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ABSTRACT
An in silico pathway analysis was performed in order to improve current 

knowledge on the molecular drivers of cervical cancer and detect potential targets for 
treatment. Three publicly available Affymetrix gene expression data-sets (GSE5787, 
GSE7803, GSE9750) were retrieved, vouching for a total of 9 cervical cancer cell lines 
(CCCLs), 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples 
(CCSs). Predication analysis of microarrays was performed in the Affymetrix sets to 
identify cervical cancer biomarkers. To select cancer cell-specific genes the CCSs were 
compared to the CCCLs. Validated genes were submitted to a gene set enrichment 
analysis (GSEA) and Expression2Kinases (E2K). In the CCSs a total of 1,547 probe 
sets were identified that were overexpressed (FDR < 0.1). Comparing to CCCLs 560 
probe sets (481 unique genes) had a cancer cell-specific expression profile, and 315 
of these genes (65%) were validated. GSEA identified 5 cancer hallmarks enriched 
in CCSs (P < 0.01 and FDR < 0.25) showing that deregulation of the cell cycle is a 
major component of cervical cancer biology. E2K identified a protein-protein interaction 
(PPI) network of 162 nodes (including 20 drugable kinases) and 1626 edges.  
This PPI-network consists of 5 signaling modules associated with MYC signaling (Module 
1), cell cycle deregulation (Module 2), TGFβ-signaling (Module 3), MAPK signaling 
(Module 4) and chromatin modeling (Module 5). Potential targets for treatment which 
could be identified were CDK1, CDK2, ABL1, ATM, AKT1, MAPK1, MAPK3 among others. 
The present study identified important driver pathways in cervical carcinogenesis which 
should be assessed for their potential therapeutic drugability.

INTRODUCTION

Cervical cancer is the second most prevalent cancer 
seen in woman worldwide, with about 500.000 cases 
and over 270.000 deaths estimated annually [1]. The 
etiological role of infection with high-risk papilloma 
viruses in cervical carcinoma is well established [2]. 
However, little is known on the regulatory networks of 
biological factors involved in cervical cancer. Somatic 
mutations in PIK3CA, PTEN, TP53, STK11, KRAS, 
MAPK1, HLA-B, EP300, FBXW7, NFE2L2, TP53, 
ERBB2, as well as several copy number alterations 
have been implicated in the pathogenesis of cervical 

carcinomas [3, 4]. Over the last decades little progress 
has been made in the systemic treatment of patients with 
advanced or recurrent cervical cancer [5]. In the current 
study we designed an in silico approach to identify 
potential driver pathways of cervical carcinogenesis and 
candidate targets for treatment. Three publicly available 
Affymetrix expression datasets were integrated, allowing 
us to interrogate the molecular profile of the malignant 
transformation of normal cervical tissue into high-grade 
intraepithelial neoplasia (HSIL) and then into invasive 
cervical cancer (ICC) using the largest in silico series 
of cervical samples ever reported. Gene set enrichment 
analysis (GSEA) enabled us to unravel cervical cancer 
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biology and Expression2Kinases (E2K) to delineate the 
driving signaling network. A PPI-network consisting of  
5 signaling nodes was identified.

RESULTS

Differential gene expression analysis

An unsupervised hierarchical cluster analysis on 
publicly available expression data of normal cervical 
samples, high grade intraepithelial neoplasia (CIN3) 
samples, cervical cancer samples and cervical cancer 
cell lines was performed and cluster robustness analysis 
showed that the optimal result consists of 3 clearly 
separating groups (Figure 1): the normal samples, the 
cell lines and the invasive cancer samples that lumped 
together with the CIN3 samples. Differential gene 
expression analysis with a false discovery rate smaller 
than 5% identified 3,915 genes that were differentially 
expressed between the normal samples and the invasive 
carcinomas, 1,923 genes between the normal samples and 
the CIN III lesions and 628 genes between the CIN III 
and the invasive carcinomas (Figure 2A–2C). We next 
wanted to identify cervical cancer cell intrinsic expression 
patterns. Therefore, we evaluated only the expression 
levels of the probe sets which were overexpressed in the 
cervical invasive cancer samples compared to the normals 
cervical samples (N = 1,547/3,915) in a collection of 
cervical cancer cell lines. Of these, 729 probe sets were 
differentially expressed between the cervical invasive 
cancer samples and the cell lines: 560 probe sets  
(481 unique genes) were overexpressed in the cell 
lines (i.e. cancer cell-related expression) and 169 probe 
sets (133 unique genes) were repressed in the cell lines  
(i.e. potentially stroma-related expression). The set of 481 
genes was retained for further data analysis.

Validation of the data

Data validation was done using two alternative 
strategies. First, to assess whether the data are biologically 
relevant we evaluated the expression profiles of genes 
implicated in angiogenesis and vessel maturation, as 
we and several other groups have reported that during 
the progression from normal to noninvasive, and then 
to microinvasive cervical carcinoma the microvessel 
density increases significantly [6–9] We found that gene 
expression profiles of CIN3 samples, when compared to 
the normal cervical samples were enriched for angiogenic 
genes. Similar enrichment results were observed in gene 
expression profiles of cervical cancer samples when 
comparing them to CIN3 or normal samples. Figure 3 
shows a gene set enrichment plot comparing normal 
cervical samples to invasive cervical cancer samples 
for genes associated to “Angiogenesis” according to 
the molecular signatures database “Hallmark” category.  

In a second validation strategy, we evaluated the 
expression levels of the list of 481 genes overexpressed 
in cervical cancer cell lines relative to cervical cancer 
samples, thus putative cervical cancer cell intrinsic genes, 
in an independent data set (Agilent GSE7410). In total, 
315 (66%) putative biomarkers for cervical cancer were 
validated. The top 10 genes by fold-change consisted 
of TK1, UBE2C, KIAA0101, FANCI, TYMS, CDK1, 
RRM2, CENPF, PTTG1 and KNTC1. 

Pathway analysis

Using the set of validated genes overexpressed 
in cervical cancer samples relative to normal cervical 
samples (N = 315), gene set enrichment analysis (GSEA) 
for pathways contained in the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database was performed. In 
addition, similar analyses were done for Gene Ontology 
gene sets associated with biological processes (GOBP). 
Barplots and interaction networks for the top 10 most 
significant hits for each database are summarized in 
Figure 4. These results reveal that the list of 315 cervical 
cancer intrinsic genes are mostly involved in the cell 
cycle by means of processes like DNA replication and 
recombination, RNA metabolism, purine and pyrimidine 
metabolism.

To identify signalling pathways responsible for 
driving the observed gene expression differences and 
thus the cell cycle related changes, E2K was performed. 
A protein-protein interaction (PPI) network of 162 
nodes (including 20 druggable kinases) and 1626 edges 
was identified (Figure 5). This PPI-network consists of 
5 signaling modules associated with MYC signaling 
(Module 1 – Figure 6), cell cycle deregulation (Module 2 – 
Figure 7), TGFβ-signaling (Module 3 – Figure 8), MAPK 
signaling (Module 4 – Figure 9) and chromatine modeling 
(Module 5- Figure 10). Potential targets for treatment that 
could be identified were CDK1, CDK2, ABL1, ATM, 
AKT1, MAPK1, MAPK3, TRRAP, MAPK14, GSK3B, 
CSNK2A1, MAPK8, ATR, TAF1, HIPK2, TRRAP, 
PRLDC, CSNK2A2, RPS6KA2, CD7, and RPS6KA1. 
Drugs which are currently available for targeting the 
above kinases are given in Table 1. 

Biomarker discovery for early discovery

In order to identify biomarkers for early discovery, 
we adopted a two stage approach. First we used PAM 
to compare the expression profiles of normal and CIN3 
samples as well as the expression profiles of CIN3 and 
invasive cancer samples. We identified 148 probe sets 
discriminating between normal and CIN3 samples 
(sensitivity = 100%, specificity = 91%, accuracy = 93%) 
and 334 probes sets discriminating between CIN3 cancer 
samples (sensitivity = 84%, specificity = 100%, accuracy 
= 85%). Data are shown in Figures 11 and 12 respectively.  
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Of note, VEGFA was identified amongst the top 25 most 
discriminating biomarkers between CIN3 and cancer 
samples. We then looked for probe sets identified in 
both analyses and showing both increased expression 
in CIN3 samples respective to normal samples and in 
cancer samples respective to CIN3 samples. Adhering 
to these criteria, no probe sets were retained. Moreover, 
since this analysis is essentially intended to identify 
expression signatures and the classification strength of 
these signatures depends on the combined rather than the 
individual expression levels of the constituting genes, the 
presented methodology is not optimal for the identification 
of individual biomarkers. Therefore, we also adopted a 
second approach. We compared the lists of differentially 
expressed genes between normal and CIN3 samples on 
the one hand (N = 1,923) and between CIN3 and invasive 
cancer samples on the other hand (N = 628). We identified 
7 probe sets that were significantly overexpressed  
(FC > 2 and FDR < 10%) in both CIN3 samples respective 
to normal samples and in cancer samples respective to 
CIN3 samples. From these, 6 probes set corresponding 
to 6 unique genes (i.e. AURKA, DTL, HMGB3, KIF2C, 
NEK2, and RFC4) were additionally overexpressed 
in cervical cancer cell lines respective to the cancer 

samples, suggesting they are cancer cell intrinsic and thus 
can be considered as potential biomarkers for cervical 
cancer tailored to early diagnosis. Expression levels are 
represented in Figure 13. 

DISCUSSION

Epidemiologic and experimental studies have shown 
that a persistent infection with a high risk HPV is the 
causal factor in the development of cervical cancer. [2]. 
A significant event in HPV-associated carcinogenesis is 
the induction of genomic instability and global disruption 
of cell gene expression, principally by the HPV E6 and 
E7 oncoproteins. Integration of HPV DNA into the host 
genome may confer growth and survival advantage via 
enhanced expression of viral oncoproteins, alteration of 
critical cellular genes, loss of function of DNA repair 
genes and tumor suppressor genes, and changes in global 
promotor methylation and transcription or microRNA 
expression [10, 11].

Previous studies have implicated somatic mutations 
in PIK3CA (14%), PTEN (6%), TP53 (5–27%), STK11 
(4%) and KRAS (8%) as well as several copy number 
alterations in the pathogenesis of cervical carcinomas 

Figure 1: Unsupervised hierarchical cluster analysis (1A) and cluster robustness analysis was performed (1B–1C).
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[3, 4]. Ojesnina et al. (2014) performed a whole exome 
sequencing analysis of 115 cervical carcinomas-normal 
paired samples, transcriptome sequencing of 79 cases 
and whole genome sequencing of 14 tumor-normal pairs. 

They found novel somatic mutations in the MAPK1 
gene (8%), HLA-B gene (9%), EP300 (16%), FBXW7 
(15%), NFE2L2 (4%), and ERBB2 (6%) of 79 squamous 
carcinomas, and ELF3 (13%) and CBFB (8%) mutations 

Figure 3: Gene set enrichment analysis for KEGG pathways mapping showing enrichment plot on the hallmark 
Angiogenesis comparing normal with invasive cancer samples.

Figure 2: Differential gene expression analysis.
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Figure 5: PPI Network (E: 1620 ; N: 162).

Figure 4: Gene Set Enrichment Analysis.
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Figure 7: PPI-network related to cell cycle deregulation.

Figure 6: PPI-network associated with MYC signaling.
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Figure 9: PPI-network related to MAPK signaling.

Figure 8: PPI-network related to TGFβ-signaling.
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in 24 adenocarcinomas. Gene expression levels at HPV 
integration sites were significantly higher in tumors with 
HPV integration compared with expression of the same 
genes in tumors without viral integration at the same site. 
Single gene mutations are an important cause of pathway 
disruption, but there are many other factors implicated in 
pathway (in) activation (such as altered gene expression, 
gene interactions, effects of miRNAs, methylation, etc..) 
that may be of functional importance. We therefore used 
a different approach, gene set enrichment and pathway 
analysis, in an attempt to unravel the major driving 
signaling networks that are common in most cervical 
cancer patients and could be drugable.

A central challenge in analyzing genomic changes 
in cancer is distinguishing drivers from coincidental 
passengers [12] Possible approaches are to assume that 
passenger mutations are randomly distributed and to 
incorporate mutational heterogeneity into the analysis 
[13]. We have tried to reliably identify important driving 
pathways using a big sample size and only retaining genes 
for the analysis that were also abnormally expressed in 
the cell lines. Comparative analysis of different microarray 
types has shown to generate comprehensive and reliable 
results, provided that the data are normalized [14]. 
Tamborero et al analyzed somatic mutations generated 
by all projects within Pan-Cancer [14]. This enabled 
them to make a comprehensive and reliable list of cancer 
driver genes, which contains most of the genes that play 
a prominent role in our analysis. Bignell et al (2010) 
identified 2428 somatic homozygous deletions (HD) in 
746 cancer cell lines. Fourteen HD were located over the 

known recessive cancer genes CDKN2A, PTEN, RB, 
SMAD4, NF1, MAP2K4, MSH2, TP53, NF2, MLH1, 
SMARCB1, PIK3R1, BMPR1A and CDH1, which also 
showed to be important in our analysis. 

We identified a PPI-network consisting of 5 
signaling modules. These ware associated with MYC 
signaling (Module 1), cell cycle deregulation (Module 2), 
TGFβ-signaling (Module 3), MAPK signaling (Module 4) 
and chromatin modeling (Module 5). C-MYC signaling 
is deregulated in many tumor types [15] and C-MYC 
amplification is well documented in cervical cancer [16]. 
Several studies show that C-MYC is a hot spot for HPV 
integration in the host cervical genome, suggesting that 
it may play an important role in cervical oncogenesis 
[17] The C-MYC oncogene is a “master regulator” 
controlling cellular growth regulation and cellular 
metabolism (eg. glycolysis, mitochondrial biogenesis, 
glutamine metabolism) [18]. The effect of C-MYC can 
occur either as a primary oncogene which is activated by 
amplification or translocation, or as a downstream effect 
of other activated oncogenes [18]. Kim et al showed 
that C-MYC amplification is an independent prognostic 
marker for shorter disease free and cancer specific survival 
in cervical cancer treated by radical hysterectomy [16]. 
C-MYC is an attractive therapeutic target and therefore 
small molecules and antisense oligonuclotides have 
been developed in an attempt to downregulate C-MYC 
function [18] Other interesting partners in this module 
are signaling events mediated by histone deacetylases 
(HDAC) and E2F. HDAC remove the acetyl groups 
from the lysine residues leading to the formation of a 

Figure 10: PPI-network related to chromatine remodeling. Number of genes involved in this module was to small to  perform a 
meaningful pathway analysis.
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condensed and transcriptionally silenced chromatin [19]. 
HDAC inhibitors are a new class of cytostatic agents 
that inhibit the proliferation of tumor cells in culture and 
in vivo by inducing cell cycle arrest, differentiation and 
apoptosis and may be of potential use in the treatment of 
cervical cancer [20]. The E2F transcription factor network 

consists of a family of transcription regulators [21]. 
Among E2F transcriptional targets are cyclins, CDKs, 
checkpoint regulators, DNA repair and replication proteins. 
Peptides inhibiting E2F transcription have recently been 
developed and showed antitumoral activity in vitro and in  
xenografts [22].

Table 1: Potentially useful drugs to target invasive cervical cancer  based on in silico pathway 
analysis

Target Details Possible drugs

ABL1 Abelson murine leukemia vitral homolog 1, protooncogene, 
non-receptor tyrosine kinase, expression regulated by 
miRNA-203, regulated by CDC -2 mediated phosphorylation 
suggesting a role in cell cycle regulation

Ponatinib – Dasatinib – Imatinib 
Nilotinib – Bafetinib – Bosutini - 
AT9283 - XL 228

AKT1 V-Akt murine thymoma viral oncogene homolog 1: enzyme 
that belongs to the AKT family of serine/threonine kinases, 
activated through Pi3K supressing apoptosis

Cenisertib – Ipasertib – Afuresertib 
– Uprosertib - AT13148 - AZD5363 - 
BAY1125976 - MK2206

ATM Ataxia telangiectasia mutated gene: serotine/theronien protein 
kinase activated by double strand breaks, phosphorytlates 
several key proteins that initiate DNA damage check-point, 
leading to cell cycle arrest, DNA repair and apoptosis

Olaparib – Veliparib - KU55933 
- KU60019 - CP466722 - CGK73 – 
Wortmannin - LY294002

ATR Ataxia telangiectasia and Rad3 related: belongs to the PI3K 
family, serotine/theronien protein kinase activated by double 
strand breaks, phosphorytlates several key proteins that 
initiate DNA damage check-point, leading to cell cycle arrest, 
DNA repair and apoptosis

ATR Inhibitors:
Schisandrin B - NU6027 – Dactolisib 
- VE-821 - VE-822 (VX-970) - AZ20 - 
AZD6738 - CGK73
PI3K
Copanlisib – Dactolisib – Buparlisib 
Pictilisib – Apitolisib – Omipalisib – 
Gedatolisib – Pilaralisib – Voxtalisib - 
BGT226 - NVP-BGT226 - GSK2636771 
- PF-4691502 - PI-103 - SF1126

CSNK2A1 /
CSNK2A2:

Casein kinase 2 alpha 1 /2 polypeptide: a serine/threonine 
protein kinase that phosphorylates acidic proteins/enzyme 
interacting with various substrates

CX-4945

TRRAP Transforming/transcription domain associated protein: adapter 
protein, involved in epigenetic transcription activation, 
required for MYC, TO53 and EF2 mediated transcription 
activation, requied for mitotic check-point and cell cycle 
progression

(c-MYC)
10058-F4
10074-G5 - 10074-A4
EF2
MOC31-PE

HIPK2 Homeodomain interacting protein kinase 2: regulates TGF-
beta induced jun activation

A64

MAPK1/3 Mitogen activated protein kinase 1: member of the MAP 
kinase family, acts in a signallig cascade regulating cellc cyle, 
proliferation and differentiation

BVD-523 – Ralimetinib - MK-8353 - 
SCH900353 - LY2228820

MAPK14 Encodes an p38 alpha mitogen activated protein kinase, 
involved in several cellular functions varying from gene 
expression to programmed cell death

Losmapimod

RPS6KA1 Ribosomal protein S Kinase polypeptide 1: phosphorylates 
various substrates such as the MAPK family members, 
implicated in celle growth and differentation

SL-0101
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Figure 12: Biomarker discovery prediction analysis of Affymetrix microarrays comparing  CIN III lesions versus 
invasive cervical cancer samples in GSE5787, GSE7803 and GSE9750.

Figure 11: Biomarker discovery prediction analysis of Affymetrix microarrays comparing  normal samples versus 
CIN III samples in GSE5787, GSE7803 and GSE9750.
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The cell cycle deregulation module contains several 
targetable components such as cyclins, checkpoint 
regulators and p53. There is renewed interest to develop 
drugs to restore p53 activity in patients with mutant or 
dysfunctional p53 as this is implicated in many tumors [23].
Loss of RB1 function, which is a well known phenomenon 
in cervical cancer leads to expression of Cyclin D1, over-
expression/amplification of CDK4, and/or loss of the 
CDKN1B, CDKN2A and CDKN2B. Cervical tumors are 
therefore likely to be sensitive to CDK4/6 inhibitors. ATR, 
a kinase which phosphorylates p53 and other proteins such 
as CHK1 and RAD1, is an example of a novel cell cycle 
driver candidate which came up in our analysis, but also the 
study of Tamberero et al on drivers in 12 different tumor 
types (not including cervical cancer) [14].

The TGFβ signaling module consists, besides the 
TGFβ–pathway, of related pathways regulating SMAD2/3 
signaling, HIF-1 alpha transcription, coregulation of 
androgen receptor activity, FOXA1 transcription and some 
pathways related to viral infections. TGFβ is a multipotent 
cytokine that is involved in many cellular processes. Its 
action is context dependent. In the normal cell TGFβ 
induces apoptosis and controls differentiation and 
proliferation. During the early stages of carcinogenesis it 
inhibits proliferation of transformed tumor cells, but during 
tumor progression it supports tumor growth and enhances 
invasion and metastasis, tumor angiogenesis and systemic 
and local tumor suppression. Disruption of the TGFβ 
signaling pathway and diminished SMAD2 phosporylation 
are well documented in HPV16-immortalized human 

keratinocytes [24] and human cervical cancers. A recent 
study demonstrated that the genetic variation in immune-
related genes is associated with the susceptibility to 
HPV related cancers and implicates TGFβR1/TGFβ 
signaling early in the development of both oropharyngal 
and cervical cancer [25]. A study of Ki et al suggests that 
alteration of TGF-βRII, SMAD2 and SMAD4 may play an 
important role the development and progression of cervical 
carcinomas [26]. Kloth et al showed that weak cytoplasmic 
SMAD4 expression and absent nuclear SMAD4 expression 
were significantly correlated with poor-disease-free and 
overall 5-year survival in an immunohistochemical study 
on 117 primary cervical carcinomas, suggesting that 
SMAD4 is a target molecule for functional inactivation in 
cervical cancer [27] Blockade of TGFβ and its signaling 
pathway provide multiple therapeutic opportunities, which 
has lead to the development of TGFβ antibodies, antisense 
oligonucleotides and receptor kinase inhibitors [28]. The 
hypoxia inducible transcription factor (HIF) coordinates 
the response of tumors to low oxygen by stimulating genes 
involved in metabolism and angiogenesis. Up to 70% of 
cervical carcinomas are expressing moderate to high levels 
of HIF-1 [29]. Strong immunopositivity of HIF-1 has been 
associated with a bad prognosis in early cervical cancer, 
making HIF-1 inhibition an attractive treatment option. 
VEGF, a downstream target of HIF-1, plays a critical role 
in angiogenesis [30].

The MAP-kinase module contains many potential 
targets for treatment: RAS pathway, Toll-like receptors 
cascades, MAPK signaling pathway, ERBB2/ERBB3 

Figure 13: Biomarker Discovery [Prediction Analysis of Microarrays; Normal samples (red) vs. CIN III samples 
(green), Invasive cervical cancer samples (blue) vs. cell lines (purple)].
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signaling events, S1P2 pathway (including such as jun, 
fos, PI3K, MAPK1, MAPK14,…) and RAS signaling 
in the CD4+ TCR pathway. The RAS-MAPK and PI3K-
mTOR signaling pathways are deregulated in many cancers 
by genetic and epigenetic aberrations [31]. Several key 
components in these pathways, such as RAS, B-RAF, 
C-RAF, MEK1, PI3Kand AKT are activated by mutations 
or gene amplifications, while other components that inhibit 
these pathways, such as PTEN, LBK1 and TSC1/2,  are 
inactivated by genomic deletions and mutations. In 
addition alternative splicing can affect the activity of 
signaling effectors contributing to their constitutive or 
improper function. The most well characterized examples 
are represented by members of the receptor tyrosine kinase 
family (ERBB-2, EGFR, FGFR, INSR, VEGFR, MET and 
RON), the non-receptor cytosolic protein kinases (such as 
SRC, RAS, RAF) and non-kinase cytosolic recptors (such 
as androgen and estrogen receptors) [32]. Mutations in the 
PI3K CA gene, located at chromosome 3q24-29, are seen 
in up to 36% of cervical cancers [33]. An increased copy 
number is positively correlated with 3q26.3 amplification 
in both cervical tumor tissues and cancer cell lines. 
Quantitative RT-PCR analysis showed that the PI3K gene 
copy number is 3 or more in 28 out of 40 cases and that it 
triggered AKT phosphorylation in 39 out of 46 examined 
neoplastic tissues [34]. Schwarz et al [35] showed by means 
of  Affymetrix whole genome analysis that activation of 
the PI3K pathway in patients with cervical cancer was 
associated with an incomplete metabolic response to 
chemoradiation and should be considered as an important 
novel therapeutic target [36]. Notch signaling seems to 
play an important role during cervical carcinogenesis as it 
activates the PI3K/AKT pathway and upregulates C-MYC. 
Coactivation of Notch 1 and NF-kB signaling pathways at 
the cellular level is seen can be found in the majority of 
human cervical cancers [37].

Chromatin remodeling plays a central role in 
the regulation of gene expression by providing the 
transcription machinery with dynamic access to an 
otherwise tightly packed genome [38]. Deregulation 
of chromatin remodeling causes loss of transcriptional 
regulation at critical check-points required for proper 
cellular functions, such as the tumor suppressor RB 
protein functions. Shadeo et al [39] showed that impaired 
regulation of chromatin remodeling complex components 
occurs in the development of CIN lesions. TRRAP 
(Transformation/transcription domain associated protein) 
plays a central role in this module. TRRAP overexpression 
or stabilization is known to induce multiple mitotic 
defects, including lagging of chromosomes, chromosome 
bridges and multipolar spindles [40]. 

The findings of the current pathway analysis are 
in line with the results of other genome wide studies in 
cervical cancer cell lines and human samples. Higerda-
Almaraz et al performed an in silico overexpression 
analysis of transcription factors in six cervical cancer 

cell lines using a hypergeometric test and employing the 
SwitchGear Database for the acquisition of transcription 
start sites [41]. They found that the transcription factors 
E2F1, TCF4, C-MYC, MAX, E2F6 and NFKB were 
most significantly overexpressed. Perez-Plasencia used 
Human Whole Genome Codelink microarrays to analyze 
8 HPV 16 squamous cervical carcinoma and 3 normal 
cervical samples [42]. Cervical carcinoma proved to be 
associated with important upregulation of Wnt signaling 
pathway, which was validated by in situ hybridization. In 
their analysis important other upregulated pathways were 
those of calcium signaling and MAPK signaling, as well 
as cell cycle-related genes. There was down regulation 
of focal adhesion, TGFβ signaling and other metabolic 
pathways. Mine et al generated gene expression data 
from 40 cervical tumors and 20 normal tissue samples. 
Combining these with data from 4 other independent 
studies they could reveal a robust set of differentially 
expressed genes and used it to reconstruct a gene co-
expression network, using a different methodology then 
in our paper. They could identify three sub-networks: one 
containing genes involved in the cell cycle, another related 
to antiviral activity, and a third minor network related to 
epithelial differentiation. Both the cell cycle and antiviral 
sub-networks were upregulated in cervical cancers. From 
the cell cycle subnetwork six genes(CEP70, GMPS, 
CM2, NAT13, RFC4 and TOPBP1) located in regions 
of frequent chromosomal aberrations were identified. 
The finding of increased expression of genes related to 
the antiviral response was surprising. Among these genes 
there were innate immune sensors of viruses (ADAR, 
AIM2), molecules involved in antigen presentation (HLA, 
TAP, RFX5), transcription regulators (IRF1, IRF7, IRF9 
and STAT1) and oncogenes of innate immunity directly 
involved in the elimination of viruses (such as HERC5, 
MX1, OAS2, ISG15 and RSAD2) [43]. 

In the present paper we identified six putative 
biomarkers (AURKA, DTL, HMGB3, KIF2C, NEK2, 
and RFC4) which should be further tested to separate 
indolent HPV related cervical infections from progressive 
CIN III lesions and for early diagnosis of cervical 
cancer. The potential targets for systemic treatment of 
advanced cervical cancer identified in this study should be 
considered as hypothesis raising. Further detailed in vitro 
and in vivo studies, linking genotype to phenotypes, are 
necessary to explore the effectivity of manipulating the 
potentially interesting pathways we proposed in this paper. 
Better knowledge on how to detect the crucial elements in 
activated or suppressed pathways, and correcting abnormal 
signaling beyond the mutational level is needed for the 
successful rational targeting cervical cancer. Several 
questions remain: which and how many pathways do we 
have to manipulate to reverse the malignant phenotype, 
do we have to focus on mutations or could we just look 
at disrupted signaling, what are the effects of tumor 
heterogeneity and tumor progression? As no information 
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was available for the HPV status of all samples we were 
not able to assess differences in gene expression between 
HPV positive and HPV negative cervical carcinoma. 
Although 90–95% of cervical carcinomas are HPV 
positive, theoretically this may be important as the biology 
of cervical cancer may be different in both groups. The 
data we presented regard squamous carcinoma of the 
cervix as the current series included only one invasive 
adenocarcinoma. A limitation of this study is that only 
gene expression data were used. A complete integration of 
genomic and proteomic data, as was done in The Cancer 
Genome Atlas (TCGA) project for 13 other tumor types, 
should be considered for cervical cancer in order to further 
improve our understanding of the disease [44]. 

MATERIALS AND METHODS

Patient data sets

All publicly available Affymetrix data sets 
(HGU133-series) containing normal and pretreatment 
(pre)invasive cervical cancer samples with relevant clinical 
information were retrieved from the Gene Expression 
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/gds): 
GSE5787, GSE7803 and GSE9750. Combined, these data 
sets vouch for a total of 140 samples including 34 normal 
samples, 7 micro-dissected CIN3 lesions, 9 cervical cancer 
cell lines (C4-1, CaSki, C-33A, HT-3, SiHA, SW756, 
MS751, ME-180, HeLa) and 90 invasive cervical cancer 

samples. In addition, the only available Agilent data set 
fulfilling the same criteria (GSE7410; 5 normal cervical 
samples, 35 samples from invasive cervical cancer) was 
selected as a validation set (Figure 14). 

Data normalization and exploration 

Expression series were normalized using GCRMA 
for the Affimetrix platforms and Quantile normalization 
for the Agilent data [45]. Informative genes were selected 
if they had a fluorescence intensity above background in at 
least 10% of the arrays. Next the data were integrated for 
the Affimetrix series only, leaving out the Agilent series 
for validation. For genes with multiple probe sets per 
gene, the probe set with the greatest amount of variation in 
gene expression by standard deviation was selected. Then 
common informative genes were selected across the three 
Affymetrix series. The data were further normalized using 
regression models (limma package in Bioconductor) to 
obtain similar distributions for each data set, as described 
previously [45]. Unsupervised hierarchical cluster 
analysis (UHCA) was performed on the integrated data 
set using the 500 most variable probe sets only. Sample 
dissimilarity was calculated using the Manhattan distance 
and the dissimilarity matrix was clustered using Ward-
linkage. Annotated heatmaps were generated using the 
BioConductor-package Heatplus in R. Cluster robustness 
analysis was performed using the silhouette score on 10 
randomly permuted subseries (N = 120) as described 
before [45]. To identify probe sets specifically upregulated 

Figure 14: Overview of study design.
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in cervical cancer samples, we adopted a three-stage 
analysis strategy: A. We compared the expression profiles 
of normal cervix samples to samples from cervical 
cancer; B. Probe sets overexpressed in cervical cancer 
samples were compared between the same cervical cancer 
samples and cervical cancer cell lines to assess cancer 
cell-specific expression; and C. Probe sets overexpressed 
in the cervical cancer cell lines relative to the cervical 
cancer samples were validated in the Agilent series. For 
each stage, differential expression for the relevant genes 
was assessed using linear regression models and P-values 
were adjusted for false discovery using the Benjamini and 
Hochberg correction. Corrected P-values less than 0.05 
were considered significant.

Analysis of pathway and biological processes

Validated genes were interrogated using gene set 
enrichment analysis (GSEA; http://amp.pharm.mssm.
edu/Enrichr/enrich) to unravel cervical cancer biology and 
using Expression2Kinases (E2K) to delineate the driving 
signaling network, For GSEA, gene sets associated with 
pathways in the KEGG database and with gene ontologies 
related to biological processes were tested. Gene sets 
with an FDR-corrected P-value less than 10% were 
considered significant. The signalling network identified 
through E2K was further analyzed using the Reactome  
FI-plugin in CytoScape version 3. First, spectral clustering 
was performed to identify the signalling modules within 
the network. Then, each signalling module was analyzed 
for enriched pathways. Correlations were calculated with 
the Pearson correlation methods in SPSS 16.0 statistical 
software packages. Standard errors for Pearson correlation 
coefficients were estimated by the formula SE (1-Rho^2)/
SQRT(n-1) Cox proportional regression models estimated 
survival hazard ratios withn 95% confidence intervals. 
Meta-analysis was done using MIX 2.0 software using 
a random effect model for relative risk and correlation 
coefficients.

Biomarker analysis for early diagnosis

In order to detect potential biomarkers for 
early diagnosis, we performed predication analysis of 
microarrays comparing normal cervical samples to CIN3 
samples and CIN3 samples to invasive cervical cancer 
samples. Using ten fold cross-validation, a delta value was 
chosen that minimizes the misclassification error rate. The 
delta value relates to the expression difference between 
two classes that is considered relevant for probe sets to be 
included in the classifiers. Thus, using the delta-value not 
only the misclassification error rate is minimized but also 
the relevant probe sets are selected. We then compared 
the resulting classifiers to identify probe sets with low, 
intermediate and high expression levels in respectively 
normal, CIN3 and cancer samples. In addition, we also 

compared the lists of differentially expressed probe sets 
between normal and CIN3 samples on the one hand and 
between CIN3 and cancer samples on the other hand. 
Probe sets with a significant (FDR < 5%) 2-fold increased 
expression level in CIN3 samples in contrast to normal 
samples, in cancer samples in contrast to CIN3 samples 
and in cervical cancer cell lines in contrast to cancer 
samples were retained.
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