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Circulating microRNA-based screening tool for breast cancer
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ABSTRACT
Circulating microRNAs (miRNAs) are increasingly recognized as powerful 

biomarkers in several pathologies, including breast cancer. Here, their plasmatic levels 
were measured to be used as an alternative screening procedure to mammography 
for breast cancer diagnosis.

A plasma miRNA profile was determined by RT-qPCR in a cohort of 378 women. A 
diagnostic model was designed based on the expression of 8 miRNAs measured first in 
a profiling cohort composed of 41 primary breast cancers and 45 controls, and further 
validated in diverse cohorts composed of 108 primary breast cancers, 88 controls, 35 
breast cancers in remission, 31 metastatic breast cancers and 30 gynecologic tumors.

A receiver operating characteristic curve derived from the 8-miRNA random 
forest based diagnostic tool exhibited an area under the curve of 0.81. The accuracy 
of the diagnostic tool remained unchanged considering age and tumor stage. The 
miRNA signature correctly identified patients with metastatic breast cancer. The use 
of the classification model on cohorts of patients with breast cancers in remission 
and with gynecologic cancers yielded prediction distributions similar to that of the 
control group.

Using a multivariate supervised learning method and a set of 8 circulating 
miRNAs, we designed an accurate, minimally invasive screening tool for breast cancer.

INTRODUCTION

Breast cancer is the most frequently diagnosed 
cancer in females worldwide; its rate in Western countries 
has increased since the 1990s [1]. During the same period, 
mortality from breast cancer has decreased due to early 
detection and improved treatments [2].

Currently, mammographic screening, followed 
by invasive core needle biopsies in cases of suspected 
malignancy, allows early breast cancer diagnosis. 

Mammographic screening is an accessible but unpleasant 
and inaccurate test; in 1000 screened women, 15 of 
these women are estimated to have a biopsy because of 
a suspicious abnormality, and the biopsy is estimated to 
diagnose breast cancer in 4 of these 15 women [3].

MicroRNAs (miRNAs) are approximately 
22-nucleotide long RNAs that inhibit gene expression 
by binding to target messenger RNAs (mRNAs) [4]. 
Currently, more than 2000 mature human miRNAs have 
been identified, and these miRNAs may regulate up to 
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60% of human protein-coding genes [5]. miRNAs are 
involved in multiple biological processes including cell 
proliferation, differentiation and apoptosis [6, 7]. Their 
expression is modified in various cancer subtypes, where 
these miRNAs act as tumor suppressors or oncogenes and 
play a key role in tumorigenesis [8].

All cell types release miRNAs in peripheral blood 
under both normal and pathological conditions. These 
circulating miRNAs are wrapped in 40-to 100-nm  
lipoprotein vesicles called exosomes, which are 
membrane-enclosed cell fragments [9]. These miRNAs 
appear to be protected from endogenous RNase activity 
by exosomes and are therefore particularly stable in 
plasma [10]. Therefore, circulating miRNAs are promising 
biomarkers for the early and minimally invasive diagnosis 
of breast cancer [11]. Several studies have already 
explored miRNAs from that perspective, leading to mixed 
results in terms of performances [12–29]. Very different 
diagnostic signatures have been obtained, most likely due 
to the choice of the sample preparation, the technology 
used and the study design, such as choice of proper 
normalization and careful validation. 

In the present study, to propose new tools for breast 
cancer screening, we constructed a diagnostic test based 
on 8 circulating miRNAs and confirmed its performance 
in a large cohort of primary breast cancer patients and 
controls. The diagnostic test was also validated in patients 
with breast cancer in remission, patients with metastatic 
breast cancer and patients with gynecologic cancer to test 
for breast cancer specificity and follow-up. Moreover, 
particular attention was given to normalization and 
bioinformatic analysis procedures.

RESULTS

Patients and controls

Patients with treatment-naive primary breast 
cancer (n = 149, median age = 55 yr, range = 26–
87 yr), breast cancer in remission (n = 35, median 
age = 49 yr, range = 28–79 yr, median time follow-up  
since remission = 33 months), metastatic breast 
cancer (n = 31, median age = 59 yr, range = 35–79 yr) 
and gynecologic cancer (n = 30, median age = 62 yr, 
range = 38–83 yr) were recruited prospectively at CHU 
of Liège and Clinic Saint-Vincent (Liège, Belgium) 
from 7/2011 to 9/2014. Gynecologic tumors consisted of  
non-metastatic endometrial (n = 16), ovarian (n = 10) and 
cervical (n = 4) cancers. Controls were obtained from 133 
cancer-free females of similar age (median age = 51 yr, 
range = 40–74 yr) with normal mammograms (n = 72), 
benign calcifications (n = 30) or simple cysts (n = 31). 
Controls had no history of cancer in the last 5 years. 

In total, 378 patients were included in this study.
All breast cancer patients and tumor characteristics 

are summarized in Table 1.

Pilot study

A pilot study that consisted of measuring the 
expression of 742 plasma miRNAs in 18 primary 
breast cancer patients was first conducted. In total, 188 
miRNAs were chosen based on their expression levels 
(mean quantification cycle (Cq) value < 36) in the pilot 
experiment. Clinicopathological data for these patients and 
the list of the 188 selected miRNAs are summarized in 
Table 1 and Supplementary Table 1, respectively.

Evaluation of hemolysis

We first evaluated the quality of our sample 
collection and preparation. Hemolysis leads to the 
contamination of plasma with RNA from red blood cells. 
Absorbance at 414 nm (ABS414), the maximum absorbance 
of hemoglobin, correlates with the degree of hemolysis. 
ABS414 was measured for all samples using a NanoDrop. 
The median ABS414 level was 0.19 ± 0.1, with a hemolysis 
cut-off value fixed at 0.2. Furthermore, the level of a 
miRNA highly expressed in red blood cells (miR-451) 
was compared with the level of a miRNA unaffected by 
hemolysis (miR-23a), with a ΔCq (miR-23a - miR-451) 
of more than 5 indicating possible erythrocyte miRNA 
contamination. The median ΔCq (miR-23a - miR-451)  
was 2.6 ± 1.5 in our cohort (primary breast cancer 
group = 3 ± 1.5, control group = 2.1 ± 1.2, breast cancer 
in remission group = 2.5 ± 1.5, metastatic breast cancer 
group = 2.8 ± 1.2, gynecologic cancer group = 2.3 ± 1.8). 
Based on these results, no patients were discarded.

miRNA deregulation is observed in primary as 
well as metastatic breast cancer patients

When comparing the miRNA profiles of newly 
diagnosed primary breast cancers to control miRNA 
profiles, 112 miRNAs were found to be significantly 
deregulated, with a final set of 107 miRNAs after adjusting 
the P-value for multiple testing. miR-16 and let-7d were 
the most up- and downregulated miRNAs, respectively. 
Global upregulation of miRNA expression was observed 
in primary breast cancer patients compared to controls 
(1.35-fold change).

In a second analysis, miRNA profiles from the 
plasma of patients with metastatic breast cancer were 
compared to those of the controls. Eighty-four miRNAs 
were found to be significantly deregulated, with a 
final set of 53 miRNAs after adjusting the P-value for 
multiple testing. The most significantly upregulated 
miRNA was miR-148a, and the most significantly 
downregulated miRNA was miR-15b. As observed in 
primary breast cancer samples, global upregulation of 
miRNA expression was observed in metastatic breast 
cancer patients when compared to healthy subjects (1.1-
fold change).
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Statistical analyses were also performed to compare 
both primary and metastatic breast cancer patient plasma 

miRNA profiles to controls using the Kruskal-Wallis 
test. Fifty-six miRNAs were significantly modified in 

Table 1: Clinicopathological data and tumor characteristics

Characteristics
Primary breast 
cancers – pilot 
study (n = 18)

Primary breast 
cancers – principal 

study (n = 149)

Metastatic 
breast cancers 

(n = 31)

Breast cancers in 
remission (n = 35)

Median age (range) (y) 58 (29–70) 55 (26–87) 59 (35–79) 49 (28–79)

Estrogen receptor [n (%)] 12 (67) 117 (79) 28 (90) 22 (63)

Progesterone receptor  
[n (%)]

11 (61) 109 (73) 22 (71) 18 (51)

HER2 [n (%)] 6 (33) 30 (20) 6 (19) 18 (51)

Ki67 (median ± SD) (%) 21 ± 20 20 ± 24 27 ± 23 37 ± 23

Initial T staging [n (%)]

NA 0 (0) 1 (< 1) 2 (6) 0 (0)

1 3 (17) 62 (42) 9 (30) 3 (9)

2 10 (55) 58 (39) 12 (19) 19 (54)

3 2 (11) 15 (10) 6 (19) 5 (14)

4 3 (17) 13 (9) 2 (6) 8 (23)

Lymph node involvement  
[n (%)]

11 (61) 70 (47) 17 (55) 24 (69)

Tumor node metastasis 
(TNM) stage [n (%)]

NA 0 (0) 1 (< 1) 0 (0) 0 (0)

1 2 (11) 45 (30) 0 (0) 0 (0)

2 9 (50) 73 (49) 0 (0) 20 (57)

3 7 (39) 31 (21) 0 (0) 15 (43)

4 0 (0) 0 (0) 31 (100) 0 (0)

Scarff-Bloom-Richardson 
grade [n (%)]

NA 0 (0) 1 (< 1) 4 (13) 0 (0)

1 0 (0) 7 (5) 4 (13) 0 (0)

2 7 (39) 84 (57) 12 (39) 15 (43)

3 11 (61) 57 (38) 11 (35) 20 (57)

Histologic subtype [n (%)]

NA 0 (0) 0 (0) 2 (6) 0 (0)

IDC 16 (88) 125 (84) 22 (71) 33 (94)

ILC 1 (6) 19 (13) 7 (23) 2 (6)

Others 1 (6) 5 (3) 0 (0) 0 (0)

Lymphovascular invasion  
[n (%)]

6 (33) 27 (21) 12 (39) 9 (26)

NA = not assessed; ER = estrogen receptor; PR = progesterone receptor; HER2 = human epidermal growth factor 2; 
IDC = invasive ductal carcinoma; ILC = invasive lobular carcinoma.
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the same manner among primary and metastatic breast 
cancer patient profiles. miR-16 and let-7d were the most  
co-deregulated miRNAs.

The results of the statistical analysis are available in 
Supplementary Table 1.

Design and validation of a diagnostic miRNA 
signature-based model

The analysis and computational methods relied 
on several steps, which made use of the random forest 
algorithm. The random forest algorithm is a supervised 
learning method that operates by building a large ensemble 
of decision trees, where each tree is trained on a bootstrap 
sample from the training data by randomizing the features 
that are selected at each tree node [30].

A methodology somewhat similar to the algorithmic 
solution proposed by Geurts et al. [31] was used as shown 
in Figure 1.
1. Model construction and miRNA signature 
identification

An initial random forests model was built on 
the profiling cohort (86 samples = 30% of the whole 
cohort: 41 individuals with primary breast cancer and 45 
controls) with the normalized expression values of all 188 
miRNAs as features to determine the 25 more discriminant 
miRNAs. To identify the best miRNA signature, all 
combinations of miRNAs that can be defined from these 
25 miRNAs (33554431 in total) were then evaluated using 
ten-fold cross-validation on the same profiling cohort  
(see Materials and methods). 

The best miRNA combination is composed of the 
following 8 miRNAs: miR-16, let-7d, miR-103, miR-107,  
miR-148a, let-7i, miR-19b, and miR-22*. Figure 2 
summarizes the Mann-Whitney U P-values (Figure 2A) 
and relative expression changes (Figure 2B) for these 8 
miRNAs.

An area under the curve (AUC) of 0.85 ± 0.02 was 
obtained when performing the ten-fold cross-validation in 
the profiling cohort.

A threshold value of 0.68 was chosen to derive a 
diagnostic rule from the random forest model. The value 
of 0.68 corresponded to an acceptable trade-off between 
high sensitivity (> 0.9) and satisfactory specificity (± 0.5).
2. Model validation

The validation of our model in a larger cohort (196 
samples = 70% of the whole cohort: 108 individuals with 
primary breast cancers and 88 controls) yielded an AUC 
of 0.81 ± 0.01. Figure 3A represents the receiver operating 
characteristic (ROC) curve obtained by testing the model 
in the validation cohort.

With a threshold value of 0.68, a sensitivity value 
of 0.91 ± 0.01 and a specificity value of 0.49 ± 0.03 were 
obtained.

The validation of the classification model in the 
other cancer groups yielded slightly lower values for 
sensitivity (0.80 ± 0.05 for metastatic breast cancer 
patients) and specificity (0.40 ± 0.08 for breast cancer 
patients in remission and 0.41 ± 0.06 for gynecologic 
cancer patients) (Figure 3B). As shown in Figure 3B, the 
patients with breast cancer in remission and gynecologic 
cancer were classified as the control group.

A comparison between the miRNA signature and 
the established diagnostic methods

Next, we sought to compare the performance of 
the miRNA signature to mammographic screenings and 
CA15.3 assays. 

The accuracy of mammographic screening is greatly 
affected by age. Indeed, young women have dense breasts, 
making the interpretation of mammography more difficult 
(AUC = 0.69 ± 0.05 for women under the age of 50 yr) 
[32]. As shown in Figure 4A, the diagnostic accuracy of 
the miRNA signature does not appear to be affected by 
age because the AUC remains stable at 0.81 in patients 
younger than 50 yr.

CA15.3 is the only biomarker of breast cancer, and 
its accuracy is directly influenced by tumor stage, with 
an AUC ranging from 0.56 in stage I to 0.80 in stage III 
breast cancers [33]. Therefore, CA15.3 is only useful for 
the diagnosis of late stage and metastatic breast cancers. 
Interestingly, tumor stage does not seem to affect the 
signature miRNA performance, remaining stable at 0.81 
from stages I to III (Figure 4B).

miRNA signature does not correlate with breast 
cancer clinicopathological features

The correlations between the expression of the 
8 miRNAs and the following breast cancer clinico-
pathological markers were computed: estrogen and 
progesterone receptor expression, HER2 overexpression, 
tumor size, initial lymph node status, Ki67 index, Scarff-
Bloom-Richardson grade and lymphovascular invasion. 
No significant correlation was obtained using Spearman’s 
test for continuous variables, and no significant difference 
was found using the Mann-Whitney U test for binary 
variables (Supplementary Table 2).

DISCUSSION

Early breast cancer diagnosis is currently 
possible using mammographic screenings. However, 
mammographic screening has the following weaknesses: 
(i) the risk of false positives, with an overdiagnosis rate 
of up to 19%, exposing women to harmful anti-cancer 
therapies and affecting their quality of life; (ii) the risk 
of false negatives, with mammograms missing breast 
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cancer in 17% of cases and in more than 30% of cases 
for women with dense breasts and for women under 
hormone replacement therapy; (iii) X-ray radiation from 
mammograms may be one of the factors that can actually 
trigger breast cancer in high-risk women, e.g., young 
women carrying a mutation in the BRCA genes, who 
require early follow up beginning at 30 years, an age where 
mammography is less effective, and (iv) mammography 
performance is operator dependent (34–36).

Thus, a diagnostic test using a blood sample could 
add useful information. CA15.3, which is the only 
available biomarker for breast cancer, lacks sensitivity in 
the case of primary breast tumors [33].

Based on 8 circulating miRNAs, we designed 
a classification model using a decision tree-based 
ensemble method, which allows primary breast cancers 
to be screened with greater accuracy than mammography. 
Consequently, our 8 circulating miRNA signature may be 

Figure 1: Study design. A diagram describing the random forest-based methodology. The profiling cohort (n = 86) contains 41 patients 
with primary breast cancer and 45 controls. The validation cohort (n = 196) contains 108 patients with primary breast cancer and 88 
controls. The other cancer cohort (n = 96) contains 35 patients with breast cancer in remission, 31 patients with metastatic breast cancer 
and 30 patients with gynecologic cancer.
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extremely useful to help clinicians to identify patients with 
a high probability of breast cancer without using invasive 
procedures.

The 8 miRNA-based diagnostic model shows 
the following interesting characteristics for clinical 
application: (i) this diagnostic test is not affected by age 
and may be useful for monitoring young women at high 
risk for breast cancer, in which mammography is not only 
less effective but also harmful because of irradiation; 
(ii) unlike CA15.3, this diagnostic model is effective 
regardless of tumor stage, which allows for detection 
at an early stage; (iii) this model can detect metastatic 
breast cancers and shows approximately the same class 

prediction distribution for breast cancers in remission and 
for controls (see Figure 3), offering a potential utility for 
monitoring patients; (iv) this study is the first to validate 
the robustness of such a classifier tool with respect to 
gynecologic cancers. Plasma from patients suffering of 
other prevalent cancers in women (cervix, endometrial and 
ovary cancers) [1] were used to check if the diagnostic tool 
could avoid the detection of other types of cancers. Indeed, 
the test specificity on gynecologic cancers is similar to the 
specificity of the control group (see Figure 3).

These aspects were overlooked in previous studies 
that have shown the potential of circulating miRNAs 
as diagnostic tools for breast cancer detection [12–29]. 

Figure 2: The 8 miRNAs present in the diagnostic signature. (A) The results of statistical analyses comparing the expression of the 
8 miRNAs present in the diagnostic signature between different groups. The 8 diagnostic miRNAs were compared between primary breast 
cancer patients, breast cancer patients in remission, metastatic breast cancer patients, gynecologic cancer patients and the controls. P-values 
and Benjamini-Hochberg adjusted P-values were obtained using the Mann-Whitney U test. (B) The relative expression (mean fold change)  
of the 8 diagnostic miRNAs in patients with primary breast cancer, patients with breast cancer in remission, patients with metastatic breast 
cancer and patients with gynecologic cancer compared to controls.
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The signatures that these studies have defined differed 
greatly from one study to another. These discrepancies 
can be explained by the use of different analysis methods, 
sample processing and normalization procedures. In 
the present paper, we show that the appropriate use of a 
subset of miRNAs combined with a specific normalization 
method and classification algorithm yields satisfactory 
results in multiple cohorts. Although decision tree 
ensemble methods have been proven to be efficient for 
the classification of biological samples based on various 
biomarkers [31], to our knowledge, few studies, and never 
in the field of breast cancer, have used random forest 
models with miRNA expression values as input features. 

Two similar studies have nevertheless shown that random 
forest perform better than other supervised learning 
methods using miRNA expression values [37, 38]. 

A second important concern is the normalization 
choice because the results of the relative quantification 
obtained by qPCR are entirely dependent on this process. 
Most of these studies used miR-16 expression alone as a 
reference gene [20, 25, 28, 29]. However, miR-16, which 
is predominantly derived from erythrocytes, has been 
shown to be prone to artificial elevation by hemolysis [18]. 
The use of blood cell-derived miRNAs as housekeeping 
RNA for normalization may be more problematic in cases 
of anemia, a condition often occurring in breast cancer 

Figure 3: Circulating miRNA-based diagnostic tool performance in the validating cohort. (A) The ROC curve of the 
diagnostic miRNA model applied to the validating cohort. The AUC obtained is 0.81. (B) Model outcome distributions for the primary 
breast cancers, controls, metastatic breast cancers, breast cancers in remission, and gynecologic cancers. The x-axis corresponds to the 
model predictions. The dashed line represents the chosen threshold used to compute the sensitivity and specificity values for each cohort. 
The table reports the AUC, sensitivity and specificity in the validation cohort and the sensitivity and specificity in the other cancer cohort. 
The true positive count for the metastatic breast cancers is 25. The true negative count for breast cancers in remission and gynecologic 
cancers is 14.
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patients. Meanwhile, global normalization methods have 
been described to best fit with qPCR analysis [39] but to 
lead to poor performances in discriminating healthy and 
cancer patients [17]. In this study, we compared different 
normalization methods, revealing that the mean of the 
50 most expressed plasma miRNAs is more stable than 
many other normalization methods and allows for good 
discriminating performances. Interestingly, using this 
method, our analyses revealed that miR-16 and miR-103, 
which have been used in other studies as endogenous 
control genes, are differentially expressed in the plasma 
from healthy samples and cancer patients [12, 21].

Most of the 8 miRNAs that are part of the diagnostic 
signature are related to well-described cancer deregulation 
and were demonstrated to be differentially expressed 

in breast cancer tumoral tissues [40–44]. However, 
circulating miRNAs rarely show correlated levels with 
their tumoral expression [26]. In consequence, the miRNA 
composition of the diagnostic signature does not allow any 
conclusion on their biological functions.

Aside from the 8 miRNAs selected for our 
signature, several other combinations, most of which were 
composed of more than 8 miRNAs, yielded comparable 
performances. This finding can be explained by the fact 
that several miRNAs are often deregulated in the same 
manner under certain conditions, thus allowing one 
miRNA to be replaced by another miRNA in a specific 
signature. Regarding independent validation, it can be 
noted that, among these alternative combinations, one in 
particular was made of 11 miRNAs, which were measured 

Figure 4: Comparison of the accuracy between the diagnostic miRNA signature, mammographic screenings and 
CA15.3 assays. (A) While the diagnostic performance of mammographic screenings is weaker in women under 50 yr (32), the AUC of 
the 8 miRNA-based diagnostic model was stable for women both under and over 50 yr. (B) The CA15.3 assay is not useful for the early 
diagnosis of breast cancer. While the CA15.3 AUC increases proportionally to the tumor stage (33), our model performance was stable 
regardless of the tumor stage.
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in the serum of 54 individuals in another independent 
study [12]. The performance of a diagnostic model built 
using this alternative combination has been assessed using 
both our data (plasma) and the dataset GSE42128 from 
Chan et al. (serum), yielding close results (respective 
AUCs of 0.80 ± 0.02 and 0.77 ± 0.07, see Supplementary 
Table 3). Unfortunately, one of the miRNAs present in our 
original signature is absent from the data from Chan et al., 
preventing us from testing the original signature.

Regarding the potential prognostic value of the 
8-miRNA signature, the available follow-up of the cohorts 
is insufficient to determine whether the expression of 
the miRNAs can be correlated with progression-free or 
overall survival. Since there is no correlation between the 
expression of the 8 diagnostic miRNAs and the currently 
used clinicopathological factors of breast cancer, the 
prognostic role of the miRNA signature cannot be 
established on that base. 

In conclusion, we established an accurate miRNA-
based model for the non-invasive screening of primary 
breast cancer. This model also allows the identification 
of metastatic breast cancer and the classification of breast 
cancer patients in remission in the healthy group and 
therefore may be useful for monitoring patients. Moreover, 
the performance of this test is not affected by the age of 
the patient or by the tumor stage.

MATERIALS AND METHODS

Ethical concerns

Ethic approval was obtained from the Institutional 
Review Board (Ethical Committee of the Faculty of 
Medicine of the University of Liège) in compliance 
with the Declaration of Helsinki. All patients signed a 
written informed consent form. This work consisted of a 
prospective study and did not lead to any changes in the 
treatments of enrolled patients.

Plasma samples

Blood samples were withdrawn in 9 ml EDTA 
tubes. Plasma was prepared within 1 h by retaining the 
supernatant after double centrifugation at 4°C (10 min at 
815 × g and 10 min at 2500 × g) and was stored at –80°C. 
The absorbance at 414 nm (ABS414) was measured for 
all samples using a NanoDrop to evaluate the degree of 
hemolysis.

RNA extraction and miRNA qRT-PCR

The essential MIQE guidelines were followed 
during specimen preparation [45].

Circulating miRNAs were purified from 100 µl 
of whole-plasma using a miRNeasy Mini Kit (Qiagen, 
Germany) according to the manufacturer’s instructions. 

The standard protocol was modified based on Kroh’s 
recommendations [46]. MS2 (Roche, Belgium) was 
added to the samples as a carrier, and cel-miR-39 and 
cel-miR-238 were added as spike-ins. RNA was eluted in 
50 μl of RNase-free water at the end of the procedure.

Reverse transcription was performed using a 
miRCURY LNA™ Universal RT microRNA PCR, 
Polyadenylation and cDNA Synthesis Kit (Exiqon, 
Denmark). Quantitative PCR was performed according to 
the manufacturer’s instructions on custom panels of 188 
selected miRNAs (Pick-&-Mix microRNA PCR Panels, 
Exiqon). Controls included the reference genes described 
in the text, inter-plate calibrators in triplicate (Sp3) and 
negative controls.

All PCR reactions were performed using an Applied 
Biosystems 7900HT Real-Time PCR System (Applied 
Biosystems, USA). miRNAs with Cq values < 36 were 
considered for analysis.

Data analysis

Analyses were conducted using the 2–ΔCq method 
(ΔCq = Cqsample – Cqreference gene) for each sample to obtain a 
normalized expression value [47].

The data were normalized using the ΔCq method 
as recommended by Mestdagh et al. [39]. The mean Cq 
of the 50 miRNAs with the highest mean expression as 
determined in all the patients from all the cohorts was used 
for normalization because it was the most stable reference 
gene according to the GeNorm software. The list of the 
50 miRNAs and the results of the GeNorm analysis are 
available in Supplementary Table 4. The whole processes 
of miRNA signature identification and decision tree 
building were also conducted on datasets normalized 
by 12 alternative methods. The best performances were 
obtained with the normalization by the mean Cq of the 50 
most expressed miRNAs. The alternative normalization 
were: raw data, mean Cq of the 10, 20, 30 or 40 miRNAs 
with the highest mean expression, the mean Cq of the 50 
miRNAs with the highest mean expression minus the four 
miRNAs that are present in the signature; the mean Cq of 
the spike-cel-miR-39 and the U6 small RNA; the mean Cq 
of miR-15b* and miR-125b (the most stable combination 
according to NormFinder); the global mean Cq; miR-16; 
the mean Cq of miR-103 and miR-191; and miR-93.

Furthermore, the delta Cq (miR-23a - miR-451) 
was determined for each sample to evaluate the risk of 
hemolysis as recommended by Blondal et al. [48]. 

Finally, data homogeneity was tested to detect 
outliers. Patients presenting extreme values (mean ± 3 
sigma) were discarded. This operation led to the 
elimination of one patient from the analysis.

Statistical analyses were performed with R version 
3.0.1 (R Core Team (2012). R: A language and environment 
for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. ISBN 3–900051–07–0,  
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URL: http://www.R-project.org/). To compare miRNA 
expression levels, two-sided Mann-Whitney U tests and 
Kruskal-Wallis one-way tests were used. To correlate 
the expression of the 8 diagnostic miRNAs and the 
clinicopathological markers in primary breast cancer 
patients, Spearman’s tests were used for continuous 
variables. Statistical significance was established as 
*P < 0.05 **P < 0.01 ***P < 0.001 or ****P < 0.0001. 
All represented values were adjusted for multiple testing 
using the Benjamini-Hochberg procedure [49]. The 
results of the statistical analyses for selected miRNAs are 
summarized in Supplementary Tables 1 and 2.

Study design

For all steps of the method, an R implementation of 
Breiman’s original random forest algorithm, which was 
provided in the R package randomForest, was used [50]. A 
methodology somewhat similar to the algorithmic solution 
proposed by Geurts et al. was used [31] as shown in 
Figure 1. The different steps are described in detail below.
1. Model building with all miRNAs

An initial random forests model was built on the 
profiling cohort (86 samples: 41 individuals with primary 
breast cancer and 45 controls) with the normalized 
expression values of all 188 miRNAs as features. A 
conservative value of 3000 for ntree  (number of trees in the 
random forest) was chosen for all steps of the construction 
of random forest models using our methodology. Because 
no significant performance change was observed for 
incremental values of mtry  (number of variables randomly 
sampled as candidates at each split), a default value of 
m number of miRNAstry =  was chosen for all steps 
of the construction of random forest models using our 
methodology. A combined ranking for all 188 miRNAs 
based on the model importance metrics MDA (Mean 
Decrease in Accuracy) and MDG (Mean Decrease in Gini) 
was obtained through the construction of this first model. 
2. miRNA signature identification

Variable selection in classification or regression 
methods constitutes a classical problem related to 2 
distinct objectives: (i) Finding relevant variables linked 
to the classifier output, for interpretation purposes  
(in this case, finding an ensemble of miRNAs related to 
breast cancer), (ii) Finding a sufficiently small number 
of variables as to avoid over-fitting, improve model 
performance, and provide more cost-effective models (both 
in terms of computation and implementation) [51, 52]. 
These 2 objectives may often be contradictory, since the 
first one will be directed to highlighting all important 
variables, even if these variables are redundant, while the 
second one aims to limit the number of variables in the 
final model. We are aiming for the second objective. One 
variable selection method for random forests, specifically 

targeting the second objective, is iterative variable 
elimination [38, 53], where variables with the smallest 
importance metric are iteratively discarded until reaching a 
minimum out-of-bag (OOB) error. Based on the definition 
of MDA provided earlier and the R implementation of the 
random forests algorithm, this feature selection method is 
roughly equivalent to the iterative elimination of variables 
with the lowest MDA metric. Another variable selection 
methodology works the other way round, by iteratively 
adding variables in candidate models, based on their 
importance metric, computed on a previous complete 
model, and stopping the addition of variables when the 
model accuracy reaches a maximum [31, 54]. Here, we use 
a more exhaustive wrapper approach, where a large subset 
of m variables is first selected based on the two variable 
importance metrics (the OOB-related importance metric 
MDA, but also the Gini coefficient related importance 
metric MDG) provided by the R implementation of the 
random forests algorithm, and secondly all c possible 
combinations of 1 to m variables from this subset are 
considered as possible features of a potential classifier, 
where c m= −2 1  combinations. This approach thus 
differs in the fact that it constitutes an exhaustive method, 
which will test a very large number of combinations. Each 
of these potential classifiers is cross-validated (with ten 
folds) to determine the variables combination (also called 
“signature”) yielding the best performing model (where 
model performance is measured by the AUC). Since the 
goal of this study is the design of a usable and affordable 
diagnostic tool, a limited value of m = 25 has been chosen 
(leading to c = 33554431). This number corresponds to 
threshold values of 0.001 and 1 respectively for variable 
importance metrics MDA and MDG. This limited 
value of m = 25 constitutes a trade-off between an 
exhaustive testing of the solution space and the time and 
computational limitations related to a diagnostic test.
3. Building the final model

A random forest model was built on the profiling 
cohort using the best performing miRNA subset. This 
classification tool constituted the final diagnostic 
model. The number of trees chosen to build each model 
was determined as in step 1, and a default value of 
m number of miRNAs in the combinationtry = � � � � � �  was chosen 

(i.e. mtry = 3) .
The prediction of the random forest algorithm 

for a sample is a numerical value representing the 
probability for this sample to be part of a specific class 
(case or control). To derive a binary diagnostic rule from 
this numerical score, a specific threshold was picked to 
separate the 2 classes, and the specificity and sensitivity 
values of the corresponding rule were computed.
4. Model validation

Then, the classification tool was validated in a larger 
cohort with similar cases – controls ratio as in the profiling 
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cohort. The total number of samples was 2.3 times greater 
than profiling cohort (196 samples: 108 individuals with 
primary breast cancers and 88 controls).

An AUC was obtained through this validation. 
Sensitivity and specificity values were computed using the 
threshold defined using the profiling cohort.

The classification tool was also validated in a 
separate cohort consisting of 35 individuals with breast 
cancer in remission, 31 patients with metastatic breast 
cancer and 30 patients with gynecologic cancers.

List of abbreviations

3ʹ-UTR = 3ʹ-untranslated region
ABS414 = absorbance at 414 nm
AUC = area under the curve
Cq = quantification cycle
DNA = deoxyribonucleic acid
gDNA = genomic DNA
HER2 = human epidermal growth factor 2
LNA = locked nucleic acid
MDA = mean decrease accuracy
MDG = mean decrease Gini
miRNAs = microRNAs
mRNAs = messenger RNAs
NA = not assessed
Ns = non-significant
OOB = out-of-bag
RNA = ribonucleic acid
ROC = receiver operating characteristic
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