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ABSTRACT
The nervous system is now recognized to be a relevant component of the tumor 

microenvironment. Receptors for neuropeptides and neurotransmitters have been 
identified in breast cancer. However, very little is known about the role of neurogenes 
in regulating breast cancer progression. Our purpose was to identify neurogenes 
associated with breast cancer tumorigenesis with a potential to be used as biomarker 
and/or targets for treatment. We used three databases of human genes: GeneGo, 
GeneCards and Eugenes to generate a list of 1266 relevant neurogenes. Then we used 
bioinformatics tools to interrogate two published breast cancer databases SAGE and 
MicMa (n=96) and generated a list of 7 neurogenes that are differentially express 
among breast cancer subtypes. The clinical potential was further investigated using 
the GOBO database (n=1881). We identified 6 neurogenes that are differentially 
expressed among breast cancer subtypes and whose expression correlates with 
prognosis. Histamine receptor1 (HRH1), neuropilin2 (NRP2), ephrin-B1 (EFNB1), 
neural growth factor receptor (NGFR) and amyloid precursor protein (APP) were 
differentially overexpressed in basal and HER2-enriched tumor samples and syntaxin 
1A (STX1A) was overexpressed in HER2-enriched and luminal B tumors. Analysis 
of HRH1, NRP2, and STX1A expression using the GOBO database showed that their 
expression significantly correlated with a shorter overall survival (p < 0.0001) and 
distant metastasis-free survival (p < 0.0001). In contrast, elevated co-expression of 
NGFR, EFNB1 and APP was associated with longer overall (p < 0.0001) and metastasis-
free survival (p < 0.0001). We propose that HRH1, NRP2, and STX1A can be used as 
prognostic biomarkers and therapeutic targets for basal and HER2-enriched breast 
cancer subtypes.

INTRODUCTION

Intratumor heterogeneity refers to the coexistence of 
subpopulations of cancer cells diverging in their genetic, 
phenotypic, or behavioral characteristics within a given 
primary tumor, and between a given primary tumor and 

its metastases. Intratumor heterogeneity facilitates tumor 
progression and fosters the continuous adaptation and 
survival of the different tumor-propagating clones to the 
different microenvironments in which a tumor resides. A 
high degree of heterogeneity has been observed in many 
tumor types, including breast [1], prostate [2], ovarian [3], 
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bladder [4], and pancreatic cancers [5, 6], as well as in 
glioma [7], chronic lymphocytic leukemia [8], multiple 
myeloma [9], and acute myeloid leukemia [5].

Insights from genomics have led to the 
identification of five molecular subtypes of breast cancer 
on the basis of gene expression patterns. Different 
molecular subtypes of breast cancer have different clinical 
outcomes and responses to chemotherapy [10]; therefore, 
intratumor heterogeneity represents a major challenge for 
the design of effective therapies. Intratumor heterogeneity 
results from the differentiation of stem-like cells and 
along with clonal selection, enables the propagation of 
the fittest clones for a given tumor microenvironment 
[11]. Breast cancer stem cells were initially identified 
using membrane antigenic markers. In 2003, Al-Hajj et 
al.[12] first described the existence of a CD44+CD24- 
subpopulation (hereinafter referred to as CD44+) in 
breast cancer with properties of tumor stem cells. The 
tumorigenic CD44+CD24−/low Lineage− population 
shares with normal stem cells the ability to proliferate 
extensively, and to give rise to diverse cell types with 
reduced developmental or proliferative potential. 
Moreover, this cell population is rich in cells capable 
of initiating tumors in immunosuppressed animals [12]. 
However, a large body of evidences has demonstrated that 
this phenotype is heterogeneous and not expressed in all 
breast cancers [13] [14]. In addition, Honeth et al. found 
CD44 expression predominantly on the cells surface 
membrane along with CD24 in the cytoplasm, and, most 
interesting, they showed that CD44 protein distribution 
or its degradation during tumor initiation and metastasis, 
may favor the enrichment of CD24 on the membrane [15]. 
Furthermore, It has been described that cancer cells can 
acquire a CD44+ /CD24– phenotype through epithelial-
to-mesenchymal transition (EMT) [16] Moreover, Meyer 
et al. hypothesized that an interconversion between 
the differentiated and stem-like phenotypes occurs in 
breast cancer and suggested that epithelial like CD44+/
CD24+ can generate CD44+/CD24− cells during tumor 
initiation [17]. Therefore, the CD44+ is heterogeneous; 
nevertheless the expression of CD44 is correlated with a 
more aggressive phenotype in breast cancer and with poor 
outcome of patients with basal-like breast cancer [15].

Increasing evidence suggests that the nervous 
system itself, as well as neurotransmitters and 
neuropeptides present in the tumor microenvironment, 
play a role in orchestrating tumor progression. 
Theoretically, just as tumors induce the formation of 
new blood vessels (angiogenesis) [18] and lymph 
vessels (lymphangiogenesis) [19] by secreting different 
factors, tumors may also induce the formation of new 
nerve endings, (neoneurogenesis) [20] by secreting 
neurotrophic factors and axonal guidance molecules. 
In this scenario, the neuroendocrine system would 
play a key role in cancer progression and metastasis. 
In fact, colon tumors that express neuroendocrine 

markers have poor prognosis [21]. Synaptophysin, a 
protein found in neuroendocrine cells and in virtually 
all neurons in the central nervous system participating 
in synaptic transmission, has been detected in breast 
[22], colon [23], prostate [24], and brain [25] tumors as 
well as melanoma [26], supporting the idea that nerve 
fibers infiltrate tumors. Furthermore, the release of 
neurotrophic factors such as norepinephrine, dopamine, 
and substance P appears to stimulate the growth of 
nerve fibers inside tumors [27–29]. Nerve endings 
in turn release factors that stimulate the migratory 
activity of tumor cells and promote metastasis [20]. 
In addition, netrin-1 (an axonal guidance molecule) 
and its receptor neogenin are involved in maintaining 
adhesion between basal and luminal cells in adjacent 
cap cells of the mammary gland terminal end buds 
[30]. Netrin-1 regulates invasion and migration of 
breast epithelial tumor cells [31] and promotes the 
survival of tumor cells in metastatic breast cancer [32]. 
In this context, we recently demonstrated that netrin-1 
negatively regulates the expression of stem cell markers 
(Nanog, Oct3/4, and CRIPTO-1) in human embryonic 
carcinoma cells and mouse embryonic stem cells [33]. 
Furthermore, individual studies have linked various 
aspects of cancer biology to certain neurotransmitter 
receptors, such as the beta-2 adrenergic receptor [34] 
and the tachykinin NK1 receptor [35] as well as to 
soluble factors such as bradykinin [36]. Substance P, 
an inflammatory neuropeptide and its receptor NK1, 
are overexpressed in breast cancer [37]. Our group 
found that blocking substance P signaling promotes 
death in breast cancer cells [38]. Moreover, we have 
shown that substance P promotes cancer progression 
and drug resistance by contributing to persistent HER2 
activation [35]. However, the role of neurotransmitters 
and their receptors in breast cancer progression is still 
unclear. It could be hypothesized that, analogous to the 
proinflammatory cytokines, certain neurotransmitters 
and neuropeptides in the microenvironment may 
promote tumor progression by selecting certain 
specifically responsive clones. The nervous system 
could exert direct and indirect control of tumor 
progression mainly through modulation of the immune 
system [39].

To characterize the role of neurotransmitters, 
neuropeptides, neurotrophic factors, and axonal guidance 
molecules in breast cancer progression, we analyzed 
the expression of several neurogenes in breast cancer 
patients and in CD44 and CD24 expression databases. 
Using bioinformatics tools, we identified 7 neurogenes 
that are differentially expressed in different breast cancer 
subtypes. The expression of 6 of these neurogenes 
correlates with prognosis, so we propose that they can be 
used as potential targets for novel therapeutic approaches 
against signaling pathways activated in breast cancer 
stem cells.
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RESULTS

Identification of neurotransmitters, 
neuropeptides, axonal guidance molecules, 
neurotrophic factors, and/or their receptors 
differentially expressed in CD44+ and CD44-
CD24+ breast cancer cells

Using three searchable, integrated databases 
of human genes GeneGo (www.portal.genego.com), 
GeneCards (www.genecards.org), and Eugenes (www.
eugenes.org) we generated a preliminary list of 1266 
neurogenes, (Supplementary Table S2 and Figure 1A).

To identify the neurogenes differentially expressed 
between breast cancer CD44+ population and the more 
differentiated CD44-CD24+ (hereinafter referred to as 
CD24+) cells, we used the databases containing the Serial 
Analysis of Gene Expression (SAGE) expression libraries 
obtained in the laboratory of Dr. Kornelia Polyak (in 
collaboration with Dr. Kornelia Polyak, for more details 
on the procedure see Shipitsin, M. et al [40]). These 
libraries were created from different mammary epithelium 
cell populations obtained from normal tissue from patients 
who underwent reduction mammoplasty and tumor cell 
subpopulations obtained from breast cancer patients.

We correlated the SAGE database expression 
patterns with our list of neurogenes to identify neurogenes 
that are differentially expressed in breast cancer 
tissue compared with healthy epithelium and that are 
differentially expressed in each cell subtype (CD44+ vs. 
CD24+). These correlations gave us a more detailed view 
of the possible specific functions of these neurogenes in 
each subpopulation of breast cancer cells.

Using SAGE-Seq libraries, we identified 2,145 
genes that are differentially expressed in CD24+ cancer 
cells compared to CD24+ normal breast epithelium 
cells. Of these, 864 genes also figured in our list of 1,266 
neurogenes. The tool’s default p-value cutoff of 0.05 
combined with the false discovery rate to eliminate false 
positives, generated a list of 364 genes differentially 
expressed between cancerous and normal CD24+ 
cells (Supplementary Table S3); in 143 of these CD24 
expression was higher in cancerous cells than in normal 
cells and in 221, CD24 expression was lower in cancerous 
cells than in normal cells (Figure 1B right).

Moreover, using SAGE-Seq libraries, we identified 
2314 genes differentially expressed in CD44+ cancer cells 
compared to CD44+ normal breast epithelium cells. Of 
these, 966 also figured in our list of neurogenes. The tool’s 
default p-value cutoff of 0.05 combined with the false 
discovery rate, generated a list of 266 genes differentially 
expressed between cancerous and normal CD44+ cells 
(Supplementary Table S4); in 98 CD44 expression was 
higher in cancerous cells than in normal cells and in 168 
genes CD44 expression was lower in cancerous cells than 
in normal cells (Figure 1B left).

Comparing the lists of neurogenes differentially and 
significantly expressed in CD24+ cancer cells to CD24+ 
normal breast epithelium cells (364 genes) and in CD44+ 
cancer cells to CD44+ normal breast epithelium cells (266 
genes), we identified 161 genes differentially expressed in 
both cell subtypes, 203 genes differentially expressed only 
in CD24+, and 105 genes differentially expressed only in 
CD44+ (Supplementary Table S5 and Figure 1C).

To identify genes that varied widely, we set an 
arbitrary fold change cutoff of >3. This way, we found 
102 genes differentially expressed in CD24+ cancer cells 
compared to CD24+ normal breast epithelium cells, and 
63 genes differentially expressed in CD44+ cancer cells 
compared to CD44+ normal breast epithelium cells 
(Supplementary Table S5 and Figure 1C).

Figure 2 shows the differential expression of the 
selected genes represented with a supervised hierarchical 
clustering (based closely on the average-linkage method of 
Sokal and Michener) (Figure 2).

Gene set expression in human breast cancer 
subtypes

Previous studies have identified CD44+ cells role 
in enhancing breast cancer cell migration and invasion 
[41]. CD44+ cells are associated with the most clinically 
aggressive breast cancer subtypes (triple-negative and 
HER2-enriched) [42, 43]. Moreover, CD44+ cells have 
a mesenchymal phenotype and express enzymes for drug 
detoxification that confer resistance to chemotherapy 
[42],[44, 45]. For these reasons, we focused on the analysis 
of the neurogenes differentially expressed in CD44+ cells 
and decided to leave the genes differentially expressed in 
CD24+ cells for future studies.

We correlated the expression of the 63 genes 
differentially expressed between CD44+ cancer cells 
and CD44+ normal tissue with clinical and pathological 
data, using the information from the MicMa breast 
cancer patients cohort database, which includes data 
on molecular expression and clinical information 
on 96 breast cancer patients followed up for 10 years 
(http://www.ncbi.nlm.nih.gov/geo, accession number 
GSE19425) (Figure 3). Focusing on the expression 
of this genes in basal and HER2-enriched subtypes 
we found 3 sets of genes, one where genes were 
upregulated in basal-like patients, one in which genes 
were upregulated in HER2-enriched patients and a 
third set of genes that were upregulated in basal and 
HER2-enriched patients (Figure 3).

We used then an independent database “Gene 
expression-Based Outcome for Breast Cancer” (GOBO) 
[46], which includes a cohort of 1881 breast cancer 
patients to validate the data obtained in the MicMa 
analysis. After these two analyses we obtained a final list 
of 7 neurogenes that are differentially expressed among 
breast cancer subtypes (Figure 4, Table 1).
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Figure 1: A schematic overview of the approach used in this study. To focus on molecules related to neuronal processes, 
we compiled a list of genes related to the function of the nervous system. We searched for the terms “axon guidance”, “neuropeptide”, 
“neurotransmitter”, “neurotrophic factor”, and “neurotrophic molecule” in different databases (GeneCard, Eugene, GeneGo). Genes 
categorized under these keywords were collected and filtered with 2ONE to delete duplicates. Given the categorical redundancy for some 
genes, we next confirmed the function of each gene and its direct relationship with neuronal processes and the study context to obtain a 
final list comprising 1266 genes A. The SAGE-Seq profiles for CD44+ and CD24+ normal (CD44N and CD24N) and cancer cells (CD44C 
and CD24C) are publicly available. To investigate which neurogenes were differentially expressed in CD44+ and CD24+ cells within 
normal breast epithelium and cancer tissue, we filtered our neurogene list from the different SAGE-Seq profiles. By comparing the genes 
differentially expressed in CD24+ normal and tumor cells (CD24N vs CD24C), and those differentially expressed in CD44+ normal and 
tumor cells (CD44N vs CD44C), we obtained the genes differentially expressed only in CD44+ cancer cells and only in CD24+ cancer 
cells, resulting in a final list of 266 and 364 neurogenes differentially expressed in CD44+ and CD24 tumor cells, respectively (p < 0.05) B. 
From these cell-type specific gene lists, we analyzed how many were commonly represented in CD44+ and CD24+ tumor cells, and which 
ones were specific to different cell phenotypes. Genes were further filtered in expression (≥ 3-fold changes) to obtain our final lists of 63 
neurogenes differentially expressed in CD44+ tumor cells and 102 neurogenes differentially expressed in CD24+ tumor cells C.
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6 of the 7 selected neurogenes were upregulated in 
basal-related tumors (the closely associated basal-like and/
or HER2-enriched breast cancer phenotypes [47]) compared 
to luminal A and luminal B breast tumor subtypes (Figure 4). 
Kallikrein 1(KLK1), histamine receptor 1 (HRH1), neuropilin 
2 (NRP2), amyloid precursor protein (APP) and ephrin- B1 
(EFNB1) were clearly differentially overexpressed in basal 
and HER2-enriched tumor samples, neural growth factor 
receptor (NGFR) expression in the MicMa cohort was 
associated to basal-like subtypes (Figure 4). On the other 
hand, syntaxin 1A (STX1A) was overexpressed in luminal B 
and HER2-enriched patients (Figure 4).

To validate the association of these neurogenes 
that we had seen were differentially expressed among 
breast cancer subtypes in the MicMa cohort with clinical 
outcome, we used again the online database GOBO [46]

Applying the Gene Set Analysis (GSA) we found 
that elevated expression of HRH1, EFNB1, KLK1, NRP2, 
and APP was associated with the basal-like subtypes 
of breast cancer (Figure 5A–5E) as predicted by the 

MicMa cohort. In addition, HRH1 was also upregulated 
as expected in HER2-enriched tumors (Figure 5A). Gene 
set analysis for STX1A expression also corroborated the 
results collected using the MicMa database: high STX1A 
expression associates with HER2-enriched and luminal 
B breast cancer subtypes (Figure 5F). However, NGFR 
expression on the GOBO was upregulated in luminal A 
patients and not in basal-like (Figure 5G). Therefore, it 
didn’t correlate with the MicMa data. Nevertheless, in 
the case of NGFR it had been previously shown that it 
can be used as a marker for basal-like breast carcinomas 
associated with good prognosis [48], which was in 
agreement with our results in the MicMa cohort.

We then analyzed the correlation of the expression of 
these neurogenes with survival. Overexpression of HRH1, 
NRP2, and STX1A correlated with shorter overall survival 
and can therefore be considered indicators of poor prognosis 
(Figure 6A, 6B and 6C). High STX1A expression in luminal 
B and HER2-enriched tumors correlated with even lower 
overall survival (Figure 6D–6E) and can therefore be 

Figure 2: Cell-type specific differences in gene expression. Dendrogram depicting relatedness of SAGE libraries prepared from 
CD24+ A. and CD44+ B. cells. Hierarchical clustering was applied to SAGE data for the indicated libraries and clustering heat maps are 
shown here. Each row represents a tag and is labeled with the symbol of the gene that best matches that tag (or “no match” if no matching 
transcripts was found) Red and green indicate high and low expression levels, respectively. N, Normal; IDC, Invasive Ductal Carcinoma.
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considered an indicator of poor prognosis for this breast 
cancer subtypes. By contrast, APP, NGFR and EFNB1 
expression was associated with longer metastasis-free periods 
and higher overall survival and can therefore be considered 

indicators of good prognosis (Figure 6F–6H). Analysis of 
KLK1 expression in the GOBO database showed that its 
expression didn’t correlate with survival so it cannot be used 
to stratify patients.

Figure 3: Neurogenes expression among breast cancer subtypes (MicMa Database) Tumor gene expression levels 
for 96 patients with different breast cancer subtypes. Rows represent microarray probes corresponding to the selected genes 
(neurogenes differentially expressed in CD44+ cells) and columns represent patients. 3 independent gene set were identified and gathered. 
Orange square: genes upregulated in basal like patients: EDNRB, PDGFD, EGR3, NGFR, NRXN2, GRID1, PDGFRB. Blue squares: genes 
downregulated in basal like patients and upregulated in HER-2 enriched patients: PRKACA, PTPRES, SLC6A9, GPR25, SLC17A7, ABLIM2, 
CNTFR, ADORA1, GNG4, STX1A, CCL11, ECEL1, TAP2. Violet square: genes upregulated in basal and HER2-enriched patients: MME, 
DPYSL3, FEZ1, ID3, PDGFC, B2M, MAP2K1, NFATC3, RAP1A, NTRK3, HRH1, MET, GFRA2 APP, CDH2, NRP2, KLK1, RPS6KA3, 
RUNX3, GPR44, EFNB1. Red and green indicate high and low expression levels, respectively.

Figure 4: Expression among breast cancer subtypes of our selected neurogenes (MicMa Database). Selected neurogenes 
(KLK1, NRP2, EFNB1, STX1A, NGFR, HRH1, APP) expression levels for 96 patients with different breast cancer subtypes. Rows represent 
microarray probes corresponding to the selected genes and columns represent patients. Red and green indicate high and low expression 
levels, respectively.
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High expression of HRH1, NRP2, and STX1A 
together as a gene set, correlated with worse outcome in 
untreated tumors and with shorter metastasis-free periods 

(Figure 7A–7B). Although the expression of each of these 
three genes was independently associated with basal-
related cancer and correlated with shorter overall survival 

Table 1: List of 7 specific neurogenes differentially expressed in CD44+ cells and breast cancer 
subtypes
Gene Aliases & Descriptions UniGene Cluster Entrez Gene Cyto Band

KLK1 Kallikrein 1 Hs.123107 chr19q13.33

NGFR Nerve Growth Factor 
Receptor Hs.415768 chr17q21-q22

HRH1 Histamine Receptor H1 Hs.1570 chr3p25

NRP2 Neuropilin 2 Hs.471200 chr2q33.3

APP Amyloid Beta (A4) Precursor 
Protein Hs.434980 chr21q21.2|21q21.3

EFNB-1 Ephrin-B1 Hs.144700 chrXq13.1

STX1A Syntaxin 1A Hs.647024 chr7q11.23

Figure 5: Neurogenes expression related to breast cancer molecular subtypes using the GOBO database. Box plot of 
HRH1 A. EFNB1 B. KLK1 C. and NRP2 D. gene expression for tumor samples stratified according to HU subtypes (all tumors untreated, 
p = < 0.00001). Box plot of APP E. STX1A F. and NGFR G. gene expression for tumor samples stratified according to PAM50 subtypes 
(all tumors untreated, p = < 0.00001) (HU subtypes referred to Hu 306 gene set [76] and PAM50 referred to PAM 50 gene set are two 
independent intrinsic gene signatures retrieved for molecular subtype prediction [77]).
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(Figure 5 and 6), analyzing them together as a set is more 
powerful in predicting clinical outcome. Elevated co-
expression of EFNB1, NGFR and APP in breast cancer 
tumors was associated with longer overall, metastasis-free, 
and relapse-free survival (Figure 7C–7D).

These findings support an important role for 
neurogenes in breast cancer progression. We propose 
that this set of 6 neurogenes HRH1, NRP2, STX1A, 
APP, EFNB1 and NGFR can be used to stratify patients 
according to their predicted clinical outcome. In addition, 
HRH1 and NRP2 should be considered interesting targets 
for the treatment of basal-related breast cancer subtypes, 
and STX1A could be an interesting target for the treatment 
of the luminal B and HER2-enriched subtypes.

DISCUSSION

Intratumor phenotypic and functional heterogeneity 
arise among cancer cells as a consequence of genetic 
alterations, reversible changes in cell properties, and 
microenvironmental diversity. It is becoming progressively 
more evident that interactions between carcinoma cells 
and the tumor microenvironment are an essential part 
of tumor biology [49]. In particular, it has recently been 
reported that the host neuroendocrine system can affect the 
activity of cells present in it [50]. However, little is known 
about the influence of the nervous system on cancer 

progression. In response to psychological and/or social 
pressures, the nervous system releases factors that might 
affect both cancer progression and the efficiency of drugs 
to treat cancer. For these reasons, it might be interesting 
to re-examine the methods for testing drugs in vivo, which 
currently involve efforts to ensure that animals are kept in 
stress-free environments.

Similarly, conventional cancer treatments such as 
chemotherapy or even surgical ablation commonly do 
not take into account the complexities added by nervous 
system and life-style factors that can affect the tumor host 
microenvironment. An imbalance between stimulatory 
and inhibitory nervous system factors might influence the 
initiation, progression, and especially the relapse of the 
most common human cancers [51]. For these reasons, we 
focused on identifying neurogenes that might be involved 
in breast cancer progression.

Through several independent analyses of the 
data, we identified a set of 6 genes that can be used as 
prognostic markers for different breast cancer subtypes. 
The robustness of our methods makes us confident that 
these genes are important in breast cancer progression.

The neurogenes APP and EFNB1 are upregulated in 
basal and HER2-enriched breast tumors meanwhile NGFR 
is upregulated only in basal-like breast tumors. In addition, 
EFNB1 and NGFR were downregulated in CD44+ cancer 
cells versus normal cells. Furthermore, APP, NGFR and 

Figure 6: Clinical relevance of the neurogenes differentially expressed among breast cancer subtypes (GOBO 
database). GSA for selected neurogenes, prognostic value (X-axis representing time in years). Kaplan-Meier analysis using overall 
survival (OS) (HRH1- all tumors untreated A. NRP2 - all tumors untreated B. STX1A all tumors untreated C. STX1A Luminal B D. STX1A 
Her2-enriched E. NGFR - all tumors untreated G. EFNB1 all tumors untreated H.) and distant metastasis free survival (DMFS) (APP – all 
tumors untreated F.) as endpoint and 10-year censoring as displayed in GOBO.
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EFNB1 expression correlated with better overall survival. 
APP is a single transmembrane protein that has been 
linked to Alzheimer disease [52]. Recently, it has been 
reported that several types of cancers have increased 
expression of APP, which correlated with increase cancer 
cell proliferation [53–57]. In breast cancer, it has been 
recently shown that APP promotes cell proliferation 
and favors breast cancer cells motility. Furthermore, 
APP expression was recently positively associated with 
androgen receptor (AR) expression, Ki-67 and increased 
risk of recurrence in oestrogen receptor (ER)-positive 

patients [57]. In our study, APP expression correlates 
with better overall survival in ER negative patients and 
we propose that its expression identifies a subgroup 
of basal-like patients with good prognosis. EFNB1 is a 
type I membrane protein and a ligand of Eph-related 
receptor tyrosine kinases [58]. It has been described to 
play a role in cell adhesion and in the development or 
maintenance of the nervous system [59]. In breast cancer, 
in agreement with our data, it was recently reported that 
high expression of EFNB1 was positively correlated with 
lymph node metastasis and with the presence of HER2 

Figure 7: Gene Set Analysis (GSA) for selected neurogenes in gene sets, prognostic value Kaplan-Meier analysis using 
overall survival (OS) (HRH1, NRP2, STXA1 gene set analysis. A. EFNB1, NGFR, APP gene set analysis C.) and distant metastasis 
free survival (DMFS) (HRH1, NRP2, STXA1 gene set analysis B. EFNB1, NGFR, APP gene set analysis D.) as endpoint and 10-year 
censoring as displayed in GOBO. X axis representing time in years.
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receptor. However, in this study, it was also demonstrated 
that enhanced EFNB1 expression was associated with 
shorter overall survival [60]. On the contrary, in our study, 
high expression of EFNB1 correlated with better overall 
survival and longer metastasis free periods. Therefore, 
we proposed, that elevated expression of EFNB1 in basal 
and HER2-enriched patients identifies a good prognosis 
subpopulation. NGFR is a transmembrane protein receptor 
for the neurotrophin family. It has been previously reported 
that it can act as tumour suppressor in different types of 
cancer. In breast cancer studies using breast cancer cell 
lines had shown that NGFR signalling regulates breast 
cancer cells survival. Furthermore, NGFR expression has 
been previously associated with basal like and luminal B 
tumors [48]. Furthermore, in another study, Reis-Filho et 
al. suggested that NGFR identified a subgroup of basal-
like breast cancers with good prognosis [61]. Our results 
are in agreement with these data and therefore, we propose 
that NGFR can be used as a good prognosis indicator for 
basal patients.

The neurogenes HRH1 and NRP2 were upregulated 
in basal-related breast tumors and CD44+ cancer cells 
and another, STX1A, was upregulated in luminal B and 
HER2-enriched tumors. Although other authors have 
already reported that HRH1 and NRP2 were involved in 
breast cancer development and progression [62, 63], to 
our knowledge, the overexpression of these genes had not 
been correlated with basal-related breast cancer subtypes. 
On the other hand STX1A had not been related to breast 
cancer. The overexpression of this gene in the HER2-
enriched and luminal B subtypes and its correlation with 
worse prognosis suggest it might be a promising target for 
these breast cancer subtypes.

Histamine is a ubiquitous messenger molecule 
released by mast cells, enterochromaffin-like cells, and 
neurons. Its various actions are mediated by the histamine 
receptors HRH1, HRH2, HRH3, and HRH4. Histamine 
and its HRH1 receptor are involved in breast tumor 
development and metastasis [64]. In gastric cancer, HRH1 
is expressed in circulating tumor cells [65] and can be used 
as a biomarker to predict which patients have minimal 
residual disease and therefore a higher risk of developing 
metastases. Moreover, in melanoma, HRH1 inhibition 
delays tumor growth and prevents lung metastasis [66]. 
Our data also suggest that HRH1 might be important for 
cancer progression. We hypothesize that basal-like tumors 
with high expression of HRH1 will be more aggressive 
and result in poorer outcomes and that HRH1 inhibitors 
might be a promising therapy for these tumors.

The NRP2 gene encodes a member of the neuropilin 
family of receptor proteins, NRP2. This protein is a 
receptor for the proteins semaphorin-3C (SEMA3C) 
and semaphorin-3F (SEMA3F) and also plays a role in 
regulating angiogenesis, principally by interacting with 
vascular endothelial growth factor (VEGF) [67]. In 
addition to VEGF, NRP2 can bind many other growth 

factors such as transforming growth factor-beta (TGF-β), 
which may contribute to angiogenesis as well as to cancer 
cell survival and proliferation [68]. NRP2 is overexpressed 
in many cancer cell types, including astrocytoma, 
neuroblastoma, melanoma, and pituitary and ovarian 
cancers. Furthermore, NRP2 plays a role in breast cancer 
metastasis by promoting migration and invasion [69]. 
Therefore, we hypothesize that NRP2 expression might 
promote tumor angiogenesis and metastasis in basal-like 
breast cancer.

Finally, STX1A is a member of the syntaxin 
superfamily [70]. Syntaxins are nervous system-
specific proteins implicated in the docking of synaptic 
vesicles with the presynaptic plasma membrane. STX1A 
expression has been correlated with Williams’s syndrome, 
cystic fibrosis [71] and Alzheimer’s disease [72]. Very 
few information is available about the role of STX1A in 
cancer in general or in breast cancer in particular, although 
it forms part of the SNARE complexes, which seem to 
play a role in cancer cell migration [73]. Furthermore, it 
was recently described that STX1A inhibition promotes 
glioblastoma tumor growth [74]. Moreover, in neurons, 
STX1A interact with netrin-1 receptors to promote 
chemoattraction in migrating neurons. Thus, we proposed 
that STX1A expression in HER2-enriched and luminal B 
breast cancer might favor the migration of cancer cells and 
invasion of the surrounding tissue.

Our analysis of HRH1, NRP2, and STX1A expression 
using the GOBO database corroborated the overexpression 
of HRH1 and NRP2 in basal-like and HER2-enriched 
cancer subtypes, while STX1A was overexpressed only in 
HER2-enriched and luminal B subtypes. Moreover, the 
expression of these genes also significantly correlated with 
a shorter overall survival (OS) (p < 0.0001) and distant 
metastasis-free survival (p < 0.0001) in the Kaplan-Meier 
analysis. Therefore, therapies targeting HRH1, STX1A, 
and NRP2 might improve outcomes in basal-related breast 
cancer.

In conclusion, we have identified a set of neurogenes 
whose expression correlate with different breast cancer 
subtypes that are promising candidates as biomarkers to 
classify patient’s outcome and might be promising targets 
for novel treatment approaches.

MATERIALS AND METHODS

Human genes databases and neurogene list 
generation

To generate a preliminary list of neurogenes, we 
used three searchable, integrated databases of human 
genes GeneGo (www.portal.genego.com), GeneCards 
(www.genecards.org), and Eugenes (www.eugenes.
org) provided a common summary of gene and genomic 
information from eukaryotic organism databases. We 
used the search terms “axonal guidance molecule”, 
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“neuropeptide”, “neurotransmitter”, “neurotrophic factor”, 
and “neurotrophic molecule” to consult those databases.

After using “2one” software tool (http://
bioinformatics.fcrb.es/anntools/toone.php) to detect and 
delete genes repeated in the results of the three searches, 
we had a final list of 2688 genes.

We used TransGP software (http://bioinformatics.
idibaps.org/anntools/transgp.php) to integrate and 
manage the omics information of the genes in our final 
list, including Refseq, Protein ID, Transc_Refseq, 
Unigene Cluster, Entre Gene Cyto Band, and Aliases 
& Descriptions (Supplementary Table S1). Using this 
information and considering the biological relevance of 
each gene in our project, we reduced the number of genes 
to be included in further screening and analysis to 1266 
(Supplementary Table S2 and Figure 1A).

Gene expression data and patient samples

To identify the neurogenes differentially expressed 
between less differentiated breast cancer cells (CD44+) 
and more differentiated cells (CD24+), we took advantage 
of the databases containing the Serial Analysis of Gene 
Expression (SAGE) expression libraries obtained in the 
laboratory of Dr. Kornelia Polyak (in collaboration with 
Dr. Kornelia Polyak, for more details on the procedure see 
Shipitsin, M. et al [40].

Ninety-six patients were included in this study. 
Fresh-frozen tumor biopsies were collected from patients 
included in the “Oslo Micrometastasis Project” from 1995 
to 1998. A summary of the MicMa cohort with clinical 
and pathological data was published and is available in 
the original papers Hege G. Russnes, et al. Sci Transl Med 
2010 [75].

Prognostic validation

We used the Gene expression-based Outcome 
for Breast cancer Online (GOBO) tool for prognostic 
validation of individual genes and as well as of gene 
sets in a pooled breast cancer dataset comprising 1881 
samples [46]. Association with outcome was investigated 
by Kaplan-Meier analysis using overall survival and 
distant metastasis-free survival as endpoints and 10-year 
censoring.

Statistical analyses

To identify the neurogenes differentially expressed 
between breast cancer CD44+ population and the 
more differentiated CD24+ cells , we arbitrary set the 
significance level at p < 0.05. Moreover, False Discovery 
Rate (FDR) adjustment was applied to control and manage 
the data reducing the expected proportion of false positives 
among all suitable genes. Statistical tests were conducted 
using Graphpad Prism 6 software.
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