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ABSTRACT
Melanoma is the most aggressive and dangerous type of skin cancer, but its 

molecular mechanisms remain largely unclear. For transcriptomic data of 478 primary 
and metastatic melanoma, nevi and normal skin samples, we performed high-
throughput analysis of intracellular molecular networks including 592 signaling and 
metabolic pathways. We showed that at the molecular pathway level, the formation 
of nevi largely resembles transition from normal skin to primary melanoma. Using 
a combination of bioinformatic machine learning algorithms, we identified 44 
characteristic signaling and metabolic pathways connected with the formation of 
nevi, development of primary melanoma, and its metastases. We created a model 
describing formation and progression of melanoma at the level of molecular pathway 
activation. We discovered six novel associations between activation of metabolic 
molecular pathways and progression of melanoma: for allopregnanolone biosynthesis, 
L-carnitine biosynthesis, zymosterol biosynthesis (inhibited in melanoma), fructose 2, 
6-bisphosphate synthesis and dephosphorylation, resolvin D biosynthesis (activated 
in melanoma), D-myo-inositol hexakisphosphate biosynthesis (activated in primary, 
inhibited in metastatic melanoma). Finally, we discovered fourteen tightly coordinated 
functional clusters of molecular pathways. This study helps to decode molecular 
mechanisms underlying the development of melanoma. 
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INTRODUCTION

Melanoma is a type of skin cancer formed from 
melanocytes, skin cells that produce the pigment melanin. 
Treatment of primary melanoma includes surgical 
removal, and in the case of early diagnosis, the US 
survival rate reaches 91%. However, melanomas are very 
active in forming metastases, and if not diagnosed at the 
early stage, the survival prognosis is poor [1]. Melanoma 
accounts for 75% of deaths related to skin cancer [1]. 
In 2012, melanoma occurred in 232,000 patients and 
resulted in 55,000 deaths worldwide [2]. Development of 
melanomas is commonly caused by mutations from UV 
linked DNA damage [3] and by inherited genetic factors 
like highly  penetrant loss-of-function mutations in tumor 
suppressor genes CDKN2A and XP [4, 5]. About 40% of 
human melanomas contain activating mutations of the 
B-Raf protein, resulting in constitutive signaling through 
the Raf to MAP kinases growth signaling pathways [6].
The presence of multiple melanocytic nevi, a genetic trait 
compounded by sun exposure, also increases the risk of 
developing melanoma, although the transition from benign 
nevi to melanoma does not usually occur and what triggers 
this change is unknown. 

Melanoma cells are characterized by a high mutation 
rate. Genome-wide sequencing of twenty-five human 
melanomas identified ~100 structural rearrangements and 
~80,000 mutated bases per  genome [7]. This is roughly 
1100-times higher than the background mutation frequency in 
a normal human genome replicated between generations [8]. 

The molecular mechanisms of developing melanoma 
may be quite distinct. For example, UV irradiation causes 
keratinocytes to increase expression of multifunctional 
protein p53, which, by acting as a transcriptional factor, 
increases production of melanocyte-stimulating hormone 
(MSH) by these cells [9]. Secreted MSH molecules bind 
to melanocortin 1 receptors (MC1R) on the surface of 
melanocytes, which, in turn, promote the internal adenylate 
cyclase cascade and activate the CREB pathway, thus 
resulting in the activation of transcriptional factor MITF 
[10]. MITF, in turn, transactivates expression of p16 and 
Bcl2 proteins, which promote survival of melanocytes [11]. 

Alternatively, B-Raf, and its downstream signaling 
pathway through MAP kinases, directly promotes cell 
proliferation leading in melanomas, as evidenced by the 
positive clinical trials for B-Raf inhibitor drugs Dabrafenib 
and Vemurafenib [13, 14]. 

Another feature of invasive and metastatic melanoma 
cells is their ability to suppress the immune system, e.g. by 
overproducing CTLA-4 protein receptor, which inactivates 
T-cells [12]. Targeting this protein by the recently 
developed anticancer drug Ipilimumab showed enhanced 
survival for the advanced melanoma patients [13]. 

To learn more about the mechanisms that induce 
melanoma and cause it to progress, we performed high-
throughput analysis of melanoma-related intracellular 

molecular networks including 592 signaling and metabolic 
pathways. We profiled a total of 478 transcriptomes 
corresponding to primary and metastatic melanoma, 
nevi and normal tissue samples. Using a combination 
of statistics and machine learning algorithms, we found 
characteristic sets of signaling and metabolic pathways 
activated or repressed during the development of primary 
melanoma from normal skin and also during its further 
progression to the metastatic state. We provide evidence 
that, at the molecular pathway level, formation of nevi 
clearly resembles the transitional state from normal skin 
to primary melanoma. For each stage of skin-to-melanoma 
transition, we identified characteristic molecular pathways, 
many of which are novel associations. Using bioinformatics 
analysis combined with various statistics and machine 
learning algorithms, we then created a stable model 
describing formation and progression of melanoma at the 
level of molecular pathway activation.  Understanding the 
molecular mechanisms of melanoma development will be 
key in developing new treatment strategies.

RESULTS AND DISCUSSION

Bioinformatics tool for the analysis of 
intracellular signaling and metabolic pathways

We processed transcriptomic data from primary and 
metastatic melanoma, nevi, and reference normal samples 
to establish pathway activation strength (PAS) profiles 
corresponding to signaling and metabolic intracellular 
molecular pathways. Several approaches were published 
previously by us and others to measure PAS based on 
large scale gene expression data, either transcriptomic 
or proteomic. Khatri et al. [14] classified those methods 
into three major groups: Over-Representation Analysis 
(ORA), Functional Class Scoring (FCS) and Pathway 
Topology (PT)-based approaches. ORA-based methods 
calculate whether the pathway is significantly enriched 
with differentially expressed genes [15]. These methods 
have many limitations, as they ignore all non-differentially 
expressed genes and do not account for many gene-specific 
characteristics. FCS-based approaches partially tackle 
aforementioned limitations by calculating fold change-
based scores for each gene and then combining them into 
a single pathway enrichment score [16]. PT-based analysis 
also takes into account topological characteristics of each 
given pathway, assigning additional weights to the genes 
(for a review, see [17]). To account for gene expression 
variability within a pathway, a set of differential variability 
methods has been developed [18]. Differential variability 
analysis determines a group of genes with a significant 
change in variance of gene expression between case and 
control groups [19]. This approach was further extended 
and applied on the pathway level [20]. 

Recently, we developed a new biomathematical 
method for pathway analysis, termed OncoFinder [21]. 
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Based on kinetic models that use the “low-level” approach 
of mass action law, OncoFinder performs quantitative and 
qualitative enrichment analysis of the signaling pathways. 
For each sample investigated, it performs a case-
control pairwise comparison and calculates the Pathway 
Activation Strength (PAS), a value which serves as a 
qualitative measure of pathway activation. Unlike most 
other methods, this approach determines if the signaling 
pathway is significantly up- or down-regulated compared 
to the reference. Negative and positive overall PAS values 
correspond to an inhibited or activated state of signaling 
pathway [21]. 

OncoFinder is also, to our knowledge, a unique PAS 
calculating method, which was reported to provide output 
data with significantly reduced noise introduced by the 
experimental transcriptome profiling systems [22]. This 
method was shown to be efficient in finding new cancer 
biomarkers, more stable than individual gene expression 
patterns [23]. Since its development, Oncofinder has 
been applied to the analysis of transcriptomes of various 
conditions, including leukemia and solid cancers [24–26], 
Hutchinson Gilford Disease [27] and Age-Related Macular 
Degeneration Disease [28].

Here, we updated the OncoFinder algorithm and the 
corresponding databases, which were originally developed 
to analyze only intracellular signaling pathways, to a new 
version supporting the analysis of both signaling and 
metabolic pathways. To build the internal interactions 
database for metabolic pathways, we used the publicly 
available HumanCyc database (www.humancyc.org). 
The resulting database used in this study contained 271 
signaling and 321 metabolic intracellular pathways 
(Supplementary Dataset S1).

Intracellular signaling and metabolic pathway 
activation profiles

In this study, we profiled a group of 478 human 
transcriptomes consisting of 132 human primary 
melanoma, 222 metastatic melanoma, 103 normal skin and 
21 nevi samples (Table 1). 

The normalized gene expression data were next 
processed using the OncoFinder algorithm to establish 
pathway activation strength (PAS) profiles. The complete 
PAS data are shown on Supplementary Dataset S2. To 
assess the functional relations between the investigated 
groups of samples, we built hierarchical clustering 
heatmaps with Ward method using Euclidean distance 
for all samples and all investigated molecular pathways 
(Figure 1). We observed rather uncertain clustering 
features hardly distinguishing between the four sample 
classes. To increase the resolution of clustering methods 
and to identify features that distinguish the above 
functional groups, we applied a selection of machine 
learning classifier algorithms.

Enhanced sampling classification with machine 
learning algorithms

We used several different machine classifiers, 
including Random Forest (RF) Support Vector Machines 
(SVM) with Linear and Radial kernels, Partial Least 
Squares (PLS) and Generalized linear regression with 
Glmnet regularization. Prior to classification, we filtered 
for small deviation and collinearity to prevent using two 
highly correlated variables when one would suffice.  Such 
approaches allowed us to achieve ~0.94 average balanced 
accuracy of a 4-class problem (classification into four 
groups: Skin, Nevi, Primary and Metastatic melanoma) 
using only metabolic pathways (Table 2) and ~0.94 average 
balanced accuracy using only signaling pathways (Table 3). 
In accordance with their vague transitional state, the most 
difficult group for all the classifiers used were nevi, for which 
the classifiers showed lowest combinations of sensitivity 
(0.4–0.8) and balanced accuracy (0.7–0.9) (Tables 2–3). Full 
statistical comparison of different classifiers are shown on 
Supplementary Dataset S3.  Groups other than nevi formed 
significantly more clear-cut clusters, which corresponded to 
their physiologically distinct states. Overall, the SVM family 
classifiers showed the best results compared to other models. 

Identification of top pathways discriminating 
transition from skin to nevi and melanoma

To further analyze progression of melanoma 
and relevant molecular events at the level of pathway 
activation, we used information of variable importance 
during the process of classification. For each statistical 
model, we identified the top 30 metabolic and top 30 
signaling pathways, distinguishing the two classes using 
the “varImp” function from “caret” package, which unifies 
different techniques of measuring importance between 
different models (Supplementary Dataset S3). Next, the 
top pathways were intersected and a list of consensus 
pathways was established (Tables 4–5). The consensus 
records included 25 metabolic and 19 signaling pathways 
for two different models of melanoma development, the 
first occurring via transitional state of the nevus (Skin → 
Nevus → Melanoma) and the second not involving nevus 
(Skin → Primary Melanoma → Metastatic Melanoma). 
To test the classification power of these top pathways, 
we built a new hierarchical clustering heatmap with the 
Ward method, using Euclidean distance for all samples 
and top investigated molecular pathways with supporting 
Principal Components Analysis (PCA) projections plots 
(Figure 2). These top pathways enabled significantly better 
discrimination between the groups, as evidenced by PCA 
projections plots for all pathways (Figure 2A) compared 
to plots for the selected top pathways (Figure 2B). 
Next, we used these top pathways in the same 4-type 
prediction model as before. Results for best model  
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Figure 1: Hierarchical clustering heatmap of all samples and all molecular pathways under investigation.
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Figure 2: Scatterplots for principal component analysis. (A) Results built for all metabolic and signaling pathways. (B) Results 
built for top characteristic metabolic and signaling pathways.

Table 1: Summary of transcriptomic datasets used in this study

Dataset ID Experimental platform Skin samples Nevus Primary melanoma Metastatic 
melanoma

GSE 7553 GPL570 5 0 14 40

GSE 53223 GPL570 6 12 0 0

GSE 46517 GPL96 8 9 31 52

GSE 39612 GPL570 64 0 0 0

GSE 31879 GPL570 4 0 10 0

GSE 23376 GPL570 0 0 0 22

GSE 19234 GPL570 0 0 0 44

GSE 15605 GPL570 16 0 46 12

GSE 8401 GPL96 0 0 31 52
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(SVM Linear model) confirmed adequacy of the classifier 
pathway selection and showed an averaged balanced 
accuracy of ~0.93, very close to the model with full 
pathways (Table 6, Supplementary Dataset S4). 

On the heatmap and PCA projection plots, 
the samples corresponding to nevi formed a cloudy 
group and clustered either with each other or diffusely 
between primary melanoma and normal skin samples. In 
agreement with previous reports, this suggests that nevi 
form a complicated group of highly variable samples, 
which frequently correspond to the intermediate state 
between normal skin and primary melanoma [29]. The 
top classifier elements included 25 metabolic and 19 
signaling pathways. For all of these signaling pathways, 
association with melanoma was reported previously in 
the literature. However, for the metabolic pathways, this 
was not the case, and previous reports on the association 
with melanoma were not found for the following (Table 4): 
Allopregnanolone biosynthesis, L-carnitine biosynthesis, 
Zymosterol biosynthesis (inhibited in melanoma), D-myo-
inositol hexakisphosphate biosynthesis (activated in 
primary, inhibited in metastatic melanoma), Fructose 2, 
6-bisphosphate synthesis and dephosphorylation, Resolvin 
D biosynthesis (activated in melanoma). Thus, we report 
here six novel associations between activation of metabolic 
molecular pathways and progression of melanoma. 

Functional significance of characteristic 
molecular pathways

We observed a number of molecular pathway features 
distinguishing the transition from normal skin to either nevi 
or primary and metastatic melanomas (Tables 4, 5).

In melanomas, we identified several character istically 
activated tumor suppressor pathways, like Fas signaling, 
a branch of ATM signaling leading to apoptosis and 
senescence, and the DDR pathway, leading to apoptosis. 
However, caspase cascade members were strongly inhibited 
in melanomas, which suggests that cancer cells efficiently 
escape cell death initiated at the upstream stages. This may 
be achieved by degradation of tumor suppressor proteins 
using proteasome-linked mechanisms (activated in both 
types of melanoma), and by activating cell survival and 
proliferation pathways like branches of CD40 signaling, 
HGF signaling and HIF1-Alpha pathway (activated in 
melanomas). Interestingly, the BRCA1 pathway dealing 
with DNA repair was strongly stimulated in melanomas, 
which may contribute to the relative inefficiency of 
radiation therapy treatment of metastatic melanomas.

Actively replicating cancer cells are faced with a lack 
of oxygen (hypoxia) and thus have to switch their energetic 
balance from oxidative phosphorylation to glycolysis. 
Glycolysis, which is based on anaerobic conversion of 
glucose to lactate, becomes the major source of ATP and 
NADH in the cells. This phenomenon, known as Warburg 
effect, is characteristic for most cancer cells [30]. Glycolysis 
is also the major source of substrates for basic biosynthetic 
pathways, e.g. those dealing with building ribonucleotides 
and amino acids [31]. For both nevi and melanomas, we 
observed increased expression of mannose-6-phosphate 
isomerase, an enzyme that makes it possible to utilize the 
sugar mannose as substrate for glycolysis. This, in turn, may 
intensify production of ATP by the transformed cells.

On the other hand, nevi-independent transformation 
to melanomas was characterized by gradual decrease 
of the nitric oxide (NO) biosynthesis pathway. NO is a 

Table 2: SVM with Radial kernel classification report based on metabolic pathways
SVM Radial Sensitivity Specificity Balanced accuracy

Metastatic Melanoma 0.927 0.952 0.94

Nevus 0.8 0.991 0.896

Primary Melanoma 0.909 0.965 0.937

Skin 1 0.989 0.995

Average balanced accuracy 0, 941.

Table 3: SVM with Radial kernel classification report based on signaling pathways
SVM Radial Sensitivity Specificity Balanced accuracy

Metastatic Melanoma 0.909 0.937 0.923

Nevus 1 0.973 0.987

Primary Melanoma 0.879 0.941 0.91

Skin 0.88 1 0.94

Average balanced accuracy 0, 939.
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known mediator of cancer aggressiveness. Mechanisms 
of its influence depend greatly on concentration and time 
of exposure. Low concentrations stimulate proliferation 
of cancer cells, whereas high levels of NO may cause 
antitumor effects [32]. Low levels (< 300 nM) promote 
cell survival and proliferation by activating mTOR, 
cyclic GMP signaling, by Akt phosphorylation and by 
stabilization of hypoxia-induced factor HIF-1α [33]. At 
the same time, low NO activates glycolysis by stimulating 
AMP-protein kinases, by increasing concentrations of 
fructose-2, 6-bisphosphatase, and by promoting glucose 
uptake by the cells [34]. In contrast, increased levels of 

NO (greater than 300 nM) promote activation of p53 
signaling and related cytostatic and apoptotic effects 
linked with inactivation of ERK and Akt signaling [35]. 

We speculate that the apparently stimulated NO 
synthesis pathway in nevi may be one of the factors that 
stabilizes their condition and prevents cancer transformation. 
Activity of the enzymes involved in NO biosynthesis, like 
arginine succinate synthase (ASS) depends on the regulation 
by glucocorticoid hormones cAMP, glucagon and insulin. 
Reduced expression of ASS was previously reported in the 
literature for melanoma and other tumors [36]. Cancer cells 
frequently are unable to synthesize sufficient amounts of 

Table 4: Top metabolic pathways implicated in progression of melanoma

Pathway Nevus vs 
Skin

Pr. Mel 
vs Skin

Met. Mel 
vs Skin

Met.Mel 
vs Pr.Mel

Primary 
vs Nevus

allopregnanolone biosynthesis UP DOWN DOWN DOWN DOWN

citrulline-nitric oxide cycle UP DOWN DOWN DOWN DOWN

dTMP ide novoi biosynthesis mitochondrial DOWN UP UP UP UP

L-carnitine biosynthesis UP DOWN DOWN DOWN DOWN

5-aminoimidazole ribonucleotide biosynthesis DOWN UP UP UP UP

eumelanin biosynthesis UP UP UP DOWN DOWN

putrescine biosynthesis II DOWN DOWN UP UP UP

pyrimidine deoxyribonucleosides salvage DOWN UP UP UP UP

spermine and spermidine degradation I UP DOWN DOWN DOWN DOWN

superpathway of tryptophan utilization UP DOWN DOWN UP DOWN

tryptophan degradation X mammalian via tryptamine UP DOWN DOWN DOWN DOWN

1D-imyoi-inositol hexakisphosphate biosynthesis V from 
Ins134P3

UP UP DOWN DOWN UP

D-mannose degradation UP UP UP UP DOWN

fructose 26-bisphosphate synthesis, dephosphorylation UP UP UP DOWN DOWN

histamine biosynthesis UP DOWN DOWN DOWN DOWN

inosine-5-phosphate biosynthesis UP UP UP UP DOWN

melatonin degradation II UP DOWN DOWN DOWN DOWN

pyrimidine deoxyribonucleosides degradation UP UP UP DOWN UP

resolvin D biosynthesis UP UP UP DOWN UP

retinoate biosynthesis I DOWN DOWN DOWN UP UP

superpathway of steroid hormone biosynthesis UP DOWN DOWN DOWN DOWN

tRNA charging UP UP UP UP UP

UDP-N-acetyl-D-galactosamine biosynthesis II UP UP UP UP DOWN

valine degradation DOWN DOWN DOWN UP DOWN

zymosterol biosynthesis UP DOWN DOWN DOWN DOWN

UP or DOWN indicates positive and negative difference between the state of interest (nevus, primary and metastatic 
melanoma) and skin in median PAS value, respectively.
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arginine and thus fully depend on the import of this amino 
acid from blood. It was shown previously that arginine 
deprivation in blood using the enzyme arginine deimynidase 
may result in cancer regression [36]. Moreover, arginine 
is tightly associated with the metabolism of polyamines 
in eukaryotic cells. Arginine is the precursor of ornithine, 
which is a substrate for further biosynthesis of polyamines 
[37]. Thus, reduction of arginine biosynthesis may cause 
altered concentrations and metabolism for putrescin, 
spermidine, spermine and other polyamines in melanoma. 
In this study, we show suppressed degradation of spermine 
and spermidine in both types of melanoma, which may 
help the cells to store the synthesized polyamines. The 
polyamines are major organic cations presenting in the 
eukaryotic cells. These molecules are absolutely necessary 
for cell growth and differentiation [38]. They can non-
specifically activate DNA replication, transcription and 
translation [39]. For example, increased concentrations 
of polyamines stimulate proliferation, increase synthesis 
of the external matrix proteins and enhance angiogenesis 
[40]. Ornitindecarboxylase (ODC) is the first enzyme in 

the pathway of polyamine synthesis. In transgenic mice, 
progression of melanoma depends on the biosynthesis 
of polyamines, particularly putrescin, as treatment with 
ODC inhibitors inhibits tumor growth and causes its rapid 
regression [41]. Moreover, inhibitors of polyamine synthesis 
enzymes efficiently decrease frequencies of spontaneous 
skin cancers caused by UV irradiation or induced by 
chemicals in different experimental models. In contrast, 
artificial induction of ODC activity causes a sequential 
increase in concentrations of polyamines followed by 
enhanced frequencies of skin cancers [41].

Furthermore, we observed sequential inhibition 
of a pathway of histamine biosynthesis in both types 
of melanoma. Histamine is a diamine molecule that 
has important neurotropic activities but also modulates 
immune response by increasing permeability of blood 
vessels to leukocytes and proteins [42]. In line with our 
observations, an antagonistic relationship was previously 
reported for polyamines and histamine because of partial 
inhibition of intracellular uptake of polyamines by the 
histamine [42]. 

Table 5: Top signaling pathways implicated in progression of melanoma

Pathway Nevus vs 
Skin

Pr. Mel vs 
Skin

Met. Mel 
vs Skin

Met.Mel 
vs Pr.Mel

Pr. Mel vs 
Nevus

Fas Signaling Pathway (Negative) DOWN UP UP UP UP

cAMP Pathway (Glycolysis) UP DOWN DOWN UP DOWN

CD40 Pathway (Cell Survival) UP UP UP UP UP

AKT Pathway (Protein Synthesis) UP DOWN DOWN DOWN DOWN

ATM Pathway (Apoptosis, Senescense) DOWN UP UP UP UP

BRCA1 Main Pathway UP UP UP UP UP

cAMP Pathway (Endothelial Cell Regulation) UP DOWN DOWN DOWN DOWN

cAMP Pathway (Myocardial Contraction) DOWN DOWN DOWN DOWN DOWN

cAMP Pathway (Protein Retention) DOWN UP UP UP UP

Caspase Cascade (Apoptosis) UP DOWN DOWN DOWN DOWN

CD40 Pathway (IKBs Degradation) UP UP UP UP UP

DDR pathway Apoptosis DOWN UP UP UP UP

Glucocorticoid Receptor Pathway (Cell cycle arrest) UP DOWN DOWN DOWN DOWN

HGF Pathway (PKC pathway) UP UP UP UP DOWN

HIF1-Alpha Main Pathway UP UP UP UP UP

JNK Pathway (Insulin signaling) UP DOWN DOWN DOWN DOWN

mTOR Pathway (VEGF pathway) DOWN DOWN UP UP DOWN

PAK Pathway (Myosin Activation) DOWN DOWN DOWN DOWN DOWN

Ubiquitin Proteasome Pathway (Degraded Protein) DOWN UP UP UP UP

UP or DOWN indicates positive and negative difference between the states of interest (nevus, primary and metastatic 
melanoma) and skin in median PAS value, respectively.
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Another feature distinguishing normal skin, nevi, 
and melanomas was the pathway of carnitine biosynthesis, 
apparently activated in nevi and inhibited in melanomas. 
Carnitine is a compound required for fatty acid metabolism 
in mammals. When entering the cell, free fatty acids are 
oxidized to form acil-CoA molecules, which are next 
transferred to the mitochondrial matrix using carnitine-
palmitoyl transferase 1 (CPT1) and carnitine [43]. The 
CPT1-based transfer system is, therefore, directly linked 
with the biosynthesis of carnitine and a hypoxic state 
[44]. Carnitine is synthesized using two amino acid 
substrates, lysine and methionine, in a reaction catalyzed 
by trimethyl-lysine-dioxygenase (TMLH) [45]. The 
observed increase in carnitine biosynthesis regulation may 
be connected with the hypoxic conditions characteristic 
for primary and metastatic melanomas, both of which 
feature upregulation of the hypoxia-induced factor 1 
(HIF1) pathway. The melanoma cells, therefore, may be 
deficient in their ability to use fatty acids as the substrate 
for oxidative phosphorylation; this deficiency may be an 
object of future molecular therapeutic approaches.

We also noticed decreased activation of the  
tryptophan degradation pathway in melanomas, which 
may lead to tryptophan accumulation in the cells. 
Tryptophan is the precursor of many signaling molecules, 
including melatonin and serotonin [46], and also of 
NAD and niacin. Congruently, we found that a pathway 
of melatonin degradation is decreased in both types of 
melanoma. Thus, regulation of melatonin and tryptophan 
degradation may be correlated in melanoma cells.

Generalized molecular model of transition from 
normal skin to melanoma and nevi

We found 25 metabolic and 19 signaling pathways 
that were good-quality characteristic discriminators 
between the classes of normal skin, nevus, primary 
melanoma and serotonin metastatic melanoma (Tables 4, 5). 
We considered two general models of melanoma formation 
and transformation including transitions (i) Skin → Nevus 
→ Prtimary melanoma→ Metastatic melanoma) and 
nevus-independent model (ii) Skin → Primary Melanoma 
→ Metastatic Melanoma (Figure 3). In both transition 
axes, HIF1-alpha and BRCA1 pathways were gradually 
increasing when moving from normal state to metastatic 
melanoma. 

Transition from normal skin to nevi compared to 
primary melanoma was very peculiar because it included 
activation of histamine, allopregnanolone, and citrulline – 
NO cycle biosynthesis pathways. Eumelanin biosynthesis 
and BRCA1, HIF1-alpha signaling pathways were also 
activated. Several pathways were also suppressed in nevi, 
in contrast to primary and metastatic melanomas; these 
included putrescin biosynthesis, valine degradation, and 
the senescence/apoptotic branch of the ATM pathway.

Transition from normal skin to primary melanoma 
was characterized by upregulation of the eumelanin 
biosynthesis pathway, BRCA1, HIF1-alpha pathways, 
senescence/apoptotic branch of the ATM pathway, cell 
death-promoting Fas signaling pathways, and the cell 
survival-promoting branch of the CD40 pathway. In turn, 
pathways of putrescine, histamine, allopregnanolone, 
steroid hormone and citrulline – NO cycle biosynthesis 
and of valine degradation were inhibited in primary 
melanoma compared to skin.

Transition from nevus to primary melanoma showed 
upregulation of the BRCA1, HIF1-alpha pathways, 
senescence/apoptotic branch of the ATM pathway, and 
putrescine biosynthesis pathway. Inhibited pathways were 
histamine, allopregnanolone, eumelanin biosynthesis 
and citrulline – NO cycle biosynthesis and of valine 
degradation.

Finally, transition from primary to metastatic 
melanoma comprised upregulation of  BRCA1, HIF1-
alpha pathways, the senescence/apoptotic branch of 
the ATM pathway, putrescine biosynthesis, and valine 
degradation pathways. Inhibited pathways were histamine, 
allopregnanolone, eumelanin biosynthesis, and citrulline – 
NO cycle biosynthesis. The complete list of characteristic 
pathways is shown on Tables 4 and 5.

Epigenetic regulation of melanoma advancement

The HIF1 pathway is specifically activated in the 
critical transitions from nevus to primary melanoma and, 
again to the more aggressive metastatic melanoma. HIF1-
alpha has a tight correlation to epigenetic mechanisms.  It 
has been demonstrated that HIF1-alpha induces expression 
of histone demethylases, JARID1C and JMJD1A for 
example, in colorectal cancer cells, which directly promote 
malignant development by epigenetic mechanisms 
[47, 48]. Since chromatin remodeling is associated with 

Table 6: SVM with Linear kernel method classification report based on combination of top signaling 
and metabolic pathways

SVM Linear Sensitivity Specificity Balanced accuracy
Metastasic 0.909 0.889 0.899
Nevus 1 0.991 0.996
Primary Melanoma 0.788 0.965 0.876
Skin 0.96 0.978 0.969

Average balanced accuracy 0, 935.
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changes in gene expression, a closer look at the pathways 
regulated by HIF1-alpha, would help elucidate significant 
molecular pathways promoting the transitions to primary 
and metastatic melanoma, This does not preclude other 
epigenetic mechanisms that may be specific to the 
development of melanoma. For example, studies have 
shown the role of micro-RNA, miR-211 and miR-375, 
have tumor suppressive functions in melanocytes [49, 50]. 
Silencing of both micro-RNA species have been observed 
in melanoma, and indeed, epigenetic downregulation of  
miR-375 locus was observed as one mechanism of this 
silencing [50]. Taken together, the role of epigenetics in 
melanoma needs to be investigated further, and using 
Pathway Activation Scoring, we may be able to delineate 
the relationships with the metabolic and signaling 
pathways that we have described above. 

Congruent activation of various sets of molecular 
pathways

For the first time, we explored here the activity of 592 
signaling and metabolic pathways using the hierarchical 
clustering assay. We applied the Weighted Correlation 
Network Analysis (WGCNA) method to identify similar 
regulation patterns between the molecular pathways. We 
found that molecular pathways form 14 distinguishable 
clusters, each characterized by concordant activation 
signatures of the enclosing pathways (Jaccard structural 
similarity index signatures are shown separately for each 
cluster on Supplementary Dataset S5). All pathways in 
clusters were filtered according to their paired and overall 
correlation coefficients. All molecular pathways from each 
cluster are listed in Supplementary Dataset S6. 

In some instances, congruent activation for the 
pathways forming the same clusters can be explained by 
the structural similarities between the cluster-forming 

pathways – e.g., AKT Pathway (Caspase Cascade) and 
AKT Pathway (p73 Mediated Apoptosis) from cluster #8, 
or p53 Signaling (Negative) Pathway (p53 Degradation) 
and Wnt Pathway (Ctnn-b Degradation) from cluster 
#5 are highly similar in their gene product composition 
(Supplementary Dataset S5). However, for the majority 
(10 out of 14) of clusters, pathways were combined not 
due to similar gene content, but rather because of the true 
functional coordination between the cluster members 
(Supplementary Dataset S5). For example, for cluster 6 
shown on Figure 4, most of the enclosing pathways have 
low structural similarity, but are at the same time strongly 
functionally coordinated, as reflected by low Jaccard 
indexes and high PAS correlation scores, respectively. 
This common regulation of various molecular pathways is 
a novel finding and will be analyzed in detail in further 
studies. 

CONCLUSIONS

Here, we provide evidence that at the molecular 
pathway level, nevi largely correspond to a transitional 
state from normal skin to primary melanoma. We found 
44 signaling and metabolic pathways connected with the 
formation of nevi and with the development of primary 
melanoma and its metastases. We created a stable model 
describing formation and progression of melanoma at 
the level of molecular pathway activation. Many of 
these pathways had never been previously associated 
with melanoma. We found six novel associations 
between activation of metabolic molecular pathways and 
progression of melanoma. Finally, we discovered fourteen 
tightly coordinated functional clusters of molecular 
signaling and metabolic pathways. This study helps to 
decode molecular mechanisms underlying development 
of melanoma. 

Figure 3: Schematic representation of two alternative models of melanoma progression built in this study. One model 
comprises transition from skin to primary melanoma versus “nevus” stage (left panel), the second – direct transition from skin to primary 
melanoma (right panel). Green arrows indicate activated molecular pathways, red arrows – suppressed pathways.
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Figure 4: (A) Correlation plot built for cluster 6. (B) Heatmap of Jaccard gene intersection index between pathways in cluster 6.
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MATERIALS AND METHODS

Transcriptomic datasets

We obtained from NCBI GEO repository (www.ncbi.
nlm.nih.gov/geo/) nine datasets containing transcriptomic 
information for human tissues related to melanoma: 
GSE7553, GSE53223, GSE46517, GSE39612, GSE31879, 
GSE23376, GSE19234, GSE15605 and GSE8401, and one 
dataset with the transcriptomic data for Agilent Universal 
Human RNA Reference (GSE3061). For all the datasets, 
experimental transcriptional profiling was performed using 
Affymetrix GPL90 and GPL570 platforms. The data from 
different datasets were quantile-normalized using «affy» 
package for R 3.1.1 for each platform, and afterwards 
combined together followed by the harmonization with 
the XPN algorithm for cross-platform normalization of 
samples [51]. Each sample under study, except Agilent 
Universal Human RNA Reference, was classified to one of 
the groups below: “Normal Skin”, “Primary Melanoma”, 
“Metastatic Melanoma” or “Nevi”, according to dataset 
description. In total, we included 103 Skin, 21 Nevus, 132 
Primary Melanoma, and 222 Metastatic Melanoma samples 
in our study. 

Functional annotation of gene expression data 

For the functional annotation of gene expression data 
at the molecular pathway level, we applied OncoFinder 
algorithm, recently published by Buzdin et al. [21]. It 
operates with calculation of the Pathway Activation 
Strength (PAS), a value which serves as a qualitative 
measure of a molecular pathway activation. The formula 
for PAS calculation accounts for gene expression data and 
for information on the protein interactions in a pathway, 
namely, individual protein activator or repressor roles in 
a pathway [24].

The positive value of PAS indicates abnormal 
activation of a signaling pathway, and the negative value 
- its repression. Here, the case-to-normal ratio, CNRn, is 
the ratio of expression levels for a gene n in the sample 
under investigation to the same average value for the 
control group of samples. In addition, for each CNR 
value, we applied multiplication to a Boolean flag of BTIF 
(beyond tolerance interval flag), which equals to 1 when 
the CNR value passed, and to 0 when CNR value did not 
pass both or either one of the two criteria of significantly 
differential expression: first, the expression level for the 
sample must fit outside of the tolerance interval for norms, 
with p < 0.05, and second, the value of CNR must differ 
from 1 by at least 1.5-fold. For each sample, we obtained 
results for the 269 signaling and 363 metabolic pathways, 
in standard application using Agilent Universal Human 
RNA Reference samples as the norms. Alternatively, for 
some calculations, the norms were the normal human skin 
samples.

Classification and feature selection

We applied the following frequently used machine 
learning algorithms for classification of the samples – 
SVM (Support Vector Machine) with linear and radial 
kernel (“e1071” package), Random Forest (“rf”), Lasso 
(“glmnet”), Partial Least Squares (“pls”) and Boosted 
Logistical Regression (“caTools”), Naive Bayes Classifier 
(“klaR”). R package “caret” was employed to implement 
uniform interface for each of the above learning algorithms. 
To prevent overfitting, we used repeated 10-fold cross-
validation. Before training these classifiers, we performed 
different feature selections – features (PAS scores for 
different molecular pathways) with near zero variance were 
removed using the helper function from “caret” package 
termed “nearZeroVar”, while collinear predictors were 
identified and removed with the function “findCorrelation” 
from “caret” package, with threshold setting 0.85.

Identification of top molecular pathways 

We applied a two-step scheme to identify the most 
relevant pathways for classification of the melanoma 
samples. At the first step, we used function “varImp” from 
the caret package to obtain the top 30 pathways for each 
classificator model. Next, we looked for the intersections 
among all the models. The second step was the Kruskall-
Wallis test, implemented in package “agricolae,” and 
removal of pathways not significantly differentially 
regulated (p > 0.05) between at least two different classes 
in progressions Skin→ Nevus → Primary Melanoma, and 
Skin → Primary Melanoma → Metastasic Melanoma. 

Clustering

To explore subtypes of primary and metastasic 
melanoma, we applied the hierarchical clustering method 
“hclust” with Ward distance and cutted clustering 
dendrogram at height 2000. We used R package 
“WGCNA” to find clusters of correlating pathways in 
melanoma samples. Function “blockwiseModules” was 
used to create a network, with minimum of 5 pathways 
in subnetworks. A correlation diagram was built using 
function “pheatmap” from the package “pheatmap,” sorted 
with respect to hierarchical clustering. 

Each pathway in a cluster was filtered by correlation 
with other paths in the cluster – either with a mean 
modulus of correlation coefficient more than 0.7, or with at 
least one coefficient more than 0.85 and not 1 (correlation 
with itself). For each cluster, we also built heatmaps of 
Jaccard coefficient of gene intersections.

Heatmaps and statistical analysis 

We built our hierarchical clustering heatmaps using 
function  “pheatmap” from “pheatmap” package; we also 
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used this to create cluster images and correlational plots. 
PCA plots were made with help of “prcomp” function 
in  R. Changes in pathway activation in different groups 
were  measured by median change and t-test with multiple 
test correction.
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