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AbstrAct
Patient-derived xenograft (PDX) models are frequently used for translational 

cancer research, and are assumed to behave consistently as the tumor ages. However, 
growth rate constancy as a function of time is unclear. Notably, variable PDX growth 
rates over time might have implications for the interpretation of translational studies. 
We characterized four PDX models through several in vivo passages from primary 
human head and neck squamous cell carcinoma and salivary gland adenoid cystic 
carcinoma. We developed a mathematical approach to merge growth data from 
different passages into a single measure of relative tumor volume normalized to 
study initiation size. We analyzed log-relative tumor volume increase with linear 
mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if 
histopathological feature changes occurred over in vivo passages. Tumor growth rate 
increased over time. This was determined by repeated measures linear regression 
statistical analysis in four different PDX models. A quadratic statistical model for the 
temporal effect predicted the log-relative tumor volume significantly better than a 
linear time effect model. We found a significant correlation between passage number 
and histopathological features of higher tumor grade. Our mathematical treatment of 
PDX data allows statistical analysis of tumor growth data over long periods of time, 
including over multiple passages. Non-linear tumor growth in our regression models 
revealed the exponential growth rate increased over time. The dynamic tumor growth 
rates correlated with quantifiable histopathological changes that related to passage 
number in multiple types of cancer.

INtrODUctION

In recent years, the use of patient-derived xenograft 
(PDX) models generated from surgically implanted tumor 
fragments into immunodeficient mice has increased 
substantially, particularly for developmental therapeutic 
studies. Accurate preclinical models are an essential 

component to performing translational cancer research, 
including discerning molecular pathways of oncogenesis 
and evaluating therapeutics. Tumor cell lines have long 
existed as a convenient platform for investigation, and 
numerous cell lines have been well characterized [1]. 
However, cell line-derived xenograft tumors suffer a lack 
of predictable relationship between therapeutic responses 
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in preclinical models when compared to responses in 
human trials [2] and do not accurately recapitulate the 
tumor microenvironment. Indeed, PDX models were 
developed in the 1980s to improve the translatability 
of laboratory results to clinical oncology [3-5]. They 
typically differ from other xenograft platforms in the fact 
that cells are never exposed to in vitro culture conditions. 
PDX models have been established for a wide variety of 
tumor histopathological types, including head and neck 
cancer [6]. The understanding of potential changes in PDX 
tumor growth over time is critical for the interpretation of 
data generated through the use of these models.

Correlations between histopathological and 
genotypic characteristics of the original patient samples 
and PDX models have been described in a number of 
tumor types [7-9]. In addition, the correlation between 
original human tumor therapeutic response and the 
response in PDX derived from these same patients has 
been similarly shown in a number of tumor types [6]. PDX 
models grown over multiple passages maintain a correlated 
gene expression profile [10, 11]. In addition, the stability 
of drug response in PDX models over serial passaging has 
been described [10]. However, early evidence supports 
that antineoplastic treatment responses have decreasing 
consistency at higher passages (unpublished data). One 
potential reason for these changes is the human to murine 
transition of tumor-associated stromal tissue in the PDX 
models [12, 13]. Notably, greater tumor-take rates, and 
decreased time between passages have been observed 
[10], but so far these changes have not been quantified or 
characterized. Further description of predictable passage-
related changes within PDX models will allow improved 
interpretation of results.

Several quantitative methods for analysis of 
xenograft growth data have been proposed. The Wilcoxon-
Mann-Whitney test [14] and analysis of variance 
(ANOVA) [15] are frequently used to analyze xenograft 
tumor size differences between groups at a given time 
point, but these methods ignore data from all other 
collected time points. Methods applied to incorporate 
longitudinal data include repeated-measures ANOVA 
[16], linear mixed model regression [17] and Friedman 
repeated-measures ANOVA on ranks [18]. A number of 
Bayesian approaches have also been developed to more 
accurately describe complex tumor size behaviors under 
different treatment conditions [19-22]. However, no 
methods have been developed to evaluate longitudinal 
xenograft tumor growth information across multiple in 
vivo passages.

Here, we evaluate data generated during the 
establishment of PDX models for head and neck squamous 
cell carcinoma (SCC) and salivary gland adenoid cystic 
carcinoma (ACC). We propose new methods to combine 
tumor size information over multiple in vivo passages. 
This allows for tumor growth rate interrogation over 
time periods exceeding the life span of murine hosts. 

We observed that the growth rate increased over time in 
both SCC and ACC models in the absence of therapeutic 
intervention. These growth rates mirrored blinded 
pathological ratings of histopathological features taken 
from different tumor passages. The SCC models had 
increased nuclear pleomorphism, decreased stromal 
proportion, and reduced inflammatory cell infiltration 
over passages. We also observed that our ACC models 
experienced a significant shift in overall histopathological 
pattern over time. Changes in the number of mitotic 
figures, nuclear size variability, cytoplasm quantity, 
nucleoli characteristics, and chromatin quantity were 
observed as a function of passage. Importantly, the reduced 
time between passages was a phenomenon shared between 
both tumor types evaluated here. Understanding these 
changes is necessary to enable accurate interpretation of 
data generated from PDX models.

rEsULts

PDX tumor models display enhanced growth rate 
with increased in vivo passage

During previous experiments to establish head and 
neck cancer xenograft models [23], we have consistently 
observed that the time required to reach harvesting 
thresholds (1,000-2,000 mm3) generally decreases with 
increased in vivo passage. We also observed a general 
improvement in transplantation yield, with more tumor 
fragment transplantations resulting in viable tumors in 
higher passages. We have described tumor growth curves 
over several in vivo passages for PDX-SCC-M0 (Figure 
1A), PDX-SCC-M1 (Figure 1B), UM-PDX-HACC-5 
(Figure 1C), and UM-SCC-M11 (Supp. Figure 1A). Each 
of these xenograft models used direct transplantation 
without sample freezing. The clinical data for each of 
the models is included in Supplemental Figure 2. For the 
PDX-SCC-M0 model, the time until harvesting decreased 
from 266 days at passage 0 to 56 days at passage 6 (Figure 
1C). This pattern was observed in both squamous cell 
carcinoma and adenoid cystic carcinoma, two distinctively 
different malignancies.

tumor growth information across multiple 
passages can be merged to reflect relative tumor 
volume over time

We aimed to analyze the consistency of growth 
rates for a single PDX model across multiple passages. In 
order to accomplish this, we merged data from individual 
passages (Figure 2A) into a single trajectory across the 
total age of the PDX model, as opposed to the age of each 
passage (Figure 2B). Our PDX maintenance protocol calls 
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Figure 1: Head and neck cancer PDX models display decreased time to transplantation over passage. PDX tumors were 
grown in SCID mice and tumor size data (mm3) is collected over time (days) for sequential passages in three different xenograft models. 
A. PDX-SCC-M0, N = 48 tumors total. B. PDX-SCC-M1, N = 30 tumors total. C. UM-PDX-HACC-5, N = 55 tumors total. The left-shift 
between curves of different passages implies a decreasing time between transplantation as passage number increases.
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for implanting fragments of an explanted tumor in order 
to propagate subsequent xenograft passages. We were 
concerned that transplanting fragments of different sizes 
could result in different times to passage, even with similar 
growth rates. To control this potential bias, we propose 
that volume measurements are captured as a dimensionless 
measurement of relative tumor volume size change instead 
of absolute tumor volume (mm3).

We developed a simple set of mathematical 
equations to transform tumor volume data across different 
passages into relative tumor volume (Figure 2C). For the 
original passage, we calculated the relative tumor volume 
compared to the size of each initial tumor fragment. The 
relative tumor volume in each passage is then calculated 
relative to the size of the preceding passage’s relative 
tumor volume at explantation. Careful recording of the 
tumor pedigree is required to calculate relative tumor 

volume at a given passage. The transformed data can then 
be analyzed longitudinally across passages with a single 
time variable.

To investigate the growth rate of each PDX model 
over time, we first transformed tumor size data for PDX-
SCC-M0, PDX-SCC-M1, PDX-SCC-M11, and UM-
PDX-HACC-5 from tumor volume (mm3) to relative 
tumor volume using the equations described in Figure 
2C. We assumed exponential growth and therefore 
log-transformed relative tumor volume. We then used 
regression analysis to determine if growth rate was 
constant over time. A repeated-measures mixed effects 
linear statistical model was fitted to predict log-relative 
tumor volume. We evaluated the effect of time on relative 
tumor volume (linear exponential tumor growth rate) 
and the effect of the interaction of time*time (quadratic 
exponential tumor growth rate).

Figure 2: Tumor growth information across multiple passages can be merged to reflect relative tumor volume over 
time. A. Representation of tumor volume (mm3) over time (days) with multiple passages. B. schematic of how this same tumor volume 
data can be transformed to relative tumor volume, with starting sizes normalized to 1. C. Variable assignments and assumptions, with 
equations used to transform tumor volume to relative tumor volume at each passage. 
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In each of our linear models relative tumor volume 
increased with time, indicating a positive tumor growth 
rate (Table 1). We included time2 to determine if the 
growth rate was changing over time. In each of the three 
PDX models we assessed, the growth rate increased over 
time, as reflected by a positive coefficient to the time2 
regression term. The time2 variable was highly statistically 
significant. We compared the linear and quadratic models 
to determine which more accurately fit the data. For all 
PDX models that we analyzed, the Akaike Information 
Criterion (AIC) decreased with addition of time2.

PDX models display increasing exponential tumor 
growth rates

We used the statistical linear mixed models that 
we fit in Table 1 to generate the linear and quadratic 
statistical model predictions for each of the PDX models 
that we analyzed. We plotted the relative tumor volume 
information versus time for PDX-SCC-M0 (Figure 3A-
3B), PDX-SCC-M1 (Figure 3C-3D), UM-PDX-HACC-5 
(Figure 3E-3F), and PDX-SCC-M11 (Supp. Figure 1B-
1C) lines. We graphically overlayed the predictions for the 
linear model of time (grey line) and quadratic model of 
time (black line) on the relative tumor volume data plots. 
The plots on the left side of Figure 3 represent a linear 
(untransformed) y-axis, whereas the right side figures have 
a log-transformed y-axis. Assuming exponential growth, 
tumors growing at a constant exponential rate should be 
represented by a straight line on the log-transformed axis. 
In all cases examined here, the quadratic statistical model 
fits the data more closely. This agrees with the decrease in 
AIC we observed (Table 1).

tumor histology changes with increased passage

We observed histopathological characteristics at 
different passages. In squamous cell carcinoma, there 
was increased nuclear pleomorphism in higher-passage 
samples compared to lower-passage samples (Figure 
4A). We also observed a semi-quantitative decrease 
in infiltration of inflammatory cells at higher-passage 
samples compared to lower passage samples (Figure 4B). 
In adenoid cystic carcinomas, we observed a dramatic 
change in the overall histopathological pattern associated 
with increased passage. The tumors at the time of initial 
excision from the patient presented tubular or cribriform 
pattern. By the end of the first passage, all tumors had 
converted to a more-aggressive solid pattern (Figure 4C). 
We also noted a change in the pattern of mitotic figures 
based on passage number (Figure 4D).

Objective histopathological rankings changed with 
increased passage for our squamous cell carcinoma PDX 
models. We collected hematoxilin and eosin (HE) stained 
patient and PDX tissue samples for PDX-SCC-M0 cells, 

and then blinded the samples. Two oral pathologists rated 
the samples using the Bryne Classification characteristics 
(Supplemental Figure 3). In this metric, high inflammation 
is represented by low rank, and high nuclear pleomorphism 
is represented by low rank. Correlation between rating 
and passage number was assessed using Spearman’s rank 
correlation coefficient. A significant negative correlation 
between inflammatory information and increasing passage 
was observed (Spearman’s rho = 0.54, p < 0.01) (Figure 
5A). A significant positive correlation between nuclear 
pleomorphism and increasing passage was observed 
(Spearman’s rho = -0.38, p = 0.01) (Figure 5D). A positive 
correlation between passage number and invasiveness 
was also observed (Spearman’s rho = -0.33, p = 0.03) 
(Figure 5B), though there was little variability in this score 
category. There was no significant correlation between 
keratinization score and passage number (Figure 5C). 
Agreement between raters for the Bryne classification was 
verified using Cohan’s Kappa statistic (Cohan’s Kappa = 
0.727, p < 0.0001).

To further explore the passage-related 
histopathological changes, oral pathologists counted 
the number of inflammatory cells and stromal tissue 
proportion within our blinded samples. We used the 
correlation coefficient to quantify the relationship 
between variables and passages. There was a strong 
significant negative correlation between passage number 
and number of inflammatory cells per blinded high power 
field (correlation coefficient r = -0.58, p < 0.0001) (Figure 
5E). There was a significant moderate negative correlation 
between proportion of stromal tissue and passage number 
(correlation coefficient r = -0.37, p = 0.005) (Figure 5F). 
No changes were observed in the genotype (Supplemental 
Figure 4) and single tandem replicate (STR) profiling (data 
not shown) on PDX-SCC-M0 and PDX-SCC-M1 models 
at different passages.

Histopathological rankings changed with passage 
number for the adenoid cystic carcinoma PDX model. 
We evaluated HE-stained patient and PDX samples for 
UM-PDX-HACC-5, and then blinded the slides. Two 
oral pathologists rated them using Seethala’s ACC rating 
(Supplemental Figure 5). We identified significant changes 
to the histopathological pattern of the ACC samples, 
with complete conversion to the more-aggressive solid 
appearance by the end of passage 1 (Spearman’s ρ = 0.6, p 
< 0.0001) (Figure 6A). We also found that the number of 
mitoses per high power field was significantly associated 
with passage number (r = 0.44, p < 0.0001) (Figure 6B). 
There was also a significant association between passage 
number and the proportion of samples with the following 
components of Seethala’s ACC rating: high nuclear size 
variation, scant-moderate cytoplasm, prominent central 
nucleoli, heterogeneously dispersed chromatin, and high 
overall pleomorphism (Spearman’s ρ = 0.5-0.61, p < 
0.0001) (Figure 6C-6G). These findings are compatible 
with the high-grade transformation in ACC (Supplemental 
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Figure 3: PDX models display increasing exponential tumor growth rates. Relative tumor volume versus time is displayed in 
A. and B. for PDX-SCC-M0, N = 48 tumors total; C. and D. for PDX-SCC-M1, N = 30 tumors total; and D. and A. for UM-PDX-HACC-5, 
N = 55 tumors total. Prediction lines for linear mixed models including linear time model (grey) and quadratic time model (black) are 
superimposed. The data is expressed with untransformed axis (left column) and log  

10-axis (right column). A straight line in the right-hand 
graphs represents a stable exponential growth rate.
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Figure 4: Tumors appearance changes with passage. Representative images of hematoxilin and eosin stain of tissue samples of 
PDX-SCC-M0 in A and B, and UM-PDX-HACC-5 in C and D are shown at different passages. Pictures were taken at x400 magnification 
in A, C, and D and at x200 magnification in B. Scale bars represent 50 μm in all images. The symbol 0* represents the original patient 
tumor sample prior to implantation in mouse. A. We observed that there appeared to be increasing band of nuclear pleomorphism associated 
with increased passage number (between arrows). B. Decreasing inflammatory infiltrate over passages was also identified. C. The adenoid 
cystic carcinoma growth pattern changed dramatically over passages. D. The mitotic count also increased appreciably (arrows mark mitotic 
figures). 
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Figure 5: Squamous cell carcinoma PDX models decrease inflammation and stromal tissue with passage. Blinded 
samples from PDX-SCC-M0 were provided to oral pathologists for scoring across passages. N = 57 tissue sample slides. The symbol 0* 
represents the original patient tumor sample prior to implantation in mouse. A. Inflammatory infiltration score B. invasiveness pattern score 
C. keratinization score and D. nuclear pleomorphism score were compared to passage number. Lower scores represent histopathologically 
more aggressive characteristics. Correlations were assessed by Spearman’s Rank-Correlation. E. Inflammatory cell count and F. proportion 
of tumor comprised of stromal tissue were compared to passage number. Correlations were assessed by Pearson Correlation Coefficient.
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Figure 6: Adenoid cystic carcinoma PDX models change histopathological pattern with passage. Blinded samples from 
UM-PDX-HACC-5 were provided to oral pathologists for scoring across passages. The symbol 0* represents the original patient tumor 
sample prior to implantation in mouse. N = 111 tissue sample slides. A. Histopathological pattern changed from either cribriform or 
tubular to solid by passage 1. Correlation was assessed by Spearman’s Rank-Correlation ρ. B. Number of mitoses per x400 magnification 
high power field by passage. Correlation was assessed by Pearson’s correlation coefficient r. Proportion of measured samples in higher-
aggressiveness categories were assessed by passage for C. high nuclear size variation; D. scant or moderate cytoplasm; E. prominent central 
nucleoli; F. heterogeneous chromatin; G. high pleomorphism. Higher scores represent histopathologically more aggressive characteristics. 
Correlations were assessed by Spearman’s Rank-Correlation ρ. 
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Figure 5). Genotype and STR profiling (data not show) 
showed no changes across increasing in vivo passages.

DIscUssION

In this report, we presented a mathematical analysis 
of PDX tumor growth over time and across sequential 
xenograft passages. Our results show that the growth rates 
of PDX models are not constant, and instead accelerate 
as a function of time. We also showed that in addition to 
growth rate change, the tumors we investigated showed 
several histopathological alterations with time. Here, 
we propose a novel data transformation analysis that 
translated absolute tumor size to relative tumor volume 
at time of implantation. We deployed this development to 
analyze PDX models over multiple passages. In addition, 
this technique could also be employed to analyze tumor 
size information across time periods longer than a mouse 
life, as in development of treatment strategies for indolent 
cancers. This could also aide in analysis of more subtle 
differences between antineoplastic treatment classes, such 
as for treatments that are hypothesized to slow cancer 
growth for long periods of time.

The data transformation allowed us to determine 
if rate of tumor size change was constant or dynamic 
over time. We found that a quadratic equation for the 
time effect provided a superior data fit to the linear form 
across four different PDX models. This implies that 
the rate of exponential tumor growth is increasing as 
time (in vivo passage) increases. We note that quadratic 
modeling illustrates superiority over linear modeling, but 
it is unlikely that the growth rate for PDX tumors would 
continue to increase infinitely as a quadratic function 
implies. With acquisition of additional tumor growth 
data, our future work will focus on identification of a 
superior functional form for describing the long-term 
behavior of PDX models growth rate change. Our current 
work is limited to tumor size data grown under identical 
conditions.

While previous research has supported genomic 
stability of PDX models at increasing passages, we 
identified a significant histopathological change across 
time in both squamous cell carcinoma and adenoid 
cystic carcinomas. A higher histopathological grade was 
strongly associated with increasing passage, as seen in 
the increased nuclear pleomorphism on SCC samples and 
more aggressive pattern in ACC samples. Furthermore, we 
quantified a significant decrease in proportion of stromal 
tissue as well as a decrease in number of immune cells 
by passage. We postulate that as the human stromal tissue 
in the PDX models is replaced by murine stromal tissue, 
the associated immune response is blunted. The secondary 
decrease of local macrophage versus tumor effect then 
allows for the tumor to grow more rapidly, as seen in the 
increased nuclear pleomorphism and mitotic figures. Given 
the stability of genotype and STR profile, these changes 
could be from epigenetic modification. This finding within 
the same tumors over time is important because it could 
theoretically result in different therapeutic responses by 
the same tumor at different passages. A limitation in the 
generalizability of these results to general tumor biology 
is the immune suppressed murine environment of PDX 
models does not accurately reflect the milieu within 
human tumors.

We explicitly evaluated growth rate information 
for two disparate types of head and neck cancer: 
squamous cell carcinoma and salivary gland adenoid 
cystic carcinoma. We were able to show that these two 
cancer types shared an accelerating growth rate over in 
vivo passaging. The broad differences between ACC and 
SCC tumors in histopathological and clinical attributes 
suggest that the ability of PDX models to adapt to their 
murine host environments is a characteristic shared across 
numerous tumor types. It is important to better understand 
if more clinically aggressive tumors form faster growing 
PDX tumors. The most aggressive tumors, while fastest 
to develop, may not be representative of the majority of 
tumors of a given type. Our study is limited in the scope 

table 1: statistical regression model output
Xenograft Time coefficient (p-value) time2 coefficient (p-value) Model AIc

PDX-SCC-M0
0.0291 ( < 0.0001) 518.0
0.0123 ( < 0.0001) 0.00004 ( < 0.0001) 446.7

PDX-SCC-M1
0.0192 ( < 0.0001) 350.4
-0.0032 (0.0033) 0.00005 ( < 0.0001) 263.7

PDX-SCC-M11
0.0150 ( < 0.0001) 192.4
0.0004 (0.8583) 0.00004 ( < 0.0001) 181.5

UM-PDX-HACC-5
0.0541 ( < 0.0001) 406.9
0.0248 ( < 0.0001) 0.0002 ( < 0.0001) 393.4

For PDX-SCC-M0, PDX-SCC-M1, PDX-SCC-M11, and UM-PDX-HACC-5 respectively, we fit linear mixed models for 
log-relative tumor volume versus time. We compared the linear models including time to the quadratic models including 
time and time2. For each of our PDX models, the model fit as measured by AIC improved with the quadratic model.
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of tumors investigated, given that all of our tumors are 
from head and neck cancers. It is unclear if PDX growth 
rate increases occur in different tumor histologies. Further 
mechanistic studies across a variety of tumor types to 
further understand the observed changes will enhance our 
understanding and enable more accurate interpretation of 
translational drug development using PDX tumor models.

MAtErIALs AND MEtHODs

Patient-derived xenograft (PDX) tumor models

Three patients with head and neck squamous cell 
carcinoma and one patient with salivary gland adenoid 
cystic carcinoma were recruited and consented using 
our Head and Neck SPORE consent form (Supplemental 
Figure 2). Our criteria for PDX models were: A) 
PDX were passaged for at least 3 times sequentially 
in vivo without freezing, and B) Tissue was available 
for histopathological analysis at each passage. Tumor 
fragments were transplanted directly into severe combined 
immunodeficient mice (CB.17.SCID; Charles River, 
Wilmington, MA, USA) within 24 hours of surgery. Tumor 
volume was calculated as tumor maximum length x width2 
/ 2 and was measured every 7 days. Each mouse had 2 
tumors implanted bilaterally subcutaneously. Tumor end-
point was a volume of 2,000 mm3. All procedures were 
reviewed and approved by our Institutional Review Board 
and University Committee on Use and Care of Animals.

Histopathological Interpretation

Tissue sample slides from PDX-SCC-M0 and UM-
PDX-HACC-5 tumors and respective primary tumors were 
stained for hematoxilin and eosin (HE) and examined by 
two oral pathologists (MDM, FN) under blinded conditions 
for tumor passage. The SCC tumors were evaluated using 
the Bryne Classification [24] (Supplemental Figure 3). 
Likewise, the ACC tumors were examined by the same 
oral pathologists using the high-grade ACC transformation 
criteria, as described [25-27] (Supplemental Figure 5). 
Stromal tissue was assessed as a proportion of total tissue 
sample by calculating tissue sample areas using NIH 
ImageJ software [28]. Overall stromal tissue proportion 
was calculated as a weighted average of multiple images 
based on pixel quantity per image. Correlation between 
passage number and histopathological values was 
quantified by Spearman’s Rank-Order Correlation [29] for 
ordinal data, or by Pearson’s Product-Moment Correlation 
Coefficient [30] for continuous variables. P-values were 
calculated by using the test versions of these correlations 
[31, 32]. Inter-rater reliability was calculated using 
Cohen’s κ [33]. All calculations were performed using the 
statistical computing language R [34].

tumor size normalization across passages

To compare tumor growth rates from the same 
xenograft model across multiple passages, we merged 
data from multiple passages into a single temporal growth 
database. To accomplish this, we transformed the size 
of all tumors from volume (mm3) into volume increase 
relative to initial tumor size. We call this new metric 
relative tumor volume (Figure 2C). We assumed that 
tumors were passaged on the same day, though some 
murine implantation surgery occurred up to 23 hours after 
surgical removal. 

Tumor growth curve regression analysis

Following the transformation from tumor volume to 
relative tumor volume, tumor growth was analyzed using 
linear mixed model regression to analyze the repeated 
measurements on each tumor [35]. Model fixed effects 
included either time or time and time2 (to represent the 
additional change of growth rate with each additional 
day). Nested model random effects included each mouse 
and the side of mouse used for tumor implantation. For all 
models a continuous autoregressive correlation structure 
was used, which assumes more correlated variances 
among temporally proximate observations [36]. A log-
transformation of the outcome variable (relative tumor 
volume) was used because the tumor volumes grow 
exponentially. Analysis was performed using the “nlme” 
package in the statistical software program R v3.1.0. [37]. 
Model predictions were generated directly from the above 
models with identical assumptions. Comparison between 
models of varying complexity was performed using 
Akaike Information Criterion (AIC) [38]. The AIC is a 
measure of goodness-of-fit with an adjustment for model 
complexity, which enables comparison between statistical 
models with different numbers of variables. A smaller AIC 
represents a better-fitting model. 
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