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ABSTRACT
Since 2003, high-risk neuroblastoma (HR-NB) patients at our center received 

anti-GD2 antibody 3F8/GM-CSF + isotretinoin – but not myeloablative therapy with 
autologous stem-cell transplantation (ASCT). Post-ASCT patients referred from 
elsewhere also received 3F8/GM-CSF + isotretinoin. We therefore accrued a study 
population of two groups treated during the same period and whose consolidative 
therapy, aside from ASCT, was identical. We analyzed patients enrolled in 1st 
complete/very good partial remission (CR/VGPR). Their event-free survival (EFS) and 
overall survival (OS) were calculated from study entry. Large study size allowed robust 
statistical analyses of key prognosticators including MYCN amplification, minimal 
residual disease (MRD), FCGR2A polymorphisms, and killer immunoglobulin-like  
receptor genotypes of natural killer cells. The 170 study patients included 60 
enrolled following ASCT and 110 following conventional chemotherapy. The two 
cohorts had similar clinical and biological features. Five-year rates for ASCT and 
non-ASCT patients were, respectively: EFS 65% vs. 51% (p = .128), and OS 76% vs.  
75% (p = .975). In multivariate analysis, ASCT was not prognostic and only  
MRD-negativity after two cycles of 3F8/GM-CSF correlated with significantly improved 
EFS and OS. Although a trend towards better EFS is seen with ASCT, OS is near 
identical. Cure rates may be similar, as close surveillance detects localized relapse 
and effective salvage treatments are applied. ASCT may not be needed to improve 
outcome when anti-GD2 immunotherapy is used for consolidation after dose-intensive 
conventional chemotherapy.

INTRODUCTION

Since 2003, treatment of high-risk neuroblastoma 
(HR-NB) at Memorial Sloan Kettering Cancer Center 
(MSKCC) has included dose-intensive induction 
chemotherapy [1–3] ± 2nd -line therapy (i.e., additional 
cycles of chemotherapy) [4–7] if necessary to achieve 
complete/very good partial remission (CR/VGPR). 
Consolidation has comprised immunotherapy using  
anti-GD2 3F8 monoclonal antibody (mAb) plus 
granulocyte-macrophage colony-stimulation factor  

(GM-CSF), isotretinoin, and local radiotherapy (RT)  
[8] – but not myeloablative therapy with autologous  
stem-cell transplantation (ASCT) which is standard 
elsewhere [9].

Our group adopted ASCT consolidation of HR-NB 
in the 1980s based on the concept that high-dose alkylators 
can overcome chemoresistance [10, 11]. Subsequently, 
after promising results with high-dose cyclophosphamide 
in induction [12], as well as with 3F8 in phase I and II 
trials [13, 14], we undertook a non-ASCT study using 
dose-intensive induction followed by consolidation with 
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3F8 [15] and local RT [16]. The 1999 report showing 
the advantage of ASCT in the landmark randomized 
Children’s Cancer Group (CCG) study [17] prompted 
us to resume ASCT. In 2003, however, we discontinued 
ASCT when ASCT studies elsewhere [18–20] showed 
no survival advantage compared to the earlier MSKCC  
non-ASCT program using 3F8 without cytokines [15].

In desisting from ASCT, we reasoned that disease 
control could be achieved with a program encompassing: 1)  
more dose-intensive induction [1] compared to the CCG 
study [17] (a subsequent trial confirmed an advantage for 
increased dose-intensity [21]); 2) more potent anti-GD2 
immunotherapy, by adding GM-CSF [22, 23], compared 
to the prior use of 3F8 without cytokines [13–15];  
3) local RT to the primary site in all patients [16, 24]; 
and 4) isotretinoin [17]. Additional considerations were 
hypothetical: low likelihood of ASCT agents ablating 
NB that had survived exposure (during induction) to high 
doses of identically- or similarly-acting chemotherapy; 
therapeutic advantage of earlier use of anti-GD2 mAbs by 
not having to wait for recovery from acute toxicities of 
ASCT; and avoiding the risk of infusing occult NB cells in 
the peripheral blood stem cells (a subsequent trial showed 
no survival advantage with purging [3]). 

After 2003, two reports described randomized 
ASCT trials for HR-NB; each showed an advantage for 
ASCT [25, 26]. We, nevertheless, adhered to a non-ASCT 
program because of what we perceived as drawbacks in 
those trials: 1) their non-ASCT arms were at a distinct 
disadvantage, receiving no maintenance therapy in the 
British study (conducted 1982–1985) [25] and only oral 
cyclophosphamide in the German study (conducted 
1997–2002) [26]; 2) the results - including those in a 
large successor European study (conducted 1990–1999) 
using the British model [21] - were not better than our 
initial non-ASCT program [15]; and 3) treatment was 
suboptimal by more recent standards, given the absence 
or irregular use of local RT, isotretinoin, and anti-GD2 mAb  
[21, 25, 26].

Since 2003, HR-NB patients referred to MSKCC 
were eligible for 3F8/GM-CSF with or without prior 
ASCT. We therefore accrued a study population of 
two groups treated during the same period and whose 
consolidative therapy, aside from ASCT, was identical 
– namely, 3F8/GM-CSF + isotretinoin and local RT. We 
analyzed this experience biostatistically to learn if ASCT 
improved prognosis. Large study size allowed use of key 
prognosticators including MYCN, minimal residual disease 
(MRD) [27], FCGR2A polymorphisms [28, 29], and killer 
immunoglobulin-like receptor (KIR) genotypes of natural 
killer cells [29, 30]. We now report results.

RESULTS

Patient characteristics

The 170 study patients (consecutively enrolled 
05/2003–03/2013) included 60 treated following ASCT 
and 110 treated following conventional chemotherapy. 
Clinical and biological features that were not significantly 
different between these two groups included stage, age 
at diagnosis, MYCN, induction regimen [1–3, 21, 26,  
31–33], MRD findings, FCGR2A allotypes, and missing 
KIR ligands (Table 1). Significantly different features 
included time from 1st chemotherapy to 3F8; time from 
ASCT or last chemotherapy to 3F8; ultra-high-risk 
(UHR) status; and use of high-dose 3F8. Among the UHR 
patients, 2nd-line treatments to achieve 1st CR/VGPR 
before study entry included regimens with topotecan  
[4, 5, 34] or irinotecan [5, 6]. ASCT involved  
carboplatin-etoposide-melphalan (n = 38) [3] or other 
myeloablative regimens in single (n = 11) or tandem  
(n = 11) transplant programs using alkylators (busulfan, 
cyclophosphamide, melphalan, thiotepa) ± other agents  
± total body irradiation (TBI) [31–33]. All patients 
received local RT to the primary site [16, 24].

Outcome

Five-year rates for the ASCT cohort and the non-ASCT 
cohort were, respectively: EFS 65% (95% confidence interval 
[CI]: 54%–78%) vs. 51% (95% CI: 42%–62%) (log-rank  
p = 0.128), and OS 76% (95% CI: 66%–88%) vs. 76% (95% 
CI: 68%–85%) (log-rank p = 0.975) (Figure 1). Excluding 
the 55 UHR patients, five-year rates were: EFS 66% (95%  
CI: 54%–81%) vs. 52% (95% CI: 41%–66%) (p = 0.206), 
and OS 79% (95% CI: 68%–91%) vs. 77% (95% CI: 67%–
89%) (p = 0.976). The median follow-up was 7.4 years (range 
3.99 – 11.32) for surviving ASCT patients and 5.7 years 
(range 1.46 – 10.55) for surviving non-ASCT patients. 

For EFS, the only two events other than PD 
were in ASCT patients: 1) acute leukemia 12 months 
from NB diagnosis and 4.5 months from study entry  
(NB subsequently relapsed); and 2) death from pulmonary 
fibrosis 78 months from NB diagnosis and 70 months from 
study entry.

As regards to OS, the non-ASCT cohort includes 14 
patients in continuous 2nd CR/VGPR and off all therapy 
with long follow-up from relapse (42+ - to - 109+ months, 
median 71 months). The ASCT cohort includes three such 
patients (57+, 65+ and 72+ months). 
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Table 1: Clinical and biological characteristics
ASCT Status

All Patients Yes (n = 60) No (n = 110) p-value 
Gender
  Female 62 (36) 20 (33) 42 (38) 0.6177
  Male 108 (74) 40 (67) 68 (62)
Stage 4a 159 (94) 55 (92) 104 (95) 0.687
Age at diagnosis (months) 34.1 (0–179.3)b 33.4 (5.5–90.1) 36.2 (0–179.3) 0.6598
MYCN 
  Not Amplified 76 (45) 22 (37) 54 (49) 0.1865
  Amplified 86 (51) 34 (57) 52 (47)
Time from 1st chemo to 3F8 7.7 (3.1–23.6)b 8.5 (6.4–17.2) 6.1 (3.1–23.6) < 0.001
Time from ASCT/last chemo to 3F8 1.5 (0.8–7.5)b 2.3 (1.2–7.5) 1.3 (0.8–5.4) < 0.001
Induction regimens
  Children’s Oncology Group1–3 149 (87) 48 (80) 101 (92) 0.078
  Limited institutional36, 37 13 (8) 8 (13) 5 (5)
  European26, 27 8 (5) 4 (7) 4 (4)
Ultra-High-Riskc 
  No 115 (68) 47 (78) 68 (62) 0.039
  Yes 55 (32) 13 (22) 42 (38)
High-Dose 3F8 
  No 148 (87) 58 (97) 90 (82) 0.0072
  Yes 22 (13) 2 (3) 20 (18)
MRD at study entry (pre-MRD) 
  Negative 119 (70) 40 (67) 79 (72) 0.4892
  Positive 51 (30) 20 (33) 31 (28)
MRD after 2 cycles (post-MRD) 
  Negative 144 (85) 50 (83) 94 (85) 0.4581
  Positive 21 (12) 5 (8) 16 (15)
HAMA
  No 38 (22) 11 (18) 27 (25) 0.442
  Yes 132 (78) 49 (82) 83 (75)
FcGR2a 
  HH 47 (28) 16 (27) 31 (28) 0.9552
  HR 85 (50) 31 (52) 54 (49)
  RR 38 (22) 13 (22) 25 (23)
FcGR3a 
  FF 24 (14) 5 (8) 19 (17) 0.1752
  VF 85 (50) 35 (58) 50 (45)
  VV 61 (36) 20 (33) 41 (37)
KIR 2DL1 missing ligand
  No 91 (54) 30 (50) 61 (55) 0.523
  Yes 79 (46) 30 (50) 49 (45)
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Univariate and multivariate analyses of 
prognostic factors

In univariate analyses (Table 2), ASCT was not 
prognostic for EFS (hazard radio [HR] = 0.68, p = 0.13) 
or OS (p = 0.975). Post-MRD negativity was significantly 
associated with better EFS and OS (Figure 2). Longer 
time from 1st chemotherapy to 3F8 and longer time from 
ASCT or last chemotherapy to 3F8 were significant for 
better EFS (p = 0.012 and p = 0.022, respectively). HAMA 
as a time-dependent variable was not significant for EFS  
(p = 0.564) but marginally significant for OS (p = 0.058).

Since ASCT patients had longer time from 
1st chemotherapy to 3F8 (Table 1), we undertook 
subset analyses. Among ASCT patients, time from 1st 

chemotherapy to 3F8 and time from ASCT to 3F8 were 
not significant for EFS (HR = 0.97 per month, p = 0.78 
and HR = 0.97 per month, p = 0.86 respectively). In 
contrast, among non-ASCT patients, these variables 
were significant (HR = 0.91, p = 0.027, and HR = 0.49, 
p = 0.0146, respectively). When patients were split by 
the median time (7.75 months) from 1st chemotherapy 
to 3F8, ASCT was not significant for EFS (p = 0.44 
for < 7.75 months group, p = 0.98 for ≥ 7.75 group).  
When patients were stratified by the median time (1.55 
months) from ASCT or last chemotherapy to 3F8, ASCT 
was not significant (p = 0.134 for < 1.55 months group, and  
p = 0.61 for ≥ 1.55 months group). Based on these subset 
analyses, we concluded that univariate effect of ASCT 
on EFS (Table 2) was most likely a result of association 
between EFS and longer time from 1st chemotherapy or 
longer time from ASCT. 

In the final multivariate analysis (Table 3), there 
was no significant impact of ASCT on EFS (p = 0.098) or 
OS (p = 0.655). As in the univariate analyses, post-MRD 
negativity correlated with significantly better EFS and 
OS (p < 0.001). Since time from 1st chemotherapy and 
time from ASCT or last chemotherapy were associated 
with ASCT, we fitted the multivariate model stratified by 
these variables dichotomized at median values. The effect 
of ASCT on EFS was not significant in a multivariate 

model adjusted for the post-MRD variable (p = 0.16 when 
stratified by time from 1st chemotherapy, and p = 0.21 
when stratified by time from ASCT or last chemotherapy). 
The same held true for OS (p = 0.85 and p = 0.96, 
respectively).

Toxicity

As noted in previous reports [8, 35], 3F8/GM-CSF  
had manageable toxicities–hence, treatment was outpatient 
for the ASCT and non-ASCT groups. 3F8 caused grade 
1–2 generalized pain and urticaria. Anaphylactoid 
reactions to 3F8 occurred on day 1 of cycle 2 in four 
patients, on day 3 of cycle 2 in one patient, and on 
day 1 of cycle 3 in one patient. Posterior reversible 
encephalopathy syndrome without sequelae developed in 
one patient in cycle 4. Common side-effects of isotretinoin 
were grade 1–2 dry skin and cheilitis. There were no  
long-term toxicities linked to protocol therapy.

DISCUSSION

HR-NB patients whose consolidative therapy of 
1st CR/VGPR included 3F8/GM-CSF + isotretinoin 
had similar EFS and near-identical OS whether these 
biological agents were administered following ASCT or 
conventional chemotherapy (Figure 1). In the multivariate 
analysis, ASCT was not significantly prognostic for either 
EFS or OS (Table 3). With its large cohort of non-ASCT 
patients, the current study’s patient population may well 
be unique because ASCT has been part of all major studies 
since 2000 [9]. The experience, therefore, affords an 
opportunity not otherwise available to reassess whether 
ASCT (which is not standard for other extracranial solid 
tumors [36, 37]) should be routine for HR-NB. Revisiting 
this issue is especially timely given that the recent update 
of the landmark CCG study [17] showed no OS advantage 
with ASCT [38], and a recent meta-analysis found that 
ASCT for HR-NB did not improve OS [39].

The ASCT and non-ASCT patients were enrolled 
on study and treated during the same period by the same 

KIR 2DL2 2DL3 missing ligand   
  No 151 (89) 55 (92) 96 (87) 0.4539
  Yes 19 (11) 5 (8) 14 (13)  
KIR 3DL1 missing ligand
  No 108 (64) 40 (67) 68 (62) 0.6177
  Yes 62 (36) 20 (33) 42 (38)

Abbreviations: ASCT, autologous stem-cell transplantation; chemo, chemotherapy; HAMA, human anti-mouse antibody; 
NB, neuroblastoma; MRD, minimal residual disease in bone marrow 
aAll non-stage 4 patients had MYCN-amplified stage 3 except for one non-ASCT patient who had MYCN-amplified stage 2B. 
bmedian (range)
cBecause of an incomplete response to induction, 2nd-line therapy was needed to achieve 1st CR/VGPR.
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Figure 1: (A) A trend was seen toward better event-free survival post-transplant (p = 0.128). (B) Virtually identical overall survival was 
seen with consolidation following transplant or chemotherapy (p = 0.975).
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team and underwent the same surveillance (tests, schedule, 
duration) thereby avoiding biases seen with open-label 
trials [40]. Large study size (n = 170) allowed robust 
statistical analyses to assess relevant prognostic factors. 
An additional noteworthy point is that the two cohorts had 
similar clinical and biological characteristics, including 
MYCN, contemporary induction, and pre-MRD-positivity 
(Table 1). UHR status was significantly less common in 
the ASCT cohort – a clinical difference that might suggest 
a better outlook for the ASCT patients, but UHR was not 
prognostic (Table 2). 

Because of the need to recover from ASCT toxicities, 
the time from initiation of induction chemotherapy and 
the time from ASCT or last chemotherapy to 3F8 were 
significantly longer for the ASCT cohort (Table 1). 
These differences could be considered selection bias that 
favored a superior outcome for the ASCT cohort because 
these patients would have more durable remissions 
whereas patients with early PD post-ASCT would not 
be eligible for 3F8/GM-CSF. The timing, however, was 
not prognostic in the multivariate analysis where the only 
variable significantly prognostic for both EFS and OS 
was MRD measured after two cycles of immunotherapy 
(similar to other studies [8, 35]) (Table 3).

Once viewed as a promising treatment for a range 
of poor-prognosis pediatric and adult extra-cranial solid 
tumors, ASCT became standard only for HR-NB [9, 36, 37].  
The randomized CCG study [17], and the pilot tandem 
program that yielded excellent results [31], used TBI. 
Because of toxicity concerns, however, TBI was not used 
in recent national trials [2, 3, 32]. Assessments of ASCT 
ought to take into account differences in cytoreduction 
regimens. In the sole randomized trial of ASCT regimens 
for HR-NB reported to date [33], busulfan-melphalan was 
associated with significantly better EFS and OS compared 

to the widely-used carboplatin-etoposide-melphalan  
[3, 26]. The patients in our study were referred after these 
and tandem ASCT regimens [3, 31–33]. Irrespective of 
cytoreductive regimen, however, extensive experience 
over decades shows an uncertain benefit of ASCT for 
refractory NB [41, 42] – and the EFS and OS data in the 
current report would appear to undermine the rationale 
for the routine use of ASCT in HR-NB patients in 1st  
CR/VGPR in the contemporary era. 

Another recent finding that raises uncertainty about 
ASCT for HR-NB is the lack of benefit from ex vivo 
purging [3]. In the COG randomized study of purging, 
occult NB contamination of peripheral blood stem cells 
was rare, suggesting that post-ASCT relapse could be 
attributed to the failure of the myeloablative regimen 
(carboplatin-etoposide-melphalan) to ablate the MRD that 
survived induction. 

Advances in therapy since 2000 could account 
for the lack of survival advantage with ASCT in our 
experience. Thus, local control of soft tissue NB is 
excellent with dose-intensive chemotherapy, resection, 
and RT [16, 24, 43]; eradication of chemoresistant 
histologically-evident NB in BM is reliably achieved with 
anti-GD2 immunotherapy [35]; and novel salvage therapies 
have emerged. Regarding this last point, three ASCT 
and 14 non-ASCT patients are in continuous 2nd CR/
VGPR and off all therapy with lengthy follow-up since 
relapse (42+ –109+ months). HR-NB relapse has long 
been viewed as a systemic and ultimately lethal event; 
EFS has, therefore, been considered the most meaningful 
measure of efficacy. For curability of HR-NB, however,  
long-term OS may now supersede EFS endpoints given 
recent developments offering hope that the equivalence 
between relapse and lethality may no longer hold true. 
Thus, close monitoring [44] may now be detecting 

Figure 2: Strong association between minimal residual disease status after two cycles of 3F8/GM-CSF immunotherapy 
(post-MRD) and event-free survival of the 170 patients (p < 0.001).
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Table 3: Multivariate analyses of patient and tumor characteristics for survivala

Event-free survival Overall survival

Variable HR 95% 
Lower 

95% 
Upper p-value HR 95% 

Lower 
95% 

Upper p-value 

ASCT (Y vs N) 0.630 0.364 1.089 0.098 0.866 0.460 1.629 0.655
Post-MRD (Pos vs Neg)b 4.596 2.602 8.118 < 0.001 4.295 2.226 8.285 < 0.001
Time from 1st chemo to 3F8 0.947 0.877 1.021 0.156 − − − −

aAside from ASCT, factors with p >.05 in univariate analyses were not included in the multivariate model.
btime-dependent variable

Table 2: Univariate analyses of patient and tumor characteristics for survival
Event-free survival Overall survival

Variable N 
used 

N 
event HR 95% 

Lower 
95% 

Upper p-value N 
event HR 95% 

Lower 
95% 

Upper p-value 

Time from 1st chemo 
to 3F8 170 75 0.906 0.839 0.978 0.012 46 0.938 0.856 1.029 0.179

Time from ASCT/last 
chemo to 3F8 170 75 0.726 0.553 0.954 0.022 46 0.889 0.666 1.188 0.426

ASCT (Y vs N) 170 75 0.68 0.413 1.12 0.13 46 0.991 0.546 1.797 0.975
MYCN-amplified  
(Y vs N) 162 74 0.747 0.473 1.179 0.21 46 0.681 0.380 1.219 0.196

Ultra-High-Risk  
(Y vs N) 170 75 1.221 0.759 1.966 0.41 46 1.175 0.640 2.157 0.602

HAMA (Y vs N)* 170 75 1.169 0.687 1.989 0.564 46 0.536 0.279 1.022 0.058
High-Dose 3F8  
(Y vs N) 170 75 1.507 0.791 2.871 0.212 46 2.220 0.902 5.467 0.083

Pre-MRD (Y vs N) 170 75 1.009 0.617 1.648 0.972 46 1.269 0.696 2.313 0.436
Post-MRD (Y vs N)*  165 72 4.997 2.894 8.627 < 0.001 43 4.304 2.232 8.301 < 0.001
FcGR2a
  HR vs HH 170 75 0.679 0.401 1.149 0.149 46 0.702 0.362 1.362 0.295
  RR vs HH 170 75 0.865 0.469 1.594 0.642 46 0.748 0.336 1.666 0.477
FcGR3a
  VF vs FF 170 75 0.654 0.347 1.234 0.19 46 0.794 0.339 1.86 0.596
  VV vs FF 170 75 0.646 0.332 1.258 0.199 46 0.862 0.357 2.08 0.741
KIR (Y vs N) 170 75 0.864 0.528 1.411 0.558 46 0.953 0.501 1.81 0.882
KIR 2DL1 (Y vs N) 170 75 0.973 0.617 1.534 0.907 46 1.37 0.766 2.45 0.288
KIR 2DL2 2DL3  
(Y vs N) 170 75 0.754 0.346 1.643 0.478 46 0.525 0.163 1.693 0.281

KIR 3DL1 (Y vs N) 170 75 0.615 0.371 1.019 0.059 46 0.631 0.332 1.2 0.16
Trial (09–158/159 vs 
03–077) 170 75 1.370 0.735 2.552 0.321 46 1.883 0.764 4.642 0.169

*time-dependent variable
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localized relapses [8], which might be controlled by 
surgery and/or focal RT, supplemented by systemic 
therapies that are non-cross-resistant with prior treatments. 
Examples include chemotherapy regimens [45, 46] and 
novel agents [47, 48]. Of note, a multi-modality salvage 
program centered on intrathecal 131I-labeled mAbs has 
yielded prolonged 2nd CR/VGPRs in patients with isolated 
relapse in the brain [49]. A bivalent vaccine combined 
with oral β-glucan has shown promise in consolidating 
2nd CR/VGPR [50].

With cure of relapsed HR-NB being a realistic 
possibility, long-term OS gains increased importance. 
OS stands out as 1) the gold standard for evaluation of 
a treatment’s efficacy; 2) the acid test for drug approval 
by the Food and Drug Administration; and 3) the driving 
force for advances in cancer therapeutics [40, 51, 52]. 
OS is 100% accurate for event and time, and it takes into 
account safety (toxic complications), which is a major 
concern with ASCT [53]. EFS is a surrogate endpoint 
for early assessment of efficacy, but its validity requires 
confirmation, either through correlation with OS or by 
meta-analysis [40, 51, 52]. This point is well illustrated 
by the disappearance of a long-term OS advantage for 
ASCT in the randomized CCG study [38] – an update 
reported after a meta-analysis had already identified no 
OS advantage with ASCT for HR-NB [39].

It would appear that the corrected results of the 
landmark CCG study [38], and the critical importance 
of long-term OS, support a reevaluation of ASCT for  
HR-NB. An additional consideration is that the 
randomized ASCT studies - conducted in 1982–1985 [25], 
1991–1996 [17], and 1997–2002 [26] - have uncertain 
contemporary relevance, given the lower dose-intensity 
of their induction regimens and the absence or irregular 
use of local RT and anti-GD2 mAbs. The three randomized 
studies also preceded modern advances in salvage therapy 
and in the early detection of recurrent NB [44]. 

In conclusion, our experience, combined with a 
critical review of ASCT for HR-NB reaching back 30 
years [39] and the loss of survival advantage with ASCT in 
a major study [38], suggests that ASCT may not improve 
outcome when local RT, anti-GD2 mAbs, and isotretinoin 
are used for consolidation after dose-intensive induction 
chemotherapy. A definitive confirmation of this welcome 
possibility would require a prospective randomized trial. 
Discontinuing ASCT for HR-NB would be consistent 
with the general consensus among pediatric oncologists 
that this highly toxic treatment in all other extracranial 
pediatric solid tumors is no longer recommended [36, 37]. 

MATERIALS AND METHODS

Beginning in 2003, patients with HR-NB (stage 4 at 
age > 18 months or MYCN-amplified stage 2/3/4/4 s at any 
age) received 3F8/GM-CSF + isotretinoin to consolidate 
1st CR/VGPR [54] documented following ASCT (patients 

referred to MSKCC) or conventional chemotherapy. UHR 
disease was defined as requiring 2nd-line therapy (because 
of an incomplete response to induction) to achieve this 1st 
CR/VGPR. This report concerns the HR-NB patients in 1st 
CR/VGPR enrolled on protocol 03–077 (NCT00072358) 
and the successor protocols 09–158 (NCT01183416) and 
09–159 (NCT01183429). Major organ toxicity had to be 
grade < 2 by Common Terminology Criteria for Adverse 
Events Version 2.0, except absolute neutrophil count 
(ANC) ≥ 500/µl and platelet count ≥ 10,000/µl were 
acceptable. Informed written consents for treatments and 
tests were obtained according to MSKCC institutional 
review board rules.

Protocol treatment

Immunotherapy cycles comprised priming doses 
of GM-CSF (Leukine, Immunex) × 5 days, followed 
by 3F8/GM-CSF × 5 days. 3F8 (prepared as described 
[55]) was intravenously infused over 30-60 minutes, 
with dosing at 20 mg/m2/day or, in a pilot study 
within the 09–158/ 09–159 protocols, 80 mg/m2/day  
(high-dose 3F8) for the 1st two cycles. GM-CSF was 
injected subcutaneously at 250 µg/m2/day for the 
five days of priming and the 1st two days of 3F8, and 
then increased to 500 µg/m2/day. GM-CSF was not 
given if the ANC was > 20,000/µl. These cycles were 
separated by 2-to-4-week intervals through cycle 4 
and then by 6-to-8-week intervals through 24 months 
from study entry. Treatments were deferred if patients 
formed elevated human anti-mouse antibody (HAMA) 
titers (measured as described [56]). Isotretinoin was 
administered orally (× 6 courses, as described [17]) 
between cycles of 3F8, beginning post-cycle 2.

Extent-of-disease evaluations and correlative 
studies

Disease status was assessed every 3 months  
for > 36 months by histology of BM aspirates and biopsies 
obtained from bilateral posterior and bilateral anterior iliac 
crests, 123I-metaiodobenzylguanidine (MIBG) scan, and 
computed tomography or magnetic resonance imaging of 
chest/abdomen/pelvis [44]. Disease status was defined by 
INRC [54], modified to incorporate 123I-MIBG findings. 
CR: no evidence of NB, including normal 123I-MIBG scan. 
VGPR: volume of primary mass reduced > 90%, normal 
123I-MIBG scan, BM(−) by histology. PD: new lesion  
or > 25% increase in an existing lesion. 

Quantitative reverse transcription-polymerase chain 
reaction was used to assess MRD, as described [8, 27], 
in BM before treatment (pre-MRD) and after two cycles 
of 3F8/GM-CSF (post-MRD). FCGR2A polymorphisms 
and KIR ligand mismatch were identified as described  
[8, 28, 30].
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Statistical analysis

The difference between clinical and biological 
features of the ASCT and non-ASCT cohorts was 
tested using Fisher’s exact test for categorical variables 
and Wilcoxon rank-sum test for continuous variables.  
Event-free survival (EFS) was defined as time from start of 
3F8 to PD, secondary malignancy, or toxic death, and was 
censored at last follow-up in the absence of these events. 
Overall survival (OS) was defined as time from start of 
3F8 to death or last follow-up. The Kaplan-Meier method 
was used to calculate the probability of EFS and OS. The 
log-rank test was used to compare survival curves. Median 
follow-up was calculated using the Kaplan-Meier method 
and reversing the censoring indicator. Prognostic impact 
of clinical and biological features on EFS and OS was 
tested by univariate Cox proportional hazards regression. 
HAMA and post-MRD were evaluated as time-dependent 
variables. ASCT and variables significant in the univariate 
analysis (p < 0.05) were tested in the multivariate model. 
Time from the 1st dose of induction chemotherapy to 3F8 
and time from ASCT or last dose of chemotherapy to 
3F8 were correlated, so only one of them was chosen for 
multivariate model. Since these variables were correlated 
with ASCT, we also fitted multivariate models stratified by 
these variables dichotomized at their medians. All analyses 
were done using R version 3.0.2 (http://cran.r-project.org/).
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