNK overexpression inhibits 
megakaryocyte development in mice, consistently 
with a role in TPO/JAK2 signaling regulation [120]. 
However, although high levels of LNK are present in 
non-hematopoietic tissues such as the testis, brain and 
muscle, no noticeable phenotypes of genetically modified 
mice were reported in these tissues, questioning about 
the physiological role of LNK in non-hematopoietic 
compartments.

mIg6

Mitogen-inducible gene 6 (MIG6, also known as 
receptor-associated late transducer, RALT, or ERBB 
feedback inhibitor 1, ERRFI1) was first cloned from a 
hydrocortisone-induced rat liver cDNA library [121]. 
MIG6 was then identified as a partner and an endogenous 
inhibitor of EGFR (also named ERBB1) and ERBB2, 
two members of the ERBB receptor family [122, 123]. 
MIG6 is a cytosolic protein composed of a CDC42/RAC 
interaction and binding (CRIB) domain, Pro-rich motifs, a 
14-3-3 protein binding motif, the RALT endocytic domain 
(RED) and the ERBB-binding region (EBR) (Figure 1). 
MIG6 is present in higher order species, suggesting that 
its expression has been acquired during evolution for 

regulating more complex signaling circuits [124]. MIG6 
is an immediate early response gene that is expressed 
in various tissues [124]. Its expression can be induced 
through a RAS/MAPK-dependent mechanism upon 
sustained stimulation by a broad spectrum of extracellular 
cues and as such, MIG6 defines a negative regulatory 
feedback loop that is tightly regulated. Indeed, the 
transcriptional activation of ERRFI1 (the gene encoding 
MIG6) appears to be transient [122] and MIG6 protein 
is degraded through a proteasome-dependent mechanism 
upon interaction with DNAJB1 [125, 126]. 

MIG6 inhibits ERBB kinase activities by direct 
binding of its EBR region to ERBB catalytic domain. 
Mechanistically, the N-terminal portion of EBR, called 
segment 1 (amino acids 336-364), interacts with ERBB 
C-lobe that overlaps with a site critical for forming the 
asymmetric dimer with the N-lobe of the other ERBB 
subunit. As a result, MIG6 locks ERBB in a catalytically 
inactive conformation and hinders its dimerization 
required for signal transduction [127]. Recently, it has 
been shown that phosphorylation on Tyr394 and Tyr395, 
which are located in segment 2 (amino acids 365-412) 
of EBR C-terminus, is critical for effective interaction 
of MIG6 with EGFR [128, 129]. A structural analysis 
suggests that EBR segment 1 binds across the base of the 
C lobe of ERBB and segment 2 forms a β-hairpin-like 
element that occupies the peptide-substrate binding site, 
once phosphorylated. Interestingly, Tyr394 and Tyr395 
are phosphorylated by EGFR and SRC respectively [130], 
thus creating a forward feedback loop in the control 
of ERBB activity by MIG6. MIG6 also plays a role in 
ERBB receptor trafficking. Upon EBR docking onto the 
receptor, the RED domain interacts with the endocytic 
proteins AP-2 and intersectins to induce clathrin-mediated 
ERBB endocytosis [131]. Moreover, MIG6 mediates 
ERBB receptor sorting to late endosomes by binding to 
syntaxin 8, thus promoting ERBB lysosomal degradation 
[132]. MIG6 expression also negatively regulates MET 
signaling [133]. This activity requires an intact CRIB 
motif, suggesting that MIG6 acts, at least in part, distally 
from MET, possibly by inhibiting Rho-like GTPases. 
Surprisingly, MIG6 can also activate the CTK ABL by 
interacting with its kinase domain via the EBR domain. 
MIG6-dependent ABL activation occurs only when ERBB 
is inactive and leads to the induction of ABL apoptotic 
function [134]. This sophisticated mechanism is consistent 
with a switch-like mechanism, whereby MIG6 interacts 
with and attenuates EGFR activity, while in the absence 
of ERBB stimulation, it activates ABL pro-apoptotic 
function. 

Gain and loss of function analyses in a wide range of 
cultured cells show that MIG6 inhibits downstream ERBB 
signaling, including activation of ERK and AKT, as well as 
biological responses regulated by ERBB receptors, such as 
cell proliferation and migration [123, 135-139]. Consistent 
with these data, Mig6 gene inactivation in mice induces 
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sustained ERBB signaling, leading to overproliferation 
and impaired differentiation of epidermal keratinocytes 
and development of tumors in various tissues [140, 141].

smAll AdAptors In tHe control 
of oncogenIc sIgnAlIng drIven 
by tK In HumAn cAncer

Most TKs targeted by these adaptor proteins display 
prominent transforming activity when deregulated. 
Hence, these negative regulators could also control 
aberrant signaling driven by oncogenic TKs. As they 
mostly function by activating a feedback loop, their 
suppressive activity could be exacerbated by aberrant 
TK activity in transformed cells. Consequently, they 
could acquire a potent tumor suppressor function in 
human cancer. Curiously, their role during malignant 
cell transformation is much less documented than that of 
adaptors with positive regulatory functions. In addition, 
the underlying mechanism of their tumor suppressive 
role is poorly characterized. Like in normal cells, these 
adaptors may control TK-dependent oncogenic signaling 
by directly affecting TK catalytic activity and interaction 
with components of the signaling cascade, and/or by 
promoting the destruction of specific elements of this 
oncogenic signaling, resulting in a restriction of pTyr-
dependent cell transformation (Figures 3, 4, 5). Their 
inactivation by genetic or epigenetic mechanisms could 
promote TK-driven oncogenic signaling, thus enhancing 
malignant cell transformation (Table 1). Intriguingly, the 
tumor suppressive activity of some adaptors appears to 
be highly context-dependent, because they seem also to 
participate in the formation of some tumors (Table 1). The 
molecular cause of these variable effects is unclear. They 
might target additional processes involved in the control 
of tumor formation, such as tissue integrity, tumor cell 
differentiation or tumor immune suppression, resulting in 
aggravation of the tumor phenotype. A short analysis of 
the role of these adaptors in human cancer is presented 
below.

socs family

SOCS proteins regulate inflammation, 
hematopoiesis, cell growth and metabolism. They might 
also play important tumor suppressor roles in many 
cancers [18, 142] where they are frequently inactivated. 
SOCS1 and 3 anti-oncogenic activities are particularly 
well documented. For example, SOCS1 can suppress 
STAT-dependent signaling induced by oncogenic KIT, 
TEL-JAK2 and BCR-ABL [143]. However, SOCS1 
is frequently inactivated in human lymphoma by gene 
inactivating mutations leading to increased STAT5 and 
6 signaling [144-147]. SOCS1 is commonly silenced 
by hypermethylation and occasionally mutated in acute 

myeloid leukemia (AML) [148, 149]. In patients with 
chronic myeloid leukemia (CML), SOCS1 is often 
hypermethylated, but can revert to the unmethylated 
state during remission [150]. Some BCR-ABL-negative 
myeloproliferative neoplasms (MPN) also exhibit 
SOCS1 hypermethylation, which may complement other 
mutations, such as the hyperactive JAK2V617F mutation 
[151]. SOCS1 hypermethylation is commonly reported in 
solid tumors [152-155], and combined hypermethylation/
gene loss have been observed in hepatocellular carcinoma 
[156]. However, the functional consequence of SOCS1 
inactivation has not been fully elucidated yet. SOCS1 
hypermethylation is associated with enhanced radio-
resistance in glioblastoma multiforme, indicative of a 
pro-apoptotic function [157]. Conversely, higher SOCS1 
expression has been observed in early stage tumors and 
has been linked to better clinical outcome in breast and 
colorectal cancers (CRC) [158, 159]. A functional analysis 
suggested that SOCS1 may control CRC metastatic 
progression, possibly through destabilization of metastatic 
inducers [159]. SOCS1 is also important for preventing 
chronic inflammation-mediated carcinogenesis. For 
instance, Socs1 knockout mice spontaneously develop 
intestinal tumors in an IFNγ/STAT1-dependent manner, 
suggesting that chronic inflammation is a critical 
determinant for CRC development [160]. Therefore, 
SOCS1 is a unique anti-oncogene that prevents 
carcinogenesis by suppressing chronic inflammation.

Although mutations in SOCS3 are rare events, a loss 
of function mutation within the SH2 domain of SOCS3 
(F136L) was recently described in a cohort of Japanese 
patients with MPN [161]. SOCS3 hypermethylation also 
has been observed in this type of cancer and in solid 
tumors. For instance, SOCS3 inactivation increases JAK/
STAT and FAK signaling, promoting growth and migration 
of hepatocellular carcinoma cells [162], invasion of 
glioma cells [163], enhanced anti-apoptotic IL-6/STAT3 
signaling in cholangiocarcinoma cells [164] and, possibly, 
increased dissemination of breast cancer cells (Figure 3) 
[165]. SOCS3 inactivation is also associated with STAT5-
dependent CRC metastatic progression [166]. Finally, 
in mice, SOCS3 can limit inflammation-associated 
tumorigenesis in colon, by inactivating STAT3 and NFκB 
[167]. 

Opposing functions for SOCS proteins have been 
also reported in some tumors. For example, SOCS1, 
which is not expressed in normal skin or melanocytic 
nevi, is up-regulated in melanoma. Moreover, high SOCS1 
expression level correlates with the metastatic stage of the 
disease, suggesting that SOCS1 might be an additional 
marker of human melanoma progression. Mechanistically, 
SOCS1 may reduce the tumor cell response to endogenous 
and/or therapeutically administered cytokines [168]. 
Similarly, SOCS3 up-regulation was associated with 
decreased survival in a cohort of patients with de novo 
follicular lymphoma [169]. Moreover, aberrantly active 
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TKs may find a way to escape SOCS3 negative regulation. 
For example, JAK2V617F inhibits SOCS3 inhibitory 
function by promoting SOCS3 hyperphosphorylation 
in MPN. Additionally, JAK2 diverts SOCS3 to sustain 
a transformed phenotype by a still not well understood 
mechanism (Figure 3) [170]. Similarly, truncated G-CSF 
receptor variants expressed in AML lack the sequences 
required for SOCS3-mediated control of STAT5 activation 
[171].

slAp family

Little was known about their role in human 
cancer until recently, mainly because SLAP functions 
were thought to be restricted to the immune system. 

Nevertheless, we previously reported that SLAP has a 
strong capacity to counteract SRC oncogenic activity 
in fibroblasts through a SH3-dependent mechanism, in 
agreement with a potential anti-oncogenic activity [58]. 
More recently, we observed that SLAP is abundantly 
expressed in colon epithelium, but frequently down-
regulated in the associated tumor [52]. SLAP inactivation 
is not mediated by a gene methylation-dependent 
mechanism, but in rare cases could be caused by SLAP 
inactivating mutations located in the SH2 and SH3 
domains. SLAP silencing promotes tumor initiation, 
progression and metastasis formation, while SLAP 
overexpression inhibits tumor growth and invasion. 
SLAP promotes the degradation of EPHA2, an important 
adhesive receptor and key substrate for SRC function 
in cell tumorigenesis and invasiveness [172, 173]. This 

figure 3: model of socs tumor suppressor function in human cancer. A. In tumor cells with high SOCS expression, these 
adaptor proteins inhibit tumor cell growth by controlling JAK/STAT-dependent cytokine signaling, and restrict integrin-dependent cell 
invasion by inhibiting FAK/SRC signaling. b. Upon SOCS inactivation in tumor cells, cytokine and integrin signaling are exacerbated, thus 
contributing to tumor progression. c. Upon expression of the JAK2V617F oncogene, SOCS inhibitory function is inactivated by tyrosine 
phosphorylation, which results in increased JAK2V617F oncogenic activity.
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novel activity is CBL-independent, but requires SLAP 
interaction with the ubiquitination factor UBE4A. 
Mechanistically, SRC phosphorylates EPHA2 on 
Tyr594, resulting in the promotion of a UBE4A/SLAP/
EPHA2 complex for EPHA2 proteasomal degradation, 
thus limiting the SRC metastatic potential (Figure 4). 
Consistently, SLAP inactivation in CRC dramatically 
increases EPHA2 protein level and amplifies the SRC/
EPHA2/AKT signaling cascade that promotes tissue 
invasion of tumor cells. Thus, inactivation of SLAP-
mediated degradation of specific SRC substrates defines 
an additional and important mechanism of SRC-mediated 
oncogenic induction in CRC. It is not known whether 
SLAP targets additional SRC oncogenic substrates to 
mediate its tumor suppressive activity. SLAP expression 

might exert a similar tumor suppressor function in AML 
and myeloma [51]. 

However, deregulated RTKs may evade SLAP 
negative regulation in pathological conditions. For 
instance, it was recently reported that wild type KIT, but 
not the oncogenic KIT-D816V mutant, is degraded through 
a SLAP-dependent pathway. SLAP can associate with KIT 
and KIT-D816V, but only KIT-D816V phosphorylates 
SLAP on Tyr120, Tyr258 and Tyr273, leading to inhibition 
of SLAP activity and sustained KIT oncogenic signaling 
(Figure 4) [60]. 

Finally, SLAP may also participate in cell 
transformation in specific situations, as reported for 
SOCS proteins. For instance, SLAP could be involved 
in the blockade of cell differentiation required for the 

figure 4: model of slAp tumor suppressor function in human cancer. A. Control of SRC oncogenic signaling by SLAP. 
In tumor cells with high SLAP expression, SLAP inhibits SRC oncogenic signaling by promoting destabilization of SRC oncogenic 
substrates, including the cell adhesive receptor EPHA2. This results in the restriction of tumor cell growth and invasion. When SLAP is 
inactivated, EPHA2 protein level is abnormally increased and SRC oncogenic signaling exacerbated, thus enabling metastatic progression. 
Consequently, tumor cells may be more sensitive to SRC-like inhibitors. b. Control of KIT oncogenic signaling by SLAP. SLAP regulates 
KIT-driven oncogenic signaling by promoting ubiquitination-dependent KIT degradation. However, upon expression of oncogenic 
KITD816V, this SLAP-mediated inhibitory mechanism is impaired through tyrosine phosphorylation, thus alleviating SLAP control on 
KITD816V oncogenic signaling.
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induction of erythroleukemia by the FLI-1 oncoprotein 
[62]. Mechanistically, SLAP inhibits several components 
of EPO receptor signaling needed for late survival and 
terminal differentiation of erythroblasts. Likewise, SLAP 
may also be induced in acute promyelocytic leukemia 
subtypes that harbor FLT3-ITD mutations, suggesting 
that this adaptor protein might also participate in this 
transforming process [51].

grb7 family 

GRB10 and GRB14 roles in human cancer are 
poorly documented and not clear. GRB10 may participate 
in progression of some human tumors, as suggested for 
primary cervical squamous carcinoma [174] and FLT3-
ITD positive AML [175], and also in BCR-ABL-mediated 
leukemogenesis in mice [176]. Similarly GRB14 increases 
thyroid cancer cell growth by promoting RET signaling 
and its expression is correlated with human thyroid cancer 
invasiveness [85]. However, these adaptors may also 
acquire tumor suppressive functions, as suggested by a 
recent transcriptomic meta-analysis showing that GRB10 
expression is down-regulated in many human tumors 
[75]. Moreover, the GRB14 gene is frequently mutated in 
human CRC with microsatellite instability [177].

lnK

LNK may have tumor suppressor function as 
suggested by the phenotype of Lnk−/− mice that 
resembles the myeloproliferative abnormalities found 
in human MPN [178]. LNK ectopic expression inhibits 
proliferation of leukemic cells through binding to and 
catalytic inhibition of transforming TKs [103, 112, 113, 
179-181]. Surprisingly, analysis of LNK expression in a 
large panel of hematological malignancies revealed that 
LNK is strongly expressed in nearly half of the patient 
samples, possibly as a consequence of aberrant cytokine 
signaling activation [103, 180]. How JAK2 can cope 
with high LNK level in these cells is unclear. LNK can 
be mutated in MPN (3-5%) and in some leukemias [117]. 
Somatic mutations mostly target a hot spot in LNK PH 
domain, resulting in aberrant JAK/STAT signaling, even 
in MPN harboring wild type JAK [108]. Consistently, 
cells co-expressing the TPO receptor and mutated LNK 
are hyper-responsive to TPO and display aberrant growth 
and enhanced JAK2/STAT signaling. 

Surprisingly, LNK is up-regulated in some solid 
tumors, including the mesenchymal subtype of serous 
ovarian cancer, and this is associated with poorer outcome 
[182]. Functionally, LNK participates in AKT- and 
MAPK-dependent tumor cell growth and survival. 

mIg6

MIG6 tumor suppressive role is supported by the 
finding that upon deletion of ERRFI1, mice frequently 
develop spontaneous or chemical-induced tumors [140]. 
Additionally, MIG6 expression is frequently reduced in 
various human cancer types [139, 140, 183, 184] and this 
is correlated with poor survival in patients with breast or 
lung cancer [183, 184]. MIG6 inactivation can be the result 
of loss of heterozygosity or focal deletion of ERRFI1, as 
reported in EGFR-amplified glioblastoma [129, 132, 185], 
or promoter methylation, as found in papillary thyroid 
carcinoma [186]. MIG6 inactivation may affect RTK 
aberrant signaling (Figure 5). Accordingly, MIG6 down-
regulation in thyroid cancer cells and papillary carcinoma 
enhances EGFR, ERBB2 and MET activity.

tHerApeutIc consequences In 
oncology 

All this data indicates that loss of adaptor-mediated 
regulation of oncogenic TKs contributes to tumor 
formation. These novel findings may have significant 
consequences for cancer treatment/management, such as 
the discovery/development of novel biomarkers and the 
improvement of therapy targeting TK-dependent signaling.

Adaptor expression levels as novel biomarkers 

The expression status of some of these adaptors 
in transformed cells may predict the tumor responses to 
drug that target oncogenic TK signaling. For instance, 
low expression in tumor cells of adaptors that control TK 
catalytic activity, such as MIG6, might predict heightened 
oncogenic signaling dependent of deregulated TKs, such as 
ERBB receptors, and therefore may be a good predicator 
of tumor cell response to TK inhibitors (TKIs) (Figure 5). 
Indeed, carcinogen-induced tumors in Errfi1-/- mice are 
highly sensitive to the EGFR TKI gefitinib [140]. MIG6 
silencing also increases bladder cancer cell sensitivity to 
the therapeutic anti-EGFR antibody cetuximab [187]. A 
low MIG6/EGFR ratio, predicting high EGFR activity, is 
highly correlated with erlotinib sensitivity in cancer cell 
lines derived from different tissues [188]. Analysis of a 
cohort of patients with lung cancer treated with gefitinib 
alone demonstrated higher response rates and a marked 
increase in progression-free survival in patients with a low 
MIG6/EGFR ratio [188]. Overall, these studies highlight 
a mechanism of resistance to EGFR-targeted therapies in 
tumors with high MIG6/EGFR ratio. They also suggest 
that this ratio could represent a novel biomarker for 
guiding the decision to incorporate these drugs into 
chemotherapeutic regimens.

Inactivation in tumor cells of adaptors that control 
substrate stability, such as SLAP, would also predict 
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heightened oncogenic signaling dependent of the 
deregulated TK, such as SRC, and therefore may be a 
good predictor of tumor cell response to TKIs. Conversely, 
high SLAP expression level might indicate that although 
SRC activity is aberrant in these tumors, its transforming 
activity could be hampered by SLAP-mediated destruction 
of important SRC substrates. This would render tumor 
cells less dependent on SRC oncogenic signaling and, 
consequently, rather resistant to a SRC-based therapy 
(Figure 4). This model has been experimentally verified in 
CRC cells, where response to SRC inhibitors was greatly 
enhanced in cells where SLA was silenced [52]. Therefore, 
SLAP down-regulation may be a key predictor of SRC 
inhibitory response, and may explain, at least in part, why 
SRC inhibitors failed to generate promising results in solid 
tumors so far. Overall, these findings support the idea 
that the level of these regulators may be used as valuable 
biomarkers to select patients who could respond to TK-
targeted therapy. 

Adaptors as potential therapeutic targets

Due to their prominent tumor suppressor function, 
forced expression of these adaptors in tumor cells could 

represent an alternative therapeutic strategy to target 
oncogenic TK signaling in human cancer. Restoration 
of adaptor expression in tumor cells can reduce tumor 
growth and/or metastasis formation. Nevertheless, gene 
therapy is still a technical challenge and alternative 
methods to modulate adaptor activity or expression might 
be considered. These adaptor proteins are frequently 
inactivated in tumors via a methylation-dependent 
mechanism. Accordingly, demethylation drugs, such 
as 5-aza-2’-deoxycytidine that exhibits clear tumor 
suppressive roles, could restore adaptor expression in 
tumor cells and may represent a potential anti-tumor 
therapeutic strategy. Forced expression of many of 
these adaptors, such as LNK [181] and SOCS proteins 
[18], was used to test their capacity to overcome TK-
induced cell transformation. While promising, this 
strategy may be limited by the capacity of oncogenic 
TKs to escape negative regulation by phosphorylation-
dependent mechanisms, as reported for SOCS and 
SLAP. Besides, modulation of their expression in tumor 
cells for anti-tumor therapy is highly context-dependent 
due to their opposite function in different cancers, as 
described above. Another potential therapeutic strategy, 
although not experimentally validated, would arise from 

figure 5: model of mIg6 tumor suppressor function in human cancer. In tumor cells with a high ratio of MIG6/ERBB 
receptors, MIG6 inhibits the receptor kinase activity and promotes their internalization for lysosomal degradation, resulting in a dramatic 
reduction of ERBB oncogenic signaling. In tumor cells with a low MIG6/ERBB ratio, MIG6 activity is reduced and ERBB oncogenic 
signaling is restored. Consequently, tumor cells may be more sensitive to ERBB-like inhibitors. 
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the development of small molecules that mimic their 
actions on their capacity to inhibit TK catalytic activity 
as demonstrated for the targeting of JAKs by the SOCS3-
KIR domain.

Finally, because of their prominent role in immune 
response, their level of expression may dictate the tumor 
cell response to cytokine-based therapy. For instance, 
SOCS1 and SOCS3 up-regulation seem to be responsible 
for the unresponsiveness to IFN therapy in patients with 
leukemia. Indeed, SOCS1 constitutive expression has 
been observed in patients with CML [189], in agreement 
with the reported hypomethylation of this gene [190], 
and was correlated with poor response to IFNα treatment, 
possibly due to a direct effect on receptor signaling [189]. 
SOCS3 expression is also elevated in CML and confers 
resistance to IFNα treatment [191]. SOCS1 expression is 
also higher in IFN-resistant neuroendocrine tumor cells 
and siRNA inhibition of SOCS1 expression enhances their 
IFN-responsiveness [192]. Likewise, siRNA-mediated 
inhibition of SOCS1 and SOCS3 expression in melanoma 
cells enhances their responsiveness to IFN [193]. This 
supports the idea that siRNA-mediated reduction of SOCS 
level could be a promising new approach to enhance IFN 
therapeutic effectiveness.

concludIng remArKs And 
perspectIves

Since the discovery of CIS twenty years ago, 
this small class of adaptor proteins has emerged as an 
important player in the mechanisms to finely tune TK-
mediated signal transduction. While their functions have 
been mostly investigated in hematopoietic cells due to 
their high expression levels and to the essential role of 
TK signaling in hematopoiesis, more recent data revealed 
additional important roles in non-haematopoietic cells, 
as exemplified by the SLAP tumor suppressive role in 
the colon. Therefore, one important perspective will be 
to uncover such physio-pathological activities in non-
hematopoietic tissues using novel relevant in vitro and 
animal models. Similarly, while underlying mechanisms 
of adaptor-mediated negative feedback regulation was 
thought to be rather well established, recent molecular 
analyses challenged this idea and suggest the existence 
of broader mechanisms involved in their activities. For 
example, CBL has been reported as the main SLAP 
effector in the control of TK signaling through ubiquitin-
mediated degradation via the proteasome or the lysosome 
[45, 53-55] but our recent study revealed that SLAP 
recruits distinct ubiquitination factors such as UBE4A 
in the colon to control transforming substrates stability, 
despite a high expression level of CBL in this tissue 
[52]. Additionally, proteomics identified a dozen of 
ubiquitination factors as specific SLAP interactors in CRC 
suggesting that these adaptors share common mechanisms 
to control signaling, but recruit a large repertoire of 

effectors to target a wide range of TK-dependent signaling. 
Surprisingly, proteomics also identified a hundred of 
additional SLAP binders unrelated to the control of 
receptor signaling or protein stability, predicting a much 
broader role of this adaptor in signal transduction and 
raising the question whether its functions are restricted 
to TK-dependent signaling [52]. We thus anticipate novel 
functions for these adaptors to be identified in the future 
and proteomic methods combined with functional analyses 
are warranted to give a comprehensive view on the role of 
these adaptors in cell biology.

Due to their feedback role in the control of TK 
signaling, the negative function of these adaptors is 
expected to be exacerbated upon aberrant expression of TK 
activities, uncovering novel tumor suppressor functions 
for these adaptors. This idea has been experimentally 
validated in myeloproliferative malignancies (e.g. 
LNK) but tumor suppressor and anti-metastatic activity 
for these adaptors have been now reported also in solid 
tumors (e.g. SLAP and SOCS1). Therefore, a broader 
tumor suppressor role for these adaptors is expected in 
human cancer, which will deserve more investigation in 
the future. Besides, we suspect that oncogenic TKs may 
find a way to overcome this control mechanism and in 
some situations divert this regulatory process to sustain 
tumor progression. How oncogenic TKs cope with this 
control mechanism is an additional important issue to 
be addressed in the future. Intriguingly, the function of 
some adaptors in cancer is more complex because their 
activity seems to be context-dependent. The reason for 
such variable activity is quite obscure, but we suggest that 
these molecules target additional important signals that are 
involved in the control of tumor development/progression, 
such as the immune response. It will be thus important 
to elucidate such tumor promoting function in order to 
better understand their general role in this human disease 
and improve TK-based therapeutic strategy according 
to their activities. In conclusion, this rather neglected 
mechanism in the control of TK signaling is emerging 
as an additional important mechanism for the control of 
human malignancy and a better understanding on the role 
of this adaptor family in human cancer should ultimately 
improve TK-based tumor therapies. 
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