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ABSTRACT
Breast cancer (BrCa) is the leading cause of cancer related death in women. 

While current diagnostic modalities provide opportunities for early medical 
intervention, significant proportions of breast tumours escape treatment and 
metastasize. Gaining increasing recognition as a factor in tumour metastasis is the 
local immuno-surveillance environment. Following identification of the role played 
by the enzyme indoleamine dioxygenase 1 (IDO1) in mediating maternal foetal 
tolerance, the kynurenine pathway (KP) of tryptophan metabolism has emerged as a 
key metabolic pathway contributing to immune escape. In inflammatory conditions 
activation of the KP leads to the production of several immune-modulating metabolites 
including kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid, 
3-hydroxyanthranilic acid, picolinic acid and quinolinic acid. KP over-activation was 
first described in BrCa patients in the early 1960s. More evidence has since emerged 
to suggest that the IDO1 is elevated in advanced BrCa patients and is associated with 
poor prognosis.  Further, IDO1 positive breast tumours have a positive correlation 
with the density of immune suppressive Foxp3+ T regulatory cells and lymph node 
metastasis. The analysis of clinical microarray data in invasive BrCa compared to 
normal tissue showed, using two microarray databank (cBioportal and TCGA), that 
86.3% and 91.4% BrCa patients have altered KP enzyme expression respectively. 
Collectively, these data highlight the key roles played by KP activation in BrCa, 
particularly in basal BrCa subtypes where expression of most KP enzymes was altered. 
Accordingly, the use of KP enzyme inhibitors in addition to standard chemotherapy 
regimens may present a viable therapeutic approach.

BREAST CANCER

Breast cancer (BrCa) accounted for 11.9% of 
total worldwide cancer deaths in 2012 [1] despite 
recent advances in treatment and surveillance. BrCa is a 
heterogenic disease that can be categorized into four main 
molecular distinct subtypes based on gene expression 
profiling: luminal A, luminal B, human epithelial growth 
factor receptor-2 (HER-2) overexpressing and basal/triple 
negative (TN) cancer subtype [2-5] (Figure 1). A slight 
majority of diagnosed BrCa cases are luminal A subtype 
[2, 4] distinguished by high oestrogen receptor (ER) and/

or progesterone receptor (PR) expression, but with a low 
expression of the cell proliferation marker Ki-67 [2, 4]. 

BRCA SUBTYPE MOLECULAR 
SIGNATURES AND ITS PROGNOSIS

Patients diagnosed with luminal A subtype have 
the best prognosis as this subtype is responsive to 
Tamoxifen hormone therapy [6]. The luminal B subtype 
also expresses ER and/or PR. However, as expression of 
the proliferation factor Ki-67 is higher than in the luminal 
A subtype, this subtype presents a higher risk of disease 
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relapse [7]. HER-2 overexpressing subtype [2, 4], typically 
had a poor prognosis but the emergence of monoclonal 
antibody based therapies such as Trastuzumab, targeting 
the HER-2 receptor, has improved patient prognosis (44% 
reduction in risk of death) [8]. The basal/TN breast cancer 
subtype [2, 4] has the highest level of proliferation-related 
gene expression and frequencies of genetic mutations, 
such as TP53 and BRCA 1 [9]. Due to the lack of targeted 
treatments, the basal/TN subtype has the worst prognosis. 
Recently, a newly established breast cancer TN subtype, 
claudin-low, was described [2, 4] and was shown to lack 
epithelial cell-cell adhesion proteins such as E-cadherin 
and claudin 3, 4 and 7 [10]. Claudin-low tumours are 
also characterized by low luminal, high epithelial-to-
mesenchymal transition features and by enhanced tumour 
initiating processes [11]. These properties render this 
subtype resistant to chemotherapy and hence these cells 
often dominate post-treatment tumour samples after 
neo-adjuvant chemotherapy or hormone therapy [12]. 
Patients diagnosed with this subtype also have a generally 
poor survival outcome [7]. Generally, each of the major 
subtypes comprises a roughly equal proportion of total 
breast cancer cases (11- 23%).

The molecular classification of breast tumour 
subtype has provided new opportunities to develop 
more appropriately targeted therapy. However, drug-
based interventions will continue to be important for 
BrCa therapy. Another significant aspect to consider is 

the relationship between breast tumour development 
and immune tolerance. A particularly interesting recent 
development has been the discovery of the role of IDO1 
in mediating tumour immune-evasion [13]. Specifically, 
alterations in tryptophan catabolism in both tumour and 
tumour-draining lymph nodes may provide a mechanistic 
avenue enabling tumour-cell persistence, a view that is 
supported by experimental evidence [14-16]. This review 
will focus on the contribution that alterations in tryptophan 
catabolism via the kynurenine pathway (KP; Figure 2) 
may play in BrCa progression. Understanding how BrCa 
cells exploit such immune evasion mechanisms may lead 
to identifying promising therapeutic targets for BrCa and 
metastasis based on modulation of tryptophan metabolism.

TRYPTOPHAN METABOLISM: FOCUS ON 
THE KYNURENINE PATHWAY

Tryptophan is an essential amino acid obtained 
through the diet [17]. Under physiological conditions, 
the majority of tryptophan is catabolized through the 
KP to synthesize the vital energy cofactor, nicotinamide 
adenine dinucleotide (NAD+) [18]. Several downstream 
metabolites of the KP are biologically active in various 
physiological and pathological processes, including 
kynurenine (KYN), kynurenic acid, 3-hydroxykynurenine, 
anthranilic acid, 3-hydroxyanthranilic acid (3-HAA), 
picolinic acid and quinolinic acid (QUIN). 

Figure 1: A summary of human breast cancer subtypes
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Three different heme-enzymes, indoleamine 2,3 
dioxygenase 1 (IDO1) [19], indoleamine 2,3 dioxygenase 
2 (IDO2) [20, 21] and tryptophan 2,3 dioxygenase 
(TDO2) [22], catalyse the first rate-limiting key step of 
the KP. Despite sharing the same substrate, the two IDO 
isoforms and TDO2 each have distinct inducers and 
patterns of tissue expression. IDO1 is highly induced by 
pro-inflammatory cytokines such as IFN-γ [23] whereas 
TDO-2 is induced by its substrate tryptophan and by 
glucocorticoids [24]. Induction of IDO2, however, is less 
well understood. IDO1 is commonly expressed in all major 
organs and immune T and B cells [25], whereas IDO2 is 
expressed by hepatocytes, in the bile duct, neuronal cells 
of the cerebral cortex and dendritic cells [26]. TDO-2 is 
primarily expressed in the liver [27], but is also expressed 
in placenta [28], maternal and embryonic tissues [29], and 
brain [30]. 

A key juncture of the KP leads to the catabolism 
of 2-amino-3-carboxymuconate semialdehyde (ACMS) 
to 2-aminomuconic acid 6-semialdehyde (AMAS) by 
2-amino-3-carboxymuconate semialdehyde decarboxylase 
(ACMSD), then AMAS non-enzymatically converts to 
the neuroprotective metabolite picolinic acid (Figure 2) 
[31]. Alternatively, the KP can branch towards the non-
enzymatic rearrangement of ACMS to form the metabolite 

QUIN, an essential precursor for de novo NAD+ synthesis. 
Under normal physiological conditions, the production of 
picolinic acid and QUIN is at equilibrium [32]. However, 
during chronic activation KP metabolism is diverted 
towards QUIN production, and hence NAD+ biosynthesis, 
which may promote cellular growth.

KP-MEDIATED IMMUNE-MODULATION 
IN CANCER

Since the demonstration that IDO1 has immuno-
suppressive ability by mediating maternofetal tolerance 
[33], much attention has been dedicated to determining 
how IDO1 also modulates the immune response to 
tumours. In most forms of human cancers, including BrCa, 
high IDO1 expression is positively correlated to poor 
prognosis [34-41]. Studies utilizing murine cancer models 
confirmed that IDO1/TDO2 over-expressing tumours are 
more aggressive compared to tumours with basal IDO1/
TDO2 levels [15, 16, 42]. In this paradigm, the generally 
pro-inflammatory cancer microenvironment leads to 
IDO1/TDO2 over-expression in stoma (epithelial and 
endothelial cells) and/or antigen-presenting cells (APCs) 
such as dendritic cells (DC) [43] resulting in depletion 
of tryptophan in the local milieu. Hence, local cytotoxic 

Figure 2: A simplified diagram of the kynurenine pathway.
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T-cells (Tc) and T helper cells (Th) become tryptophan 
deficient leading to inhibition of proliferation as a result 
of general control nonderepressible 2 (GCN2) signalling 
pathway activation [44, 45]. Tryptophan starvation also 
predisposes activated T-cells to Fas-dependent apoptosis 
[44, 45]. Consequently, CD4+CD25+Foxp3+ regulatory 
T cells (Tregs) mature to become the prominent T-cells 
population in the microenvironment [46-48]. These T-cell 
subset populations have a potent suppressive effect on 
both innate and adaptive immunity [49, 50]. Not only do 
Tregs impose immuno-tolerance on the microenvironment, 
but they also promote immuno-tolerance in draining 
lymph nodes, thereby potentiating the likelihood of distant 
metastasis, a phenomenon that has been observed in 
several cancer types and is a significant ongoing problem 
in BrCa (Figure 3). 

In vivo studies using various animal models of 
human cancers treated with IDO inhibitors have provided 
relevant proof-of-concept that tryptophan metabolism is 
involved in tumour immune-escape. Two initial studies by 
Uyttenhove et al. [16] and Friberg et al. [51] demonstrated 
that the IDO inhibitor 1-methyltryptophan (1-MT), limited 
the growth of IDO1 overexpressing tumours engrafted in 
a syngeneic host. Further studies by Muller et al. [42] 
confirmed that 1-MT modestly slowed the growth of 

spontaneous mammary tumours in MMTV/neu mice. 
When combined with the cancer chemotherapeutic drug 
paclitaxel, MMTV/neu tumour size regressed by 30% 
with no side effects observed [42]. This suggested that 
1-MT has only limited efficacy as a monotherapy, but 
is effective in combination together with chemotherapy. 
Additionally, immunodepletion of CD4+ or CD8+ T-cells 
before treatment abolished the efficacy of 1-MT treatment, 
suggesting that the anti-tumoral efficacy of 1-MT is 
dependent on a specific T-lymphocyte response. 

While the majority of studies support the tumour-
promoting activity of IDO1, it is important to note that 
other studies suggest that IDO1 may have anti-tumour 
activity [52]. These studies demonstrated that IFN-γ 
induced IDO1 resulted in depletion of the essential 
metabolite tryptophan, presumably reducing NAD+ 
production within the tumour cell thereby limiting cell 
growth. Animal studies have shown that IFN-γ induced 
IDO1 restricted tumour growth [53, 54] and while clinical 
studies have shown that hepatocellular and renal cell 
carcinoma specimens evidenced a positive association 
between IDO1 expression and favourable outcomes [55, 
56]. However, both clinical studies noted that IDO1 
expression was restricted to tumour infiltrating cells 
but was not found in the tumour cells. This potentially 

Figure 3: Immune tolerance mechanism by IDO1:TDO2 overexpression in cancer-associated inflammation 
environment.
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highlights the different roles (pro- and anti-tumorigenic) 
of elevated IDO1 expression within tumour cells as well 
as its microenvironment. 

KP METABOLITES: INVOLVEMENT IN 
CANCER IMMUNOBIOLOGY

KYN

KYN is the first catabolite produced from tryptophan 
by IDO1/2 and/or TDO2. KYN has been recently identified 
as an endogenous ligand for the aryl hydrocarbon receptor 
(AhR) [57], a key ligand-activated transcription factor 
involved in diverse cellular functions such as cellular 
differentiation and proliferation. Activation of the AhR 
by KYN promotes selective expansion of Tregs due to 
activation of forkhead box p3 (Foxp3) in naïve T-cells 
preventing maturation of Th17 cells [58]. Martin-Orozco 
and colleagues subsequently showed that depletion of the 
Th17 population favoured tumour growth in the lungs of 
mice injected intravenously with B16-F10 melanoma [59]. 
Adaptive transfer of antigen-challenged Th17 into tumour-
bearing mice led to a lower rate of tumour establishment 
and growth whereas Th17 free mice could not prevent 
establishment of tumour allografts. The distinct anti-
tumour effect of the Th17 cell subset reflects an ability 
to enhance DC infiltration and Tc cells immune response 
[59]. Accordingly, active expansion of Tregs cells through 
KYN-AhR activation creates an immune suppressive zone 
around IDO1 and/or TDO2 expressing tumours.

Enhanced tumour-cell survival and motility also 
results from KYN-AhR activation. Opitz et al., found 
that TDO2 expressing (i.e. KYN producing) brain tumour 
xenografts in AhR-proficient mice had an enhanced 
tumour growth rate, increased levels of the inflammatory 
cytokines (IL-1β, IL-6 and IL-8) and a decreased number 
of infiltrating CD8+ cells around tumours with high AhR 
and TDO2 expression [57]. The persistence of elevated 
inflammatory cytokines in the microenvironment may 
lead to chronic IDO1 expression in APC cells such as 
macrophages and DC and/or tumour cells [60] thereby 
creating a pro-inflammatory feedback loop promoting 
tumour growth. Collectively, these studies highlight the 
importance of the AhR in IDO1 and/or TDO2 expressing 
tumours and emphasize the role that autocrine production 
of inflammatory cytokines plays in tumour survival and 
growth. Whether similar tumour-promoting interactions 
occur with KYN and AhR in BrCa remains unknown but 
are likely.
3-HAA

Among the KP metabolites, 3-HAA appears to have 
the highest capacity to modulate the immune functions 
of both monocytic cells and lymphocytes. Macrophages 
treated with 3-HAA, lose their ability to synthesize nitric 
oxide (NO), due to upstream inhibition of both NF-κB 

and inducible nitric oxide synthase (iNOS) activity [61]. 
Considering that NO production by macrophages is 
critical to their immune-mediator function, inhibition of 
NO synthesis may impair macrophage ability to eradicate 
tumour cells. 

Induction of kinase 3- phosphoinositide-dependent 
protein kinase-1 [62], caspsase-8 and cytochrome c 
[63] by 3-HAA also induces apoptosis in both Tc and 
Th1 populations of effector T cell [64]. Additionally, 
3-HAA also limits cytokine-stimulated Tc proliferation 
by reducing the number of T-cells entering the cell cycle 
[65]. The reduction of these two major effector T-cell 
populations may impair the immune response against 
KP expressing tumours. More recently, 3-HAA has also 
been shown to specifically enhance the differentiation 
of Tregs. A 70% increase in the number of Tregs cells is 
observed after the treatment of naïve T cells with a KP 
metabolite cocktail containing 10 μM of 3-HAA [63, 64]. 
This result was further confirmed by both Favre et al. and 
Zaher et al. who also reported strong Tregs differentiation 
in the presence of 3-HAA [66, 67]. In summary, chronic 
production of 3-HAA by cancer cells may not only lead 
to progressive loss of competent immune cells but also 
expansion of immune suppressive cells, dampening 
immune surveillance and thereby encouraging tumour 
growth. 
Picolinic acid

Picolinic acid is one of the alternate end products 
of the KP, resulting from the enzymatic conversion of 
ACMS by the enzyme ACMSD (Figure 2). Picolinic acid 
is an endogenous metal chelator for elements such as iron 
[68]. Based on its iron chelation properties and the fact 
that other iron chelators such as desferrioxamine exhibit 
anti-tumour activity, picolinic acid has also been assessed 
for its anti-tumour activity [69]. Indeed, picolinic acid 
challenged tumour cells have decreased proliferation rates 
in vitro [70, 71] and in vivo [72], as compared to untreated 
control cells. Normal human cells, however, remain 
unaffected at the same dosage [73]. 

Picolinic acid is also associated with immune 
function. Picolinic acid interacts synergistically with 
IFN-γ to augment iNOS production by macrophages 
[74-76], increasing iNOS mRNA expression by 10 to 15 
fold leading to a potent cytotoxic/cytostatic effect. This 
synergistic interaction was found to last for at least 20 
hours. Picolinic acid challenged macrophages have been 
shown to inhibit tumour growth and increase survival in 
cancer animal models [76-78]. In addition to macrophage 
activation, picolinic acid also potently induces macrophage 
production of the chemokines macrophage inflammatory 
protein (MIP)-1α and -1β which also contributes to tumour 
eradication [79]. 
QUIN

Under normal physiological conditions, QUIN is 
the precursor for the production of the essential co-factor 
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NAD+. This reaction is catalysed by the QPRT (Figure 
2). QUIN is an agonist of the N-methyl-d-aspartate 
(NMDA) receptor and in pathophysiological conditions 
excess QUIN can induce over-activation of the NMDA 
receptor leading to excitotoxicity in neurodegenerative 
disorders such as Alzheimer’s disease [80]. Quin is also 
known to be involved in tumour neuropathogenesis and 
persistence [81-83]. When treated in vitro, Quin increased 
the proliferation rate of human glioblastoma U343MG 
cells [84], HT-116 and HT-29 colon cancer cells [85] and 

SK-N-SH neuroblastoma [71]. Interestingly, QUIN also 
increases astroglial production of glial cell line-derived 
neurotrophic factor [86], which may induce proliferation 
of cancer cells and increase resistance to chemotherapeutic 
agents [87]

We showed that QPRT is strongly elevated in higher 
grade gliomas leading to increased QUIN production, 
which was significantly associated with poor prognosis 
[88]. High QUIN levels promote tumour chemo-resistance 
due to enhanced production of NAD+, a vital substrate for 

Table 1A: KP enzymes mRNA expression by microarray database
cBioPortal (n = 526) TCGA (n = 185)

%. of KP mRNA 
changes % of elevated mRNA %. of KP 

mRNA changes % of elevated mRNA

IDO-1 N.A. N.A. 32 53
TDO2 33 53 34 51
KMO 35 61 36 52
3HAO 22 49 21 53
KYNU 26 55 23 60
ACMSD 22 49 24 80
QPRT 36 54 37 49

Table 1B: KP enzymes mRNA expression by human breast cancer subtypes from PAM50 series/cBioPortal

Claudin low (n = 8) Basal (n = 81) HER2
(n = 58) Luminal A (n = 235) Luminal B (n = 133)

mRNA 
changes

Total 
changes
(%)

Elevated
(%)

Total 
changes
(%)

Elevated
(%)

Total 
changes
(%)

Elevated
(%)

Total 
changes
(%)

Elevated
(%)

Total 
changes
(%)

Elevated
(%)

TDO2 63 100 34 79 41 92 29 25 34 56
KMO 25 100 12 60 59 100 36 57 35 49
3HAO 25 100 22 67 19 82 21 55 26 17
KYNU 63 100 27 86 34 95 23 34 25 39
ACMSD 38 0 20 0 19 64 28 89 25 76
QPRT 13 100 31 56 55 94 31 31 35 66

Table 1C: KP enzymes mRNA expression in human breast cancer specimens from EMBL-gene Atlas.

Disease group n value KP enzymes expression Array number Ref.
IDO-1 TDO2 KMO

Normal breast 143 E-GEOD-10780 96Invasive ductal carcinoma 42
Reduction mammoplastices 10

E-TABM-276 97Invasive ductual carcinoma 23
0 cm away from tumour 281 to 4 cm away from tumour
Normal breast 15 E-GEOD-8977 98Invasive ductal carcinoma 7
Ductal carcinoma in situ 53 E-GEOD-41194 99Invasive breast cancer 51

*Black box: No change in mRNA expression; Green box: up regulation in mRNA expression
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Poly [ADP-ribose] polymerase-1 (PARP-1) activation 
[89], which facilitates repair of reactive oxygen species-
induced DNA damage and enables cells to recover DNA 
replication after treatment [90]. In fact, QUIN treated 
malignant human glioma cells were less sensitive to 
temozolomide and H2O2 mediated apoptosis compared to 
untreated glioma cells [88]. Similarly to 3-HAA, QUIN 
also modulates the immune response through selective 
inhibition of Th and Tc proliferation and natural killer cell 
activation [64]. QUIN expression can also increase Tregs 
population [67]. These results show that excessive QUIN 
in the tumour microenvironment may have a significantly 
detrimental effect on local immuno-surveillance. However, 
the precise role that QUIN may play in BrCa remains to 
be elucidated. 
Kynurenic acid

Kynurenic acid can antagonize QUIN excitotoxicity 
at NMDA receptors and hence functions as an endogenous 
neuroprotectant. Whereas 3-HAA and QUIN have 
immunosuppressive properties that are likely to 
promote tumour growth [81], kynurenic acid  can inhibit 
adenocarcinoma and renal cell carcinoma cancer cell 
proliferation in vitro [91]. Inhibition of the mitogen 
activated protein kinase (MAPK) pathway proteins is 
one of the possible anti-tumour activities of kynurenic 
acid [91]. The MAPK pathway promotes several cellular 
processes including motility, proliferation and survival 
[92] and is frequently over-activated in human cancer 
[93, 94]. Kynurenic acid is also known to up-regulate the 
expression of p21 Waf1/Cip that induces cell-cycle arrest 
[95]. Hence the presence of kynurenic acid in the tumour 
microenvironment might help to limit tumour growth.

REDOX MODULATION BY KP 
METABOLITES: POTENTIAL 
INVOLVEMENT IN CANCER GROWTH

Under certain intracellular or microenvironment 
conditions KP metabolites have been shown to generate 
reactive oxygen species (ROS) such as H2O2 and hydroxyl 
radical. Formation of ROS has been linked to cancer 
initiation and progression by inducing lipid peroxidation, 
DNA damage/mutation and cell proliferation [96]. Indeed, 
one of the most extensively studied LP products are the 
4-hydroxy-2-nonenals (4-HNE) which modulate a number 
of signaling processes such as Akt pathway involved in 
cancer initiation and progression [97]

In the presence of transition metals such as 
copper (Cu2+), manganese (Mn2+) and iron (Fe3+), 
3-hydroxykynurenine and 3HAA can be oxidized to 
generate ROS [98] which is a well-known cause of 
DNA damage [99]. More recently, it was suggested that 
3-hydroxykynurenine mediated cell death independently 
of caspase-3 activation via p38 MAPK phosphorylation 
[100]. 3HAA-generated ROS was shown to enhance 

apoptosis in precursor immune cells such as thymocytes 
[101] and monocytes [102]. Furthermore, 3HAA can 
auto-oxidize and generate cinnabarinic acid, which 
induces apoptosis in thymocytes by an order of magnitude 
greater than 3HAA [101]. Redox-mediated depletion 
of these precursor immune cells by 3HAA could lead 
to tumor persistence due to reduced numbers of mature 
T-cells. Despite much research supporting a pro-oxidant 
effect, 3-hydroxylkynurenine and 3HAA also have 
documented antioxidant properties [103-105]. In fact, 
3-hydroxykynurenine and 3HAA has been shown to 
protect the brain and gliomas against oxidative stress by 
inhibiting spontaneous lipid peroxidation [106, 107]. 

QUIN is another KP metabolite that enhances 
ROS formation in the tumour microenvironment by 
several mechanisms including formation of redox-active 
complexes with Fe2+ leading to lipid peroxidation [108]. 
However, QUIN was also observed to act as an anti-
oxidant in electrochemical studies. Low concentrations of 
QUIN reduced the rate of ROS production by affecting 
the Fe2+/Fe3+ ratios, only at concentrations above 
pathophysiological levels were pro—oxidant effects 
observed [109].

These somewhat conflicting observations suggest 
that the specific environmental milieu may determine the 
net ROS balance of these metabolites, which is not yet 
precisely defined in cancer. 

EVIDENCE FROM CLINICAL STUDIES

Up-regulation of KP metabolism in BrCa patients 
was first reported by Rose et al (1967) who found increased 
kynureninase (KYNU), kynurenine-3-monooxygenase 
(KMO), and kynurenine aminotransferase-II enzyme 
activity (Figure 2) in the urine of untreated BrCa patients 
compared to controls [110]. While one-third of the patient 
cohort exhibited higher activity of these three enzymes, 
the remaining patients had similar enzymatic profiles to 
the control group. A potential explanation may be that the 
KP is differently modulated in the different BrCa subtypes. 
A later study by Sakurai et al. also detected higher IDO1 
activity in the serum of BrCa patients and higher IDO1 
mRNA expression in BrCa compared to normal tissue 
[111]. The elevated serum levels and IDO1 expression 
in tumour correlates to clinical stage, in agreement with 
another study by Rose et al. showing elevated KP enzyme 
activity in approximately one third of early cancer patients 
and in half of advanced BrCa patients respectively [112]. 
However, increased KP activity in advanced-stage patients 
was only evident in those with soft tissue metastases. 
Patients with skeletal metastases displayed normal KP 
activity, suggesting that KP over-activation may drive 
proximal tissue invasion but not distal metastasis. There 
is also evidence of immune system suppression in IDO1-
positive advanced BrCa patients as IDO1 expressing 
breast tumours had higher numbers of infiltrating Tregs in 
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tumour and lymph node metastases [113-115]. 
A later prospective cohort study showed that KP 

metabolism returned to near normal levels in BrCa patients 
post-mastectomy, with- or without- oophorectomy, further 
demonstrating the link between tumour presence and 
KP modulation [116]. More recently, post-surgical re-
normalization of KP metabolism in BrCa patients was 
confirmed together with reduced IDO1 activity expression 
post-chemotherapy [117]. 

Despite much evidence that IDO1 expression is 
associated with poor prognosis in BrCa patients, a study 
of medullary BrCa patients showed that high IDO1 
expression was associated with favourable outcomes 
[118]. This study agrees with others [55, 56] where IDO1 
expression was observed in the surrounding dendritic-like 
monocytes rather than the tumour cells. This again raises 
the possibility that IDO1 locality determines whether it 
supports or prevents tumour growth. 

Evidence from microarray databank

Data mining from ex vivo clinical studies

An early collective and global BrCa study in 
cBioportal using the Agilent microarray series showed 
that a total 86.3% of all BrCa cases had altered mRNA 
expression of enzymes in the KP (454 out of 526 BrCa 
patients, z-score of -1< and >1, Table 1A) [119, 120]. 
Data from the Cancer Genome Atlas (TCGA) confirmed 
the cBioprotal results and showed a slightly higher 
percentage of total 91.4% of patients with altered KP 
enzyme expression (169 of 185 patients, z-score of -1< 
and >1; Table 1A). However, as both databases did not 
differentiate BrCa subtype, it is not possible to draw firm 
conclusions regarding whether specific KP enzymes were 
up-or down-regulated. Furthermore, the heterogeneous 
database presentation may dilute subtype specific KP 
dysregulation evidence.

However, microarray data from patients with 
invasive breast carcinoma (cBioPortal; PAM50 series) 
[119, 120] (Table 1B, z score <-1 and >1) overcame this 
limitation. This data showed that the mRNA expression 
of specific KP enzymes differed substantially by BrCa 
subtype. Significantly, the claudin low subtype, exhibited 
elevated TDO2 and KYNU mRNA expression in more 
than half of the samples; while a quarter of the samples 
exhibited elevated KMO and 3-hydroxyanthranilate 
3,4-dioxygenase (3HAO). In the similarly aggressive basal 
BrCa subtype, both TDO2 and KYNU were also elevated. 
Elevated expression of TDO2 is indicative of active 
breakdown of tryptophan leading to increased production 
of the potent immuno-suppressive metabolite 3-HAA. 
Intriguingly, ACMSD remained unchanged or down-
regulated in these subtypes suggesting a KP pathway shift 
towards quinolinic acid and energy production (thereby 
facilitating tumour progression) and away from production 

of the tumour suppressive metabolite picolinic acid. In 
the HER2-overexpressing BrCa subtype, TDO2, KMO, 
KYNU and QPRT were elevated similarly to both the 
claudin-low and basal subtypes in 34% to 59% of total 
specimens. Considering that these subtypes are associated 
with higher rates of lymph node metastasis, elevation 
of the early KP enzymes TDO2, KMO and KYNU 
may promote tumour aggressiveness and metastasis. 
Interestingly, a portion of HER2 over-expressing 
specimens had elevated ACMSD, suggesting increased 
production of anti-tumour picolinic acid metabolite. This 
is a potentially contradictory observation in a subtype 
associated with poor prognosis, given the anti-tumour 
activity of picolinic acid (as described above) anti-
tumorigenic property. However, a potential explanation 
of this anomaly may be that enhanced picolinic acid 
by tumour cells could be a potential strategy to chelate 
additional iron for growth, although there is no data to 
support this hypothesis. 

In contrast, both the low-metastatic risk luminal 
A and B subtypes showed no changes in KP apart from 
elevated ACMSD mRNA, which as discussed, could lead 
to higher concentrations of picolinic acid and a more 
tumour suppressive KP profile. 

Clinical data from the Genes-to-Systems Breast 
Cancer database [121] was then used to examine the 
relationship between breast tumour grade and KP 
mRNA expression profile. This analysis showed that 
TDO2 expression was higher in well, and moderately 
differentiated grade 1 and 2 breast tumours, compared 
to poorly differentiated grade 3 tumours. Increased KP 
enzymes mRNA expression in invasive breast carcinoma 
was also observed in the European Molecular Biology 
laboratory Gene Expression Atlas (EMBL; Table 1C) 
[122-125]. All invasive carcinoma samples examined 
in these studies had elevated IDO1, TDO2 and KMO. 
Interestingly, normal breast epithelial cells in the 
immediate tumour proximity also showed elevated 
TDO2 and KMO expression, implying that IDO1/TDO2 
expressing tumours have the capability to influence KP 
activity in surrounding normal tissue. This not only 
highlights the potential interplay between these three KP 
enzymes in facilitating tumour invasion, but also suggests 
that targeting a single KP enzyme may not be optimal 
for complementary cancer immunotherapy. This agrees 
with our study demonstrating that the entire pathway is 
active in human brain tumours that suppresses the anti-
tumour immune response and support tumour growth 
[57]. Collectively, these data suggest that the elevated KP 
activity contributes to tumour aggressiveness. 

CONCLUSIONS

Since the discovery of the essential role played by 
IDO1 in mediating maternal foetal tolerance, a great deal 
of interest has focused on the roles that IDO1 and other 
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KP enzymes may play in cancer immunology. Over the 
past decade strong evidence has accumulated that confirms 
that IDO1/TDO2 overexpression in tumour results in 
tryptophan depletion in the microenvironment, in turn, 
suppressing the T-cell mediated immune response. Other 
observations also implicate KP activation in promoting 
immune evasion. Higher 3-HAA concentrations, resulting 
from increased KYNU activity, causes reduced iNOS 
expression in macrophages, impairing their anti-tumour 
activity. Increased Tregs population caused by KYN-
AhR activation further promotes immune suppression in 
the tumour vicinity and increases in QUIN, the NAD+ 
precursor, enhances cell proliferation. Considering these 
observations, there has been considerable interest in the 
potential of IDO1 inhibitors to reverse immune evasion 
with the majority of studies providing positive results.

Clinical data confirms the role of KP activation 
in BrCa and provides support for the use of KP enzyme 
inhibitor/s in addition to standard chemotherapy regimens. 
Significantly, KP activation seems to be associated 
with the more aggressive forms of BrCa that readily 
metastasize. Hence, it is possible to speculate that BrCa 
patient KP profiling may provide a valuable biomarker 
potentially capable of discriminating between non-
invasive and invasive BrCa. Such methodology may have 
significant diagnostic, prognostic and/or therapeutic value. 
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