
Oncotarget3002www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 3

Towards understanding the breast cancer epigenome: a 
comparison of genome-wide DNA methylation and gene 
expression data

Sandeep K. Singhal1,*, Nawaid Usmani1,*, Stefan Michiels2,3, Otto Metzger-Filho4, 
Kamal S. Saini5, Olga Kovalchuk6,7,*, Matthew Parliament1,*

1 Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
2 Service de Biostatistique et d’Epidémiologie, Gustave Roussy, Villejuif, France
3 INSERM U1018, CESP, Université Paris-Sud, Villejuif, France
4Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
5Quantum Health Analytics SPRL, Liège, Belgium
6Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
7Canada Cancer and Aging Research Laboratories Ltd, Lethbridge, Canada
*These authors contributed equally to the work

Correspondence to:  Matthew Parliament, e-mail: matthew.parliament@albertahealthservices.ca
 Olga Kovalchuk, e-mail: olga.kovalchuk@uleth.ca and olga.kovalchuk@ccarl.ca

Keywords: DNA methylation, breast cancer, epigenetics, expression, microarray

Received: August 11, 2015 Accepted: November 16, 2015 Published: December 08, 2015

AbstrAct
Until recently, an elevated disease risk has been ascribed to a genetic 

predisposition, however, exciting progress over the past years has discovered 
alternate elements of inheritance that involve epigenetic regulation. Epigenetic 
changes are heritably stable alterations that include DNA methylation, histone 
modifications and RNA-mediated silencing. Aberrant DNA methylation is a common 
molecular basis for a number of important human diseases, including breast cancer. 
Changes in DNA methylation profoundly affect global gene expression patterns. What 
is emerging is a more dynamic and complex association between DNA methylation 
and gene expression than previously believed. Although many tools have already 
been developed for analyzing genome-wide gene expression data, tools for analyzing 
genome-wide DNA methylation have not yet reached the same level of refinement. 

Here we provide an in-depth analysis of DNA methylation in parallel with gene 
expression data characteristics and describe the particularities of low-level and high-
level analyses of DNA methylation data. Low-level analysis refers to pre-processing of 
methylation data (i.e. normalization, transformation and filtering), whereas high-level 
analysis is focused on illustrating the application of the widely used class comparison, 
class prediction and class discovery methods to DNA methylation data. Furthermore, 
we investigate the influence of DNA methylation on gene expression by measuring 
the correlation between the degree of CpG methylation and the level of expression 
and to explore the pattern of methylation as a function of the promoter region.

IntroductIon

In order for a cell to function at the most basic 
level, its DNA encodes a core set of essential genes used 
to replicate, express and repair itself. These constitutive 
(“always on”) house-keeping genes are also responsible 
for controlling central metabolism. However, a milieu 
of other intricate cell-specific functions must also be 

maintained to ensure organismal functioning and survival. 
Furthermore, for an organism to develop, adapt and thrive, 
it must also interact and respond to its environment. In 
order to increase or decrease the production of specific 
reactionary gene products as needed, the vast array of 
genes are only activated at specific times and in specific 
tissue types. The process of switching genes “on” or 
“off” is known as gene regulation. Some core principles 
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of gene regulation are preserved across all cellular 
organisms, albeit gene regulation processes are by far 
more complicated in eukaryotes compared to prokaryotes. 
In multi-cellular systems such as humans, cellular 
differentiation is determined by expression of different 
sets of genes allowing the incremental development of 
a diverse set of complex tissues and organs. The reason 
why a neuron, myocyte or hepatocyte exhibit different and 
distinct structural and functional characteristics is down 
to the differences in gene expression profiles. Similarly, a 
cancer cell acts differently from a normal cell for the same 
reason, i.e. the abnormal gene expression pattern.  

Classically, an elevated disease risk has been 
ascribed to a genetic predisposition, however, exciting 
progress over the past years has discovered alternate 
elements of inheritance that mainly involve epigenetic 
regulation [1–2].

Characteristics that are propagated from cell to cell 
by some means other than changes in DNA sequence 
are referred to as epigenetic characteristics. Epigenetic 
changes are heritably stable alterations that include DNA 
methylation, histone modifications and RNA-mediated 
silencing [1]. Cytosine DNA methylation was the first 
epigenetic alteration identified, and it is the most widely 
studied epigenetic mechanism. It is crucial for the normal 
development, cell proliferation, as well as for the proper 
maintenance of genome stability in an organism [1, 3, 4, 5].  
Altered methylation has been linked to the phenomena of 
global genomic instability and carcinogenesis [1, 3, 4, 6, 7].  
DNA methylation is an addition of a methyl (CH3) group 
to the 5th carbon of the pyrimidine ring of cytosine 
resulting in a formation of 5-methyl-cytosine (5-me-C). 
S-adenosyl-L-methionine is a universal methyl-donor for 
this reaction which is catalyzed by DNA methyltranserases 
(DNMTs). Cytosine DNA methylation is the most common 
covalent base modification in the genome of vertebrates. 
In mammalian somatic cells, DNA methylation occurs 
predominantly at the cytosines within palindromic 
cytosine-phosphate-guanine (CpG) dinucleotides which 
tend to be methylated in a symmetrical fashion. In 
embryonic stem cells, though, DNA methylation occurs 
at both CpG and non-CpG sequences. DNA methylation 
is maintained through DNA replication by means of 
multi-protein complex containing DNMTs, methyl-CpG-
binding, and histone-modifying proteins [3, 4]. 

Global genomic DNA methylation usually refers 
to the total overall content of 5-me-C in the genome. In 
mammalian genomes approximately 70–90% of CpGs are 
methylated, albeit CpG sites are not distributed evenly 
throughout the genome. CpG sites are located in intergenic 
DNA sequences, repetitive DNA sequences and exon 
other that the first exons. Short (< 4 kb) unmethylated 
genomic regions that contain high G + C content and high 
proportion of CpG dinucleotides are referred to as CpG 
islands. In normal cells, CpG islands are located at the 5′-
ends of genes and in the intragenic and intergenic regions. 

Of the various types of CpG islands, those that span 
the promoter regions are mostly unmethylated [3, 4, 8].  
The regulatory potential of DNA methylation manifests 
itself in the promoter regions that control the expression 
of adjacent genes. Hypermethylated promoters lead to 
an “off” state of expression, while those ones that are 
less methylated are deemed to lead to an “on” state [1].  
Furthermore, methylated cytosines themselves can 
physically prevent the proper binding of transcription 
factors to promoter regions.

As such, DNA is crucial for normal development, 
cell proliferation, and maintenance of genome stability 
in an organism [9–11], and aberrant DNA methylation 
patterns are well-established characteristics of cancer cells 
[2, 5, 12, 13, 14]. Amongst those, DNA hypermethylation 
denotes the gain of methylation at particular sites that are 
unmethylated under normal conditions. Contrarily, DNA 
hypo-methylation constitutes the loss of DNA methylation 
at areas that are usually methylated [3, 4]. 

Global loss of DNA methylation has been associated 
with elevated mutation rates, activation of transposable 
elements, increased chromosome breakage, aneuploidy, 
and, thus with the phenomenon of global genomic 
instability [3, 4]. 

Importantly, novel approaches aimed to map DNA 
methylation across mammalian genomes uncovered reduced 
DNA methylation at regulatory regions but increased 
methylation in intergenic regions and repetitive sequences. 

Recent advances in technology have made it 
possible to map DNA methylation patterns on a large 
scale (reviewed in Weber and Schubeler, 2007 [15]). A 
number of widely available commercial platforms exist 
that enable large-scale analysis of array-based DNA 
methylation. These include oligonucleotide or bead arrays 
(Illumina), lithographic arrays (Affymetrix), adaptive 
lithographic arrays (NimbleGen) and inkjet arrays 
(Agilent). 

Bead array-based analysis of DNA methylation 
is one of the most commonly used techniques and 
is an extension of Illumina’s genotyping method. In 
this technology, DNA is treated with bisulfite, which 
causes unmethylated cytosine on residues of the CpG 
dinucleotides to be converted into uracil while methylated 
cytosine remains unchanged [16]. 

Illumina has developed three array-based platforms 
named GoldenGate, Infinium 27 K and Infinium 450 K. 
The GoldenGate methylation profiling technology targets 
more than 1500 CpG sites throughout the genome, 
specifically those related to approximately 700 “cancer 
genes”. The Infinium methylation platforms, on the other 
hand, provide a broader “whole-genome” view. Infinium 27 
K, utilizing the Infinium profiling technology on bisulfite-
treated DNA, simultaneously assays the methylation 
status of more than 27,000 individual CpG sites, while the 
Infinium Human Methylation 450 K Bead Chip analyses 
more than 450,000 methylation sites. We accessed paired 
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gene expression and methylation data, and used Infinium 
27 K to describe some methods related to the analysis of 
DNA methylation patterns in human breast cancer.

Aberrant DNA methylation is a common molecular 
basis for a number of important human diseases, 
including breast cancer [17]. Breast cancer is a clinically 
and biologically heterogeneous disease. During the 
last decade, genome-wide gene expression microarray 
studies have made substantial progress and identified at 
least four different molecular subtypes of breast cancer 
with prognostic significance: basal-like, luminal A, 
luminal B and HER2+ [18–23]. The study of epigenetic 
changes in breast cancer may provide insight into the 
mechanisms of breast cancer progression and help develop 
tailored approaches for identification of risk factors, 
prevention, diagnosis and treatment. Indeed, CpG island 
hypermethylation is one of the most frequent mechanisms 
of loss of expression of a variety of critical genes related 
to breast cancer [24, 25]. There are many breast cancer-
related genes (such as AKT, APAF1, APC, BCSG1, 
BRCA1, Caspase-8, CCND2, DAPK, E-Cad, ER, FHIT, 
GPC3, GSTP1, H_Cad, HIN1, HOXA5, NRF-2, p16, 
p21, p53, p73, PTEN, RASSF1A, RFC, SOCS1, SRBC, 
STAT1, SYK, THBS1, TIMP3, TMS1, ZAC, ZNF677) for 
which direct or indirect evidence suggests involvement 
of methylation [26–28]. These genes are involved in 
the regulation of cell proliferation, cell differentiation, 
programmed cell death, invasion, metastasis and immune 
recognition of tumor cells and other pathways [29, 30].

As more genome-wide DNA methylation data 
have become available, studies to unravel the intricate 
relationships between DNA methylation and gene 
expression have commenced. What is emerging is 
a more dynamic and complex association between 
DNA methylation and gene expression than previously 
believed. Although many tools have already been 
developed and refined for analyzing genome-wide gene 
expression data, tools for analyzing genome-wide DNA 

methylation have not yet reached the same level of 
refinement. 

Based on the aforementioned, the main objectives 
of this article are therefore to provide an in-depth analysis 
of DNA methylation in comparison with gene expression 
data characteristics and describe the particularities of low-
level and high-level analyses of DNA methylation data. 
Low-level analysis refers to pre-processing of methylation 
data (i.e. normalization, transformation and filtering), 
whereas high-level analysis is focused on illustrating 
the application of the widely used class comparison, 
class prediction and class discovery methods to DNA 
methylation data. Finally, we investigate the influence 
of DNA methylation on gene expression by measuring 
the correlation between the degree of CpG methylation 
and the level of expression and to explore the pattern of 
methylation as a function of the promoter region. 

results

comparison of dnA methylation and gene 
expression data characteristics 

We first compared data distribution by the density plot 
of DNA methylation and gene expression data. Figure 1A and 
1C displays the density distribution of the DNA methylation β 
values across more than 27,000 CpG loci and gene expression 
log-normalized and transformed values for more than 54,000 
probes for the same sample from Series 1 (Materials and 
Methods), respectively. The DNA methylation β value 
represents the absolute measurement for a given sample, 
and the distribution plot seems trimodal with a high peak of  
hypo-methylation and a low peak of hyper-methylation. 

The global distribution of β values is consistent with 
the three reference categories [38] of the unmethylated 
standard showing low β values and having a large 
proportion of CpG sites characterized by low methylation, 
the hemi-methylated standard showing an intermediate 

table 1: Geo information on the two series of data

reference Geo 
number total normal bc basal Her2+ luminal 

A
luminal 

b nA

dnA Methylation

Series 1 Dedeurwaerder_et_al 
2011 GSE20713 123 4 119 31 31 25 32

Series 2 Dedeurwaerder_et_al 
2011 GSE22249 125 8 117 35 25 27 30

Gene expression

Series 1 Dedeurwaerder_et_al 
2011 GSE20713 90 2 88 27 26 13 22 7

GEO: Gene expression omnibus
BC: breast cancer
NA: non-classified
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β value and having a certain proportion of CpG sites in 
between the two peaks with moderate levels of methylation 
and the methylated standard having high β values and a 
smaller proportion of CpG sites characterized by high 
methylation. Thus, β values below 0.2, from 0.2 to 0.8 
and above 0.8 [38, 39] were selected as threshold values to 
define unmethylated (including hypo-methylated), hemi-
methylated and methylated (including hyper-methylated) 
CpG loci, respectively, for further analysis. When 
compared to gene expression data, DNA methylation data 
presents a skewed distribution, raising the question, “Can 
we apply the same statistical methods for methylation data 
as applied for gene expression data?”

For most gene expression analysis, it is often 
assumed that the gene expression data are normally 
distributed after appropriate data normalization and 
parametric statistical tests, such as t-tests, analysis of 
variance (ANOVA) or linear regression are used [40], 
whereas, the observed DNA methylation distribution 
is trimodal and might lead to misleading results if 
the same test were to be applied. Presently, none of 
the normalization processes claim to convert β or 
M-distributions into the normally (or Gaussian) distributed 
form. Therefore, in the coming sections, we present some 
examples that show that nonparametric approaches are 
more suitable to analyze the methylation data.

Figure 1: distribution of dnA methylation and gene expression data. (A) Methylation beta (β) values, (b) M-values, and  
(c) Log-transformed gene expression values.
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Next, we compared the variance distribution of 
DNA methylation and gene expression data. Figure 2A  
shows that the variance of the β values that have a mean 
closer to the centre of the range is much larger than the 
variance of the β measurement that has a mean closer 
to the limits of unmethylated or methylated values  
(i.e. β value 0 or 1). For example, if we divide the β value 
of a DNA methylation profile of one random sample 
from each of the two series according to three reference 
categories, i.e. unmethylated, hemi-methylated and 

methylated (Figure 2B), the variance of measurements 
with a mean for hemi-methylated is much larger  
(variance = 0.03) than the variance of measurements 
with a mean for unmethylated (variance = 0.0016) and 
methylated probes (variance = 0.002). In the case of 
gene expression, Archer et al. [41] show that the variance 
increases with increasing gene expression level. 

To conclude, DNA methylation data do not have the 
same characteristics as gene expression data. Therefore, 
simply applying the statistical methods normally used for 

Figure 2: Variance measures with respect to mean β value across DNA methylation sample. (A) The standard deviation 
(Y-Axis) and mean (X-axis) of β value for all samples in Series 1 (left) and Series 2 (right). (b) The properties of beta (β) value in the range 
of low [hypomethylated (UM), β-range 0 to 0.2, color green], medium [hemimethylated (HM), β-range 0.2 to 0.8, color blue], and high 
[hypermethylated (M), β-range 0.8 to 1.0, color purple] levels. Key statistical properties of the UM, HM, and M plots are highlighted below 
the figure. Table Abbreviations: No. represents Total number of CpGs in that range with percentage in bracket. Median, mean, var and std.
dev represents median, mean, variation and standard deviation of CpG data in that range.



Oncotarget3007www.impactjournals.com/oncotarget

gene expression data to analyze DNA methylation data 
can introduce false positives to the results, unless such 
DNA methylation data are appropriately normalized and 
converted into a normal distribution. The next low-level 
analysis section will demonstrate some disadvantages if 
one applies the same methods.

Low-level analysis 

Data pre-processing is an essential step in the analysis 
of DNA methylation and gene expression microarray data. 
Principally, it consists of filtering the data using scanner 
information, background correction and normalization. 
The Bead Array technology from Illumina makes its 
pre-processing and quality control different from other 
microarray technologies. We will discuss some of these pre-
processing steps for DNA methylation data below.

normalization of dnA methylation data using 
gene expression approaches

One basic assumption that is applied to the majority of 
the microarray gene expression data normalization methods 
is that most of the genes do not change across the biological 
samples being tested [42] and are referred to as housekeeping 
genes, which is not the case for DNA methylation data.  
A common way to illustrate this feature is by generating an 
MA plot which is a plot of log-intensity ratios (M-values) 
versus log-intensity averages (A-values) [43]. In most of the 
cancer studies, an MA plot provides information about how 
many genes are differentiated between two conditions such 
as cancerous versus normal cells. 

In this example, we considered the average of 
the entire normal sample as reference for both gene 

expression and DNA methylation and drew the MA plot 
for the same sample of Series 1. 

For gene expression, Supplementary Figure 3A shows 
the MA plot between reference and breast tumor sample. It 
demonstrates that the majority of the points on the y-axis 
were located at 0. If this is not the case, then one cannot 
apply normalization methods, such as quantile normalization 
and locally weighted scatter plot smoothing (LOWESS) 
normalization for microarray analysis. On the other hand, 
methylation patterns (or total amount of CpG methylation) 
can differ substantially among samples. Supplementary 
Figure 3B shows an MA plot between the mean of the 
reference and the same breast tumor sample using the β 
value. The Figure demonstrates that most of the points on the 
y-axis are away from the value 0. Therefore, normalization 
methods, such as quantile normalization and LOWESS 
normalization, may remove a true biological signal [40]. 

Another widely used assumption is that even if 
there are a large number of genes that are differentially 
expressed, there will often be an equal number of genes 
that are down-regulated and up-regulated [42]. The 
remaining genes are expected to have a constant expression 
and can therefore be used for normalization [44]. Similar 
assumptions cannot be made for DNA methylation 
measurements. First, we can see from Figure 3, the gene 
expression value in terms of a three different colour region 
shows approximately the same number of genes (dots) in 
the positive and negative directions, whereas the number 
of genes is different in DNA methylation, for example, the 
blue-colour region. Second, in general, methylation and 
unmethylation status are not independent. Recent genomic 
studies support the general inverse correlation between 
methylation and CpG density; higher CpG density is 
associated with lower methylation frequency [45–47], i.e. 

Figure 3: MA plots of normal averages (reference samples) versus a breast tumour sample. M is, therefore, the intensity 
ratio, and A is the average intensity. Each dot represents one probe, or CpG, in the plot. (A) Gene expression; (b) DNA methylation. The 
three different colours represent the three ranges of intensity ratio gene expression ([−1, 1] black, [> 1, 2] and [< −1, −2] red, [> 2] and  
[< −2] blue and DNA methylation ([−0.2, 0.2] black, [> 0.2, 0.5] and [< −0.2, −0.5] red, [< 0.5] and [> −0.5] blue.
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methylation status of a gene is mainly localized in the 
coding region, which is CpG poor. In contrast, the promoter 
region of the gene is unmethylated despite a high density of 
CpG islands in the region. 

Supplementary Figure 1A shows the average of 
methylated and unmethylated signals across all samples 
of Series 1 with respect to distance from the transcription 
start site (TSS). In this Figure, the smoothed curve 
shows that the methylation signal increases as the curve 
moves away from the TSS. The opposite is observed 
for the unmethylated signal (Supplementary Figure 1B). 
The overall correlation between the methylated and 
unmethylated signal is shown in Supplementary Figure 2C.

According to the distribution of the methylation 
data and hypothesis used to normalize the gene expression 
data, the same procedures for DNA methylation data are 
not advisable. In this context, two different strategies can 
be applied to DNA methylation: 1) No normalization—
use of raw average β values for analysis as recommended 
by Illumina [48]; 2) Quantile normalization followed by 
adjustment for batch, DNA input and bisulfite conversion 
efficiency effects [49]. 

There is thus a clear need for the development of 
more appropriate normalization methods for methylation 
data.

transformation of dnA methylation data into 
categorical form

The most common approach for transforming 
continuous DNA methylation data is to categorize the 
data into three categorical or discrete states according 
to unmethylated, hemimethylated and methylated  
β values. For example, Holm et al. transformed the data 
in a way that the continuous β values were reduced to 
three discreet values; β values ≤ 0.3 were set to 0, values 
> 0.3 and < 0.7 were set to 0.5 and values > 0.7 were 
set at 1 [50]. A similar approach with some modifications 
has been applied by Kamalakaran et al. [51, 52]. They 
used an expectation maximization algorithm with some 
modifications for estimating parameters for a mixture of 
three normal distributions. 

In general, categorizing continuous data is not 
always beneficial since it can lead to a loss of statistical 
power [53]. Also, DNA methylation data do not have an 
underlying biology that dictates this discretization step 
as is the case for comparative genomic hybridization 
data where the copy number of discrete states reflects 
either a deletion, normal or amplification status [54]. For 
these reasons we do not encourage the discretization of 
continuous DNA methylation data.

However, a possible promising approach that needs 
further development for DNA methylation is to apply 
methods such as variance stabilization transformation, 
which may be used to transform the β value and stabilize 
the variance [40]. It is aimed at removing a mean and 

variance relationship so that the variance becomes 
constant relative to the mean.

Filtering of dnA methylation data

Reducing the number of features by selecting probes 
with high variance or standard deviation or median absolute 
deviation is a common step in unsupervised as well as 
supervised analysis of gene expression microarray data.

The goal of filtering in methylation analysis is to 
select the specific CpG loci that meet certain condition(s). 
A frequent approach to reduce the number of genes (or 
probes) in the microarray is to select the most variant genes 
among all the samples (Appel and Ron 2009). However, 
this method could introduce a bias in the analysis of 
DNA methylation data. Indeed, as mentioned above, the 
variance is high for hemi-methylated CpG compared to 
unmethylated and methylated CpG loci; therefore, sorting 
features by variance or standard deviation may merely 
select hemi-methylated CpGs. 

A second and preferred approach is to find the 
differentially methylated CpGs with respect to reference 
samples (for example, samples from normal mammary 
tissue in the context of the study of breast cancer tumors). 
In this case, we need to rank the CpGs using the difference 
between the methylation level of normal versus malignant 
tissue and then set a threshold p value to select all the 
CpGs lower than that value [17]. 

This second approach can further be refined 
by selecting the CpG having a significantly high/low 
methylation level compared to the normal sample in at 
least a certain number of tumor samples. For example, 
in Dedeurwaerder and Desmedt et al. [31], probes were 
selected having more than 20% methylation with respect 
to the mean of average βs for all normal samples in at least 
30% of tumor samples. Therefore, the selected CpG loci 
indicate relatively high variability between normal and 
tumor samples.

High-level analysis

In this section we will demonstrate some methods 
to perform a classification of patients by genetic profiling 
(DNA methylation data in this case), which is a crucial 
aspect of cancer prognostication and treatment. Most 
methods that we show at this point are already applied 
to gene expression data. We divided this section into 
three categories: class comparison, class prediction and 
class discovery. Class comparison refers to a powerful 
approach to identify the significantly differentially 
expressed or methylated loci (or genes) in different 
samples, which might be tissues, patients or cells exposed 
to different conditions. Class prediction is a supervised 
learning method similar to class comparison studies 
where the algorithm learns from samples with known class 
membership (training set) and establishes a prediction rule 
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to classify new samples (test set). Such predictors can be 
used for many types of clinical management decisions, 
including risk assessment, diagnostic testing, prognostic 
stratification and treatment selection. In contrast, class 
discovery refers to discovering the clusters (subsets) of 
samples revealed by genetic profiles that are co-regulated 
or have similar behaviour or properties.

Class comparison or subtype-specific epigenetic 
regulation

The specific objectives of this section are to 
determine whether the methylation profiles are different 
between breast cancer subtypes and, if so, to identify 
the differentially methylated loci. To provide a clinically 
and biologically relevant example, we performed a class 
comparison to identify the differently methylated CpGs 
among the four most common breast cancer subtypes 
(Basal-like, HER2+, Luminal A and Luminal B), using the 
nonparametric Kruskal–Wallis test. The β value was used 
to identify the subset of the most significant differently 
methylated CpGs. To overcome the problem due to 
multiple testing, the family-wise error rate (FWER) [55] 
approach was used.

In total, we found 99 CpGs (corresponding to  
92 distinct genes) differently methylated between subtypes 
with FWER < 0.01 in Series 1 (119 breast cancer patients) 
and 571 CpGs (corresponding to 505 distinct genes) 
differently methylated between subtypes with FWER  
< 0.01 in Series 2 (117 breast cancer patients). Out of 
99 CpGs of Series 1, we found 54 are common between 
Series 1 and Series 2. We used Series 1 as a training 
dataset and these 99 CpGs as key CpGs for further 
methods. The lists of differently methylated CpG loci in 
Series 1 and 2 are shown in Supplementary Table 1. On 
the basis of multiple corrected p values, results indicate 
strong differences in the methylation profile between the 
four molecular subtypes of breast cancer.

class prediction

Here, we aimed to demonstrate some DNA 
methylation-based predictor methods that accurately 
predicted the breast cancer subtype membership of a 
new sample on the basis of the methylation levels of key 
genes. A numbers of methods have been proposed that 
claim to successfully address this problem. Due to space 
limitations, we compare the performance of just two 
different approaches that can be applied to gene expression 
and DNA methylation data—nearest centroid classification 
(NCC) [56–58] and random forests (RF) [59–62] 
—through the comparison of misclassification (error) rates.

The NCC method depends on the assessment of 
similarity between objects. Dedeurwaerder and Desmedt 
et al. demonstrated this method could potentially identify 
a subset of CpG loci of methylation data that effectively 
discriminates subtypes of breast cancer [31]. Therefore, 

we examined the performance of the nearest centroid 
classifier coupled with a feature-selection algorithm. The 
process was done in two steps. First, using a training data 
set, we estimated the optimal nearest centroid classifier 
with a given number of features. Second, we compared 
the DNA methylation profile of a new sample to each of 
the class centroids determined using the training set. The 
predicted class of new sample was the one whose centroid 
was closest to the methylation profile of the test sample. A 
similar approach has been applied for breast cancer gene 
expression data analyses [20, 19]. 

In this example, we used Series 1 as a training data 
set and Series 2 as a test data set. With 99 key CpGs, we 
calculated four centroids (i.e. profiles consisting of the 
median methylation value for each of the 99 CpGs) for 
each of the four subtype-specific breast cancer groups 
(Supplementary Figure 2A). Since DNA methylation data 
are not normally distributed, we used a nonparametric 
distance measurement method (Spearman correlation) 
to measure the distance from centroids of the new 
sample. The Series 2 samples were then assigned to the 
nearest centroid (subtype) as determined by the highest 
Spearman correlation (Supplementary Figure 2B). Here, 
the misclassification rate in Series 2 was determined by 
calculating the number of samples differently classified 
as compared to the IHC status. The classification of all 
the samples of Series 2 resulted in a confusion matrix 
(Table 2A) that showed which samples were correctly 
classified (i.e. concordant with IHC status) and which 
were misclassified. 

The RF method proposed by Breiman et al. [63] is 
a combination of regression tree predictors such that each 
tree depends on the values of a random vector sampled 
independently and with the same distribution for all 
trees in the forest. It grows many classification trees and 
averages across the different trees. A similar approach 
has been applied to breast cancer gene expression data 
analyses Hu et al. [64].

This example was performed on DNA methylation 
average β values using randomForest R package version 
4.5–34 [63]. RF values were generated by the key 99 
key CpGs, which were then used to classify the Series 2 
samples. Table 2B shows the confusion matrix of Series 2 
samples using the RF method.

Both confusion matrices show similar 
misclassification results. The misclassification rate of 
Basal-like is minimum (11% and 14% with the NCC and 
RF methods, respectively), whereas Luminal A and B are 
the hardest to classify using DNA methylation data.

Class discovery 

To identify similar subgroups or partitions with 
methylation profiles, the two most commonly used 
clustering methods are hierarchical [52, 65] and recursively 
partitioned mixture modeling (RPMM) [66, 67].
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Siegmund et al. evaluated a variety of methods 
for cluster analysis to determine the most reliable one 
[68]. They argued that the model-based approaches have 
lower misclassification rates compared to the heuristic 
hierarchical cluster analysis approach; however, this 
difference is less striking for discrete data than for 
continuous data. Houseman et al. showed that the model-
based recursive-partitioning algorithm is more reliable 
than the competing nonparametric clustering approach 
for methylation data analysis [66]. Here, we demonstrate 
both approaches using Series 1 and 2 breast cancer DNA 
methylation data.

First, unsupervised hierarchical clustering was 
carried out by applying our reduced list of 99 key CpGs 
identified in Series 1 to the samples from Series 2. 
Subsequent β-values for these 99 key CpGs were clustered 
by using complete linkage and correlation distances with 
1000 bootstrap replications by using an agglomerative 
clustering algorithm (pvclust), which is a Bioconductor 
package for hierarchical clustering with p values assessing 
cluster stability (developed by Suzuki and Shimodaira  
et al. [69]). Supplementary Figure 3A shows that two 
main clusters were formed, named cluster I and II. Cluster 
I was highly enriched with ER-positive samples (51/52 
[98%]), whereas cluster II was enriched with ER-negative 
(46/63 [73%]) samples. Similarly, cluster II was more 
enriched with HER2+ samples (18/25 [72%]) compared 
to cluster I (7/25 [28%]). Since we did not find a complete 
separation of the four major breast cancer subtypes, we 

identified subtype-specific small clusters. Four subclusters 
(group1 in cluster I, group2, group3 and group4 in 
cluster II) were enriched with specific breast cancer 
molecular subtypes. Group1 was enriched with Luminal A  
(9/11 [82%]), group2 with Basal (24/29 [83%]), group3 
with HER2 (8/11 [73%]) and group 4 with Basal-like 
(8/12 [75%]). The remaining samples did not show any 
subtype-specific clustering, but cluster I appeared to be 
enriched with Luminal (both A and B). On the other hand, 
the approximately unbiased (AU) p values were not that 
strong for the four clusters, and an AU p value less than 
0.05 was used for the rejection of a given tree topology, 
as suggested by Suzuki et al. (Supplementary Figure 3B). 

Second, we developed RPMM-based clustering for 
subgroup identification in β-distributed DNA methylation 
data, and demonstrated that this model outperformed the 
nonparametric (hierarchical clustering) methods in terms 
of classification error [66]. We applied RPMM to the 
methylation data of Series 2 with the 99 key CpGs. 

All 117 breast tissue samples resulted in four 
methylation classes (Figure 4). Separating samples into 
groups as Basal-like, HER2+, Luminal A and Luminal 
B, we found a significant association between group and 
methylation profile classes, with the majority of Basal-like 
(83%) residing in group 1, 50% of HER2+ in group 2 and 
most of the Luminals in groups 3 and 4. This also indicates 
that there is a relatively good separation based on the ER 
status, with groups 1 and 2 being enriched with ER-negative 
samples and groups 3 and 4 with ER-positive ones. 

Table 2: Misclassification rate of class predication methods

type IHc groups 
Grouping as per ncc output

basal Her2+ luminal A luminal b error.rate 

A: Classification error rate: NCC centriod method

Basal 35 31 3 1 0 0.11

HER2+ 25 3 15 3 4 0.4

Luminal A 27 1 2 21 3 0.22

Luminal B 30 5 3 13 9 0.7

type
IHc groups Grouping as per random forest output 

total basal Her2+ luminal A luminal b error.rate 

B: Classificaon error rate: random forest method

Basal 35 30 4 1 0 0.14

HER2+ 25 2 19 1 3 0.24

Luminal A 27 1 2 16 8 0.4

Luminal B 30 3 5 10 12 0.6

Column 1 represents the breast cancer subtypes by IHC and the rest of the columns represent the subtypes identified by 
centroid and random forest methods. The Error.rate column represents the difference in subtype classification according to 
IHC, and centroid and random forest methods, respectively.
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This comparative example shows that in terms of 
classification error, mixture models based upon the RPMM 
method perform better than the nonparametric clustering 
method. 

Integrated analysis of gene expression and 
methylation data

It is well know that DNA methylation is one of 
several epigenetic mechanisms that cells use to control 
gene expression. In order to better understand the impact 
of DNA methylation on gene expression, this last section 
shows some integrated analyses of DNA methylation and 
gene expression data.

correlation between methylation and expression 
data

A basic method to understand the relation between 
two or more variables is correlation analysis. Therefore, 

we investigated the nonparametric Spearman correlation 
between the DNA methylation and gene expression data 
of Series 1. The correlation was evaluated for 26,742 CpG 
loci and 13,871 gene expression probes (corresponding to 
13,865 unique genes) identified by mapping (explained 
above) 88 breast tumors. The genome-wide correlation 
is shown in Supplementary Figure 4. The correlation 
ranges from –0.87 to 0.69. Inverse (rather than positive) 
correlations (167508/26473, i.e. 63.2%) between DNA 
methylation loci and expression probes were observed 
for many gene regulatory regions. We further analyzed 
the correlations within each breast cancer molecular 
subtype. We found that mean and median for all subtype-
specific correlation was either 0 (in case of Luminal A) or 
shifted toward negative, indicating that more genes have 
inverse correlations between DNA methylation and gene 
expression than positive correlations. Complete statistical 
descriptions about the correlation results are shown in 
Supplementary Figure 4, and a complete correlation table 
is available in Supplementary Table 2. 

Figure 4: Recursively partitioned mixture model of CpG methylation in breast tumours. The figure depicts the classification 
results of the RPMM analysis, trained on Series 1 and then applied to Series 2. The columns of heatmap represent CpG sites, and the rows 
represent methylation classes. The height of each row is proportional to the number of observations residing in the class (total n = 117). 
Color bar indicate blue as methylated and yellow as unmethylated level. The colour of the columns within each class represents the average 
methylation of the CpG for that class. The pie chart represents the proportion of different subtypes in each group. The classification results 
of Series 2 are shown in the Table below the Figure.
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We found a few subtype-specific anti-
correlations. For example, NAP1L5, MKRN3, CXCR3, 
SMOC1, CRYAB, VSIG9, LCP2, IL1R2, KLHL6 and 
S100A4 were highly anti-correlated (correlation 
coefficient < –0.7) in Basal-like but not in the other 
subtypes. Similarly, an inverse correlation was found 
for CASP10, CDKN1B, DAPK1, DAPK1, ESR1 and 
TFE3 in the HER2+ subtype.

Methylation and gene expression effects with 
respect to promoter/transcription start site 

High-resolution methylation mapping allowed us 
to closely examine the relationship of DNA methylation 
to transcription. We mapped the DNA methylation data 
for each CpG to a promoter/TSS. We explored this region 
in detail, first using methylation data and then gene 
expression data. Using the Infinium platform, 27% of 
CpGs were found to lie in the region [–100, 100], whereas 
78% CpGs were in the [–500, 500] region centred at the 
TSS. A histogram of the CpG corresponding to the TSS 
region is shown in Supplementary Figure 5. 

A scatter plot was created to show the density 
distribution of the methylation level across the genome 
with respect to TSS by calculating the methylation level 
as an average across all the samples of the same series 
(Supplementary Figure 6, normal sample of Series 1 data 

has been used in this case). The red line shown in this 
figure is the smoothed curve (or the line of best fit) and 
describes the direction in which the points are heading. 
The figure shows that the methylation level is low in the 
region of [–500, 500] distance to the TSS and begins to 
increase as the distance from the TSS increases. 

To compare the expression and methylation levels 
in the entire genomic region, we calculated the average 
expression across all the samples of Series 1, and on the 
basis of the average gene expression, all probes were 
categorized into three classes, called low, medium, and 
high expression, for which the average expression of genes 
was less than the 1st quartile, between the 1st and 3rd 
quartile, and greater than the 3rd quartile, respectively. We 
then identified genes for which data were available both at 
the gene expression and DNA methylation level - 13,870 
unique genes in this case. To dissect subtle methylation 
features that might be involved in the regulation of gene 
expression, we plotted the average methylation levels 
across the sample for the common genes corresponding 
to their gene expression classes. Figure 5 indicates that 
the genes with low expression have most of the hyper-
methylated CpGs, whereas most of the highly expressed 
genes are hypo-methylated. Therefore, we can conclude 
that methylation levels and gene expression are, for the 
most part, inversely correlated within the promoter region.

Figure 5: Association between dnA methylation and gene expression. (A) Mean methylation levels according to three 
tertiles (low, medium, and high) of gene expression levels for 13,871 genes, identified by most variant mapping of Series 1 data.  
(b) Scatter plot of mean methylation levels in each gene expression tertile as a function of the distance from the transcription start 
site. The red line shows the smoothed curve. The distribution of average methylation values and data across the CpGs with respect to 
distance from transcription start site are visualized by boxplots.
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dIscussIon And conclusIon

The key goal of this study was to conduct an in-
depth analysis of DNA methylation in conjunction with 
gene expression data characteristics and describe the 
particularities of low-level and high-level analyses of DNA 
methylation data. In this manuscript, we have endeavored 
to understand the key features of DNA methylation data and 
how they differ from gene expression data. Furthermore, we 
have proposed some computational approaches to analyze 
methylation data and compared them with the techniques 
available for gene expression analysis. 

Data analysis begins with data preprocessing and 
quality control checks to detect and control for the effects 
of systematic technical errors while retaining biological 
variations. The pattern of data distribution should dictate 
which statistical approach is applied. The present study 
demonstrates that, in the case of DNA methylation array, 
the distribution curves of neither methylation β nor 
M- value are Gaussian. It also shows that methylation 
β distribution has a fixed scale ranging from 0  
(un-methylated) to 1 (100% methylated) and, consequently, 
different statistical properties than gene expression arrays 
which are generally considered to have an infinite scale. It 
is important to note that the mean distribution of variance 
across the samples is not uniform, so applying feature 
selection methods based upon variations could produce 
biased results. Generally, gene expression microarray data 
are converted into a normally distributed form before they 
are applied to gene expression microarray data. However, 
most techniques for such normalization require two basic 
conditions: 1) the presence of housekeeping genes; and 2) 
an approximately equal number of up- and down-regulated 
genes. These conditions do not hold true for methylation β 
or M- value data; therefore, such normalization techniques 
are not applicable when normalizing methylation data. In 
addition, transforming continuous DNA methylation data 
into discrete categories leads to a loss of statistical power. 
This indicates a clear gap in research on pre-processing 
of methylation array data and the need for future 
development and refinement of appropriate solutions. 

In a high-level analysis, we illustrate the statistical 
approaches that can be used to achieve the specific goals 
of different DNA methylation studies (class comparison, 
prediction and discovery) and to elucidate the relationships 
between DNA methylation data and gene expression. 
The objective of class comparison methods is to identify 
the distinguishing features of the classes. Due to the 
non-normal distribution of DNA methylation data, a 
nonparametric approach seems to better suit the properties 
of the data necessary to identify the different methylated 
features. In the context of class prediction, researchers 
are generally interested in developing a model that can 
correctly assign individual patients to the appropriate 
categories. A number of tools can be utilized for supervised 
classification with high-dimensional genomics data. 

We show the application of two frequently used 
approaches (NCC and RF) to gene expression array 
data. The two approaches have little differences in their 
misclassification rate, or the proportion of cases classified 
incorrectly. In class discovery, the classes are not known 
in advance, and different classes can be obtained from 
the same dataset by selecting different methods or 
parameters. The aim is to exploit the redundancy in the 
data and to identify the subset(s) of data that share certain 
features. In this study, we explore two methods: (1) 
hierarchical clustering, which is a popular method used 
with microarray data with unknown number of classes; 
and (2) RPMM, which employs a recursive-partitioning 
algorithm to navigate clusters in a beta mixture model that 
provides the number of clusters. As claimed in this article, 
RPMM provides a reliable solution in less time than 
sequential attempts with different numbers of assumed 
clusters. The results are then compared with the breast 
cancer sub-classifications identified by IHC. The output 
of both methods is compared with the classification error 
rate, or the number of samples in such clustering classes 
with respect to IHC classification. This study demonstrates 
that the application of RPMM results in a low error rate. 

The section of genome-wide comparative analysis 
of DNA methylation and gene expression with respect to 
TSS shows that DNA methylation in the range from TSS 
[–500, 500] bp (which can be a promoter) is strongly anti-
correlated with gene expression and low levels of anti–
correlation beyond this region. 

As with other topics in the field of human 
epigenetics, gaps remain in our knowledge of DNA 
methylation. To deal with these gaps, a systems approach 
is needed that includes (1) data collection and integration 
of all available information, (2) low level data analysis 
that includes the development of adequate computational 
methods/tools for data cleaning and preprocessing to 
remove noise and outliers/wild shots, and handling of 
missing data; (2) transforming data to find useful features 
which represent data more efficiently; (3) high level 
system modeling with a good algorithm that has a good 
predictive power; and (4) generation of new hypotheses to 
explain the positive correlation between gene expression 
and DNA methylation.

In conclusion, the nonparametric methods presented 
in this overview seem more appropriate to the analysis of 
DNA methylation data and can be straightforwardly applied 
to other studies in order to pin down novel cancer genes 
whose expression is altered by DNA methylation alone

In sum, our analysis is consistent with the 
previous notion that DNA methylation patterns occurs 
at well-defined regions and are associated with aberrant 
gene expression patterns [15]. Similarly, our analysis 
also suggests that hyper-methylation may in turn be 
the default state of human genome and that dynamic 
DNA methylation changes occur during carcinogenesis 
and are associated with cancer. In the future it would 
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be important to conduct an in-depth analysis of entire 
milieu of signalling pathways in breast cancer taking into 
consideration genetic as well as epigenetic phenomena 
that impact the breast cancer signalome [70–72].

Moreover, the most recent genome mapping 
experiments have identified the presence of 
5-hydroxymethylcytosine (5-hm-C) in the genome and 
provided the initial insight into the role of 5-hm-C in 
metabolism of 5-m-C and active DNA demethylation. Its 
effects on gene expression have yet to be fully established 
[73–78]. Therefore, in order to get a full understanding 
of (epi)-genome functioning in normal and cancer cells, 
in the future it would be important to determine the 
inter-relationship between DNA methylation, DNA 
hydroxymethylation and gene expression, and their 
regulation in normal and cancer cells and tissues.

MAterIAls And MetHods

data sets

DNA methylation and gene expression data were 
obtained from the publicly available Gene Expression 
Omnibus database (http://www.ncbi.nlm.nih.gov/geo/, 
GSE20713, GSE22249). The studies used in this paper 
are shown in Table 1. Series 1 and 2 were published in 
the same article, but Series 2 has no gene expression data 
available. The breast cancer subtypes basal, HER2+, 
luminalA and luminalB were classified according to ER 
and HER2 status by immunohistochemistry (IHC) and 
histological grade as described by Dedeurwaerder and 
Desmedt et al. [31].

Methylation data

We used a breast cancer data set consisting of  
248 samples, subdivided into Series 1 (total =123, 
includes 119 breast and 4 normal) and Series 2 (total 
=125, includes 117 breast and 8 normal) as described 
previously [31]. Methylation analysis was performed 
using Infinium Methylation 27 K arrays (Illumina, San 
Diego, CA) [32]. This array generates data on a large 
number of informative loci (27,578 CpG sites from 14,495 
protein-coding gene promoters and 110 microRNA gene 
promoters) for each sample at single-site resolution. 
GenomeStudio™Methylation Module v1.0 was used for 
data extraction and quality control. 

Gene expression data sets

Affymetrix expression data for 90 out of 123 
samples of Series 1 has been described previously 
(Dedeurwaerder and Desmedt 2011). Expression analysis 
was performed using the HG U133 Plus 2.0 chips from 
Affymetrix (54675 probe sets). The data were analyzed 

by using the quantile normalization method of the “affy” 
package [33] available from http://www.bioconductor.org/. 
No background correction was performed for the analysis 
in this paper. Subsequently, data were log2 transformed. 
As mentioned above, no gene expression data were 
available for Series 2.

Mapping between gene expression and dnA 
methylation

Hybridization probes were mapped to Entrez 
GeneID as described [34] using RefSeq and Entrez 
database version 2007.01.21. Two types of mapping have 
been used for the analysis: maximum (many-to-one) 
mapping and most variant (one-to-one) mapping. 

For maximum mapping, all CpG loci of methylation 
data were mapped on the basis of Entrez Gene ID to the 
available gene expression data. Using this method we 
identified 26,472 CpG corresponding to 13,871 gene 
expression probes of Series 1 data of Dedeurwaerder and 
Desmedt (2011) Supplementary Table 3A. 

For most variant mapping, all CpG loci of 
methylation data were mapped on the basis of Entrez Gene 
ID to the available gene expression data; the one with 
the highest variance in expression data set was selected. 
There were 13,871 genes in common between methylation 
and expression data of Series 1 of Dedeurwaerder and 
Desmedt et al. Supplementary Table 3B. 

Methylation level measurement

The methylation level was analyzed using a paired 
(methylated and unmethylated) probe set. To date, two 
methods have been proposed to measure the methylation 
level: the beta value (β) and the M value [35]. 

The β value has been widely used to measure the 
percentage of methylation. In this method, the methylation 
status is measured as a fraction of fluorescence signal 
from methylated molecules over the sum of fluorescence 
of methylated (Me) and unmethylated (Um) molecules, 
i.e. β = (Me)/(Me + Um + 100). Raw average β values 
were analyzed without normalization, as recommended 
by Illumina. The data range was a continuous value 
between 0 (i.e. unmethylated) and 1 (i.e. 100% methylated).  
This is the method currently recommended by Illumina 
[36, 37]. 

The M value refers to the log2 ratio of the 
signal intensities of the methylated probe versus 
the unmethylated probe. The comparison between 
the β value versus the M value has been described by 
Du et al. [35], who claim that the M value is statistically 
more robust for the differential analysis of methylation 
levels. Figure 1A and 1B shows the distribution of β and 
M value, respectively, for the same sample of the Series 1 
data set.
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