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ABSTRACT
Gene expression is in part regulated by microRNAs (miRNAs). This review 

summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role 
as growth regulators, the mechanisms that regulate the miRNAs themselves and the 
potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily 
fluids from CRC patients have been investigated for biomarker potential of miRNAs 
(>160 papers presented in a comprehensive tables), none single miRNA nor miRNA 
expression signatures are in clinical use for this disease. More than 500 miRNA-
target pairs have been identified in CRC and we discuss how these regulatory nodes 
interconnect and affect signaling pathways in CRC progression.

INTRODUCTION

Western societies exhibit a high incidence and 
mortality of colorectal cancer (CRC), accounting for 10% 
of the total cancer burden with an individual lifetime risk 
of ∼6% [1, 2]. CRC patients are stratified according to a 
clinical staging system (I - IV) at the time of diagnosis. 
Approximately 20–25% of patients present with metastatic 
disease, and another 25% will develop metastases in the 
follow-up period. There is a great need to identify precise 
biomarkers to facilitate the correct diagnosis, treatment 
and predict or monitor cancer recurrence.

MiRNAs are a non-protein coding class of small 
regulatory RNAs (22-nucleotides long) that play an 
essential role in post-transcriptional regulation of gene 
expression through binding to the 3’-untranslated region 
(3´-UTR) of protein-coding mRNAs. A single miRNA 
may regulate multiple target mRNAs and miRNAs are 
predicted to regulate approximately 60% of the human 
genes [3]. Identification and annotation of miRNAs 
‘parallels’ technology development, and the introduction 
of e.g. deep sequencing technologies have provided 
tools for detection and discovery of the regulatory 
RNA species [4]. The recently released miRNA registry 
database (miRBASE v21, June 2014) reported a total of 
1881 human miRNA genes, counting 2588 unique mature 
sequences. Independent of the challenges we still are 
facing regarding miRNA detection methods [5], there 

are no doubt that these molecules play essential roles in 
diverse cellular processes [6, 7] (Box 1).

The first evidence associating miRNAs with 
cancer was demonstrated by the Croce laboratory in 
2002, showing that the common 13q14 deletion reduced 
expression of the miR-15a/16-1 cluster, located within 
the intron of the DLEU2 gene, ultimately leading to 
chronic lymphocytic leukemia [10]. The biological 
functions of miRNAs are highly dependent on the cellular 
context, which differ due to diverse compilation of the 
transcriptome in different tissues and cells. Consequently, 
and depending on their transcript targets, some miRNAs 
have increased expression and act as oncogenes in 
one cancer type, whereas they are downregulated and 
function as tumor suppressors in another cancer type. 
Such variability has for instance been seen for let-7, 
miR-15a/16-1, miR-17-92 cluster, miR-26, miR-29 and 
miR-125a/b [18, 19]. Therefore, care must be taken when 
generalizing interpretations of miRNA function across 
different contexts and tissues. 

In this review, we summarize miRNAs that are 
relevant to CRC, describe research that has led to better 
understanding of the miRNA function and highlight 
miRNA involvement in the major signaling pathways.
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OVERVIEW OF MAIN MIRNA RESEARCH 
AREAS IN CRC

MiRNA-induced deregulation in CRC has been well 
documented and continues to emerge as illustrated by the 
rapid increase of published studies (information retrieval 
and handling described in detail in Supplementary 
Methods) and growing numbers of analyzed clinical 
samples (Figure 1A). The aberrantly expressed miRNAs 
and their effects have been primarily addressed (Figure 
1B). Approximately 70% of the reports that studied 
miRNAs in CRC analyzed clinical patient specimens and 
use of the patient samples increased in recent years. A 
similar increase in the size of the patient series is not seen 
(Figure 1C). The mechanisms that deregulate miRNAs, 
such as single nucleotide polymorphisms (SNPs), 
epigenetic alterations, mutations, amplifications and loss 
of genomic regions encoding miRNAs and transcriptional 
regulation have been addressed to a lower degree (Figure 
1B). An overview of the main miRNA research activities 
in CRC have been generated by recording and ranking the 
keywords (Figure 2A). The following sections summarize 
the main research activities and compile the details 
on the miRNAs’ functional role with regards to CRC 
development and progression.

MIRNAS DRIVING INVASION, MIGRATION 
AND METASTASIS

Despite the fact that several miRNAs have been 
found deregulated early in CRC development, miRNAs 
have most frequently been described associated with 
invasion, migration and the progression of disease through 
epithelial mesenchymal transition (EMT) into metastases 
(Figure 2A). Cancer cells undergo several molecular 
changes to generate a mesenchymal cell phenotype 

necessary for cells to detach and leave the primary tumor. 
EMT is characterized by loss of cell adhesion, repression 
of CDH1, often caused by transcriptional repression 
by SNAI1 [20] and ZEB1/2 [21], and acquisition of 
mesenchymal markers, including CDH2, VIM, and FN1 
[22]. A feed-forward loop consisting of SNAI1 and miR-
34a has been suggested to control the activation of the 
EMT and mesenchymal-epithelial re-transition programs 
[23]. The downregulation of miR-34a occurred due to 
cancer-specific CpG methylation, repression by IL6R–
mediated IL-6/STAT3 pathway and/or TP53 inactivation 
[23-28]. MiR-34a has also been involved in resistance to 
5-FU in part through modulation of glucose metabolism 
[16]. Furthermore, miR-34a delivery represents a novel 
therapeutic approach. The first cancer-targeted miRNA 
drug, MRX34, reinforcing miR-34 expression, has already 
entered phase I clinical trials in patients with unresectable 
primary liver cancer and metastatic liver cancers [16]. 
The trial also includes a separate cohort of patients with 
hematological malignancies. The preliminary results 
of this trial have shown manageable safety and a dose-
dependent repression of several key oncogenes [29]. MiR-
34 has recently been demonstrated to modulate tumor 
immune evasion pathways through direct downregulation 
of PDL1 in lung cancers. MRX34 therapy led to an 
increase in active tumor-infiltrating immune cells (CD8+) 
and a decrease in exhausted tumor-infiltrating immune 
cells (CD8+PD1+) that indicate an active immune 
response and reduced tumor tolerance [29]. This further 
supports the potential of miRNAs as therapeutics.

The other CDH1 repressors, ZEB1/2 were the 
most prominent targets of the miR-200 family [30-
35]. The family includes five members encoded in 
two clusters: miR-200a/b, miR-429 and miR-200c, 
miR-141, on chromosomes 1 and 12, respectively. The 
miR-200b/200a/429 and miR-200c/141 polycistronic 
transcripts have been shown to be repressed due to CpG 

Box 1: Milestones in miRNA discovery related to cancer [8-17].
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Figure 1: An overview of miRNA studies in colorectal cancer (CRC). A. A rapid growth of the published research reports 
illustrated by the number of studies (with and without clinical samples) per year; the box plots represent numbers of the analyzed patient 
samples per year; B. The proportion of studies reporting aberrant miRNA (expression) and miRNA regulation by copy number variation 
(CNV), miRNAs regulated by epigenetic modifications, miRNA regulation by transcription factors (TF); single nucleotide polymorphism 
(SNP) in miRNA coding genes or binding sites of their target genes. C. The quantity of patient cohorts segregated by the type of analysis 
performed. 
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Figure 2: Main miRNA research themes in colorectal cancer (CRC) studies. A. The trends of miRNA research themes 
exemplified by article keywords. B. An illustration and a heatmap of miRNAs validated to regulate CDH1, its regulators and other 
mesenchymal markers in CRC. The miRNA/mRNA was obtained from CRC patients registered in TCGA. values represent RPM 
normalized, median-centered values (for further information see Supplementary Material).
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methylation [33, 35]. The reduced miR-200 expression 
was observed at the invasive front of primary CRC that 
had disrupted basement membrane [34]. In contrast, 
adenomas and adenocarcinomas with intact basement 
membranes exhibited uniform miR-200 expression from 
the tumor core to the tumor-host interface. Interestingly, 
the metastatic CRCs displayed strong expression of miR-
200 and were involved in the recapitulation of the primary 
tumor phenotype at the metastatic sites [34]. Furthermore, 
miR-200c increased the sensitivity to chemotherapeutic 
drugs through repression of MAPK9 and blocking 
multidrug resistance [36]. Several other miRNAs, among 
them, miR-19b, miR-194 and let-7b, had also altered 
expression when front-specific CRC liver metastases were 
compared with the tumor center [37].

So far only one study addressed regulation of miR-9 
and its direct repression of CDH1 was confirmed at the 
protein level in CRC [38]. We previously showed that 
miR-9 was downregulated at early CRC stages and that 
its re-expression reduced cell proliferation [39]. However, 
our and others attempts to establish CDH1 as miR-9 target 
in CRC at the mRNA level have failed. This is most likely 
explained by the fact that miR-9 inhibit CDH1 translation. 
Nonetheless, an inverse expression pattern is observed 
between multiple miRNAs reported to be in control of 
metastatic progression and selected EMT regulators in 
TCGA CRC patients [40] (Figure 2B). 

The effect of miRNA deregulation on migration 
and invasion has been frequently measured after 
perturbations by single synthetic miRNAs in cell line 
models using wound healing or transfer assays. For 
example, overexpression of miR-361-5p markedly 
suppressed proliferation, migration and inhibited tumor 
growth and lung metastasis in vivo [41]. By using a large 
functional screen, over 20% of miRNAs have been shown 
to affect migration across diverse cell types, indicating 
a general involvement of miRNAs in this process [42]. 
Loss of miR-23b expression in colon cancer resulted in 
increased activity of prometastatic genes, including FZD7 
and MAP3K1, and facilitated tumor growth, invasion and 
angiogenesis in vivo [42]. By employing “dropout” screens 
of a miRNA library in a mouse model of liver metastasis, 
Okamoto and colleagues have shown that upregulation of 
miR-493 during carcinogenesis prevented liver metastasis 
via the induction of cell death of metastasized cells 
[43]. To colonize the liver, CRC metastatic lesions must 
overcome hypoxia and energy starvation. Tumor cells 
have been demonstrated to release a metabolic enzyme 
CKB, upregulated through loss of miR-551a and miR-
483-5p, into the extracellular matrix and catalyzing 
liver metabolites into ATP-rich products, which further 
were taken up by the cell to fuel metastatic survival and 
subsequent liver colonization [41]. 

The crucial miRNA function in metastasis is also 
supported by a meta-analysis employing TCGA data 
across multiple cancer types, including CRC, that reported 

metastasis as the most prominent process under miRNA 
regulation [44].

MIRNAS WITH BIOMARKER POTENTIAL

Due to high tissue specificity, stability and altered 
expression in neoplastic development, miRNAs have 
been suggested as diagnostic, prognostic and predictive 
biomarkers. The Cancer Origin Test, based on the 
expression of 64 miRNAs, is the first promising assay 
available for determining the tumor origin with 90% 
sensitivity and 99% specificity for metastatic cancer of 
unknown or uncertain primary site [15]. MiRNA-based 
tests for improved subclassification of lung, kidney 
cancers and mesothelioma subtypes are also on the market 
[45]. However, despite the long list of miRNAs suggested 
as biomarkers in CRC, none have made it to the clinic 
yet. The individual studies that have reported miRNAs 
as circulating biomarkers in blood serum or plasma and 
feces as well as prognostic and/or predictive biomarkers 
in tumor tissues in CRC are summarized in Tables 1 and 
2. Approximately 40% of the reported CRC miRNA 
biomarkers were suggested by two or more studies, among 
them, miR-21, miR-29a, miR-92a, miR-200c, miR-215 
and miR-375.

miRNA tissue biomarkers

Aberrantly expressed miRNAs have been found in 
adenomas and carcinomas of the large bowel as compared 
to normal colonic mucosa, and several of these miRNAs 
have been suggested as biomarkers. A high miR-31 
expression was observed in serrated lesions and suggested 
as diagnostic biomarker and therapeutic target for BRAF 
mutated CRCs [46]. A signature of miR-92a, miR-375 
and miR-424 has been shown to discriminate invasive 
carcinoma from adenoma with high-grade neoplasm 
in biopsies from colonoscopy, representing promising 
clinical utility in early diagnosis [47]. A predictive value 
of miR-29a, where high levels of this were associated with 
longer disease-free survival, has been shown in patients 
with stage II CRC [48]. With few exceptions, stage II CRC 
patients are treated with surgery alone. If considered to 
have a high risk of relapse based on clinicopathological 
parameters they may be offered adjuvant chemotherapy 
[49]. A 6 miRNA classifier, consisting of miR-21-5p, miR-
20a-5p, miR-103a-3p, miR-106b-5p, miR-143-5p, and 
miR-215 has been shown to distinguish between stage II 
colon cancer patients with high and low risk of disease 
progression, with 5-year disease-free survival of 60% and 
89%, respectively [50]. The miRNA panel outperformed 
clinicopathological risk factors and DNA mismatch 
repair status when it came to predicting the prognosis, 
and patients in the high-risk group were found to have 
a favorable response to adjuvant chemotherapy [50]. 
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Table 1: Tissue miRNAs as potential biomarkers for Colorectal Cancer (CRC).
Application miRNA biomarker Type of analysis* Total nr of 

samples# Ref.

MIRNA BIOMARKERS IN TISSUE BIOPSIES specimens #

Anti-angiogenetic 
therapy miR-126 ↑ 109 [172]

Anti-EGFR therapy

let-7a ↑ 59 [173]
let-7c, miR-99a, miR-125b signature 183 [174]
miR-7 ↓ 105 [58]
miR-31-5p ↑ 102 [175]
miR-125b, miR-137 ↑ 66 [176]

Chemotherapy

let-7g, miR-132, miR-224, miR-320a signature 128 [177]
miR-16, miR-590-5p, miR-153, miR-519c-3p, miR-561 signature 32 [178]
miR-17-5p ↑ 390 [179]
miR-21 ↑ 84 [180]
miR-21 ↑ 301 [181]
miR-21, miR-143, miR-145 expression, diverse 120 [116]
miR-107, miR-99a-3a ↑ 78 [182]
miR-1183, miR-483-5p, miR-622, miR-125a-3p, miR-1224-5p, 
miR-188-5p, miR-1471, miR-671-5p, miR-1909*, miR-630, miR-
765, miR-622, miR-630

signature 37 [183]

miR-126 expression, not 
significant 158 [184]

miR-143 ↓ 175 [185]
miR-148a ↓, methylation 293 [186]
miR-148b ↓ 192 [187]
miR-150 ↓ 625 [54]
miR-181d, miR-139-3p, miR-892b, miR-338-5p, miR-150, miR-
154,miR-454 signature 70 [188]

miR-200a, miR-200c, miR-141, miR-429 ↓ 127 [189]
miR-200c ↓ 103 [190]
miR-214 ↓ 242 [191]
miR-215 ↑ 48 [192]
miR-215, miR-190b, miR-29b-2*, miR-196b, let-7e, miR-450a, 
miR-450b-5p, miR--99a* signature 20 [193]

miR-320 ↓ 100 [194]
miR-451 ↓ 35 [195]
miR-622 ↑ 17 [55]
miR-625-3p, miR-181b, miR-27b ↑ 283 [196]

Diagnosis

miR-21 ↑ 360 [197]
miR-21 ↑ 73 [198]
miR-31 ↑ 1382 [46]
miR-34b ↓, methylation 113 [199]
miR-155 ↑ 80 [200]
miR-194 ↓ 446 [201]
miR-375, miR-424, miR-92a signature 282 [64]
miR-378*, miR-145 ↓ 64 [202]
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Prognosis/
Survival
/Metastasis

miR-21 ↑ 554 [203]
miR-21 ↑ 412 [204]
miR-21 ↑ 392 [205]
miR-21 ↑ 7 studies [206]
miR-21 ↑ 14 studies [207]
miR-21, miR-155 ↑ 312 [208]
 miR-21-5p, miR-20a-5p, miR-103a-3p, miR-106b-5p, miR-143-5p, 
miR-215 signature 775 [209]

let-7a ↓ 40 [210]
let-7c ↓ 254 [211]
miR-1, miR-129, miR-215, miR-497, miR-135b, miR-493 signature 49 [212]
miR-101 ↓ 36 [213]
miR-106a, miR-143, miR-125b expression, diverse 48 [214]
miR-126 ↓ 560 [215]
miR-130b ↑ 160 [216]
miR-139-3p ↓ 126 [217]
miR-139-5p, miR-31, miR-17-92, miR-143, miR-10b signature 142 [218]
miR-143 ↓ 154 [219]
miR-148a, miR-152 ↓ 202 [220]
miR-15, miR-16 ↓ 126 [221]
miR-15b, miR-135b ↓ 189 [222]
miR-17-92, miR-17 ↑ 48 [223]
miR-182 ↑ 296 [52]
miR-182 ↑ 176 [75]
miR-183 ↑ 188 [224]
miR-195 ↓ 170 [225]
miR-195, miR-1280, miR-140-3p, miR-1246 signature 19 [226]
miR-196a, miR-196b ↑ 252 [227]
miR-200a, miR-17, miR-106a, miR-375, miR-29a, miR-18a, miR-
200b signature 267 [228]

miR-215 ↑ 116 [229]
miR-224 ↑ 230 [230]
miR-338-3p ↓ 80 [231]
miR-340 ↓ 155 [232]
miR-34-5p ↓ 278 [28]
miR-375 ↓ 190 [233]
miR-429 ↑ 214 [234]
miR-638 ↓ 312 [70]
miR-21 ↑ 20 [235]
miR-21, miR-103, miR-93, miR-566 signature 187 [236]
miR-25-3p, miR-339-5p ↓ 93 [237]
miR-27a ↓ 82 [238]
miR-122 ↑ 12 [239]
miR-133a ↓ 338 [240]
miR-133b ↓ 62 [241]
miR-133b ↓ 100 [242]
miR-185 ↓ 40 [243]
miR-185, miR133b expression, diverse 50 [244]
miR-193a-5p ↓ 360 [245]
miR-199a-5p ↓ 20 [246]
miR-200b, miR-200c ↓ 13 [247]
miR-210 ↑ 193 [248]
miR-210, miR-133b expression, diverse 54 [249]
miR-224 ↓ 158 [250]
miR-224, miR-221* ↓ 60 [251]
miR-625 ↓ 192 [252]
miR-21 ↑ 277 [253]
miR-29a ↓ 110 [254]
miR-215 ↓ 125 [255]
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Furthermore, stromal expression of miR-21 alone was 
found as an independent predictor of early tumor relapse 
in a large colon cancer series, indicating that these patients 
could be considered for more intensive treatment [45].

As mentioned above, miR-34a and miR-200 family 
members have a functional role in CRC metastases. 
Supporting this notion, miR-34a has also been suggested 
as an independent predictor of recurrence among stage 
II/III patients [28], while expression levels of miR-
200 family members identified those CRC patients, 
including stage II, who are most likely to benefit from 
adjuvant chemotherapy [51]. High expression of miR-
182, identified as anti-apoptotic miRNA [39], has been 
associated with lymph node metastases and poor survival, 
and suggested to have clinical potential not only as a 
promising predictor of aggressive phenotype but also as an 
independent prognostic predictor to identify patients with 
particularly low rate of survival [52]. Interestingly, anti-
miR-182 therapy has been demonstrated as a promising 
therapeutic strategy for metastatic melanoma [53]. 

Drug resistance is the major obstacle of effective 
cancer therapy, and a number of miRNAs have been 
shown to induce chemoresistance and to be associated 
with poor prognosis. Patients whose tumors had low miR-
150 expression exhibited shorter survival and a worse 
response to adjuvant chemotherapy [54]. Overexpression 
of miR-622 was induced by radiotherapy in rectal cancers, 
causing poor response to therapy [55]. A signature of 
miR-99a, let-7c and miR-125b distinguished patients with 
KRAS wild-type metastatic CRC that responded to anti-
EGFR therapy [56]. Reduced expression of miR-181a was 
associated with poor clinical outcome in patients treated 
with EGFR inhibitor [57]. Whereas, reduced levels of 
miR-7, a direct regulator of EGFR, was suggested as a 
prognostic biomarker and a candidate for targeted therapy 
in patients with CRC whose tumors were resistant to 
targeted anti-EGFR therapy [58]. Despite the fact that 
miRNA tissue biomarkers offer great promise, the miRNA 
biomarkers’ clinical significance is not conclusive and 
independent validation studies are needed. 

Circulating miRNA biomarkers

The diagnostic and prognostic potential of 
circulating miRNAs have in recent years also been 
evaluated in blood derivatives (plasma or serum) and 
feces. Considering that a single cell may express hundreds 
of copies of a single miRNA, cancers may at least in 
principle be detected earlier with a miRNA- compared to a 
DNA-based test. In addition, in circulation, tumor-derived 
miRNAs appear to be protected from degradation by 

endogenous ribonucleases. Thus miRNAs are promising 
candidates for minimally invasive biomarkers. 

For example, high levels of serum miR-21 
distinguished patients with adenomas and CRCs from 
healthy control subjects [59-61], however, a meta-
analysis has shown moderate sensitivity of 77% and 85% 
specificity [62]. Interestingly, a higher concentration of 
miR-21 was found in the blood drawn near to the site 
of the primary tumor compared to peripheral blood, 
indicating that the primary tumor releases a high number 
of miR-21, which is diluted in the circulatory system [60]. 
Plasma levels of miR-92 distinguished patients with CRC 
from gastric cancer, inflammatory bowel disease and 
healthy control subjects [63]. A high diagnostic accuracy 
has been shown by a panel of miR-409-3p, miR-7, and 
miR-93 in discriminating CRC from controls with 91% 
sensitivity and 88% specificity [64]. Although plasma 
miR-183 alone displayed moderate sensitivity (74%) 
and specificity (86%) in detecting CRCs, it outperformed 
carcinoembryonic antigen (CEA) and carbohydrate antigen 
19-9 (CA19-9) [65]. Furthermore, the postoperative 
plasma miR-183 levels were significantly reduced 
compared with the preoperative levels [65]. Similarly, 
miR-182 was detected in plasma from metastatic CRC 
patients and the expression levels were reduced in post-
operative samples after radical hepatic metastasectomy 
compared to preoperative samples [66]. Plasma miR-27b, 
miR-148a, and miR-326 levels predicted response to 5-FU 
and oxaliplatin-based chemotherapy in metastatic CRC 
patients [67].

MiRNAs have been analyzed in fecal samples from 
CRC patients and from healthy controls. Fecal miR-
106a detection has been shown to improve sensitivity 
of immunological fecal occult blood test (iFOBT) with 
a combined sensitivity of 71% and a specificity of 96% 
[68]. The expression of miR-17-92 cluster and miR-
135 were significantly higher in CRC patients than in 
healthy controls, and discriminated CRC with an overall 
sensitivity and specificity of 74% and 79% [69].

Despite the high biomarker potential of individual 
miRNAs, it is likely that panels of miRNAs more 
accurately can identify patients at risk. Furthermore, 
combined biomarker panels, comprising miRNA, mRNA 
and/or DNA methylation markers may also outperform 
one-level biomarkers. Nevertheless, evaluation of 
biomarker panels using large, independent patient cohorts 
must be performed before miRNA biomarkers can 
implemented in the clinic.

* ↑, upregulated expression in CRC vs. normal control; ↓, downregulated expression in CRC vs. normal control; methylation, 
cancer specific DNA methylation; signature, multiple miRNAs considered collectively; expression, diverse, multiple 
miRNAs considered separately, #total number of samples included in the study, CRCs, adenomas and normal control samples 
collectively; specimens # – tissue samples from normal colonic mucosa, adenomas and cancer biopsies.
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Table 2: Circulatory miRNAs as potential biomarkers for Colorectal Cancer (CRC).
Application miRNA biomarker Type of analysis* Total nr of samples# Ref.

MIRNA BIOMARKERS IN SERUM/PLASMA specimens #1  

Anti-angiogenetic therapy miR-126 ↑, SNP 178 [256]

Anti-EGFR therapy miR-345 ↑ 138 [257]

Chemotherapy

miR-19a ↑ 88 [258]

miR-20a, miR-130, miR-145, miR-216, miR-372 signature 253 [118]

miR-27b, miR-148a,  miR-326, miR-106a, miR-484, miR-130b signature 328 [259]

miR-126 ↑ 178 [260]

miR-143 ↓ 51(175) [185]

miR-155, miR-200c, miR-210 ↑ 35 [261]

Diagnosis

miR-17-3p, miR-29a, miR-92a, miR-135b expression, not significant 130 [262]

miR-18a, miR-19a, miR-19b, miR-15b, miR-29a, miR-335 signature 196 [263]

miR-19a-3p, miR-223-3p, miR-92a-3p, miR-422a signature 697 [264]

miR-21 ↑ 5 studies [62]

miR-21 ↑ 366(532) [265]

miR-21 ↑ 100(192) [59]

miR-21 ↑ 75(189) [60]

miR-21 ↑ 80 [266]

miR-21 ↑ 71 [267]

miR-21, let-7g, miR-31, miR-92a, miR-181b, miR-203 signature 202 [268]

miR-21, miR-378 ↑ 135 [269]

miR-21, miR-92a ↑ 98 [270]

miR-29a, miR-92 ↑ 216 [271]

miR-34a ↓ 108 [272]

miR-92 ↑ 255(265) [273]

miR-145 ↓ 50(170) [274]

miR-145 ↓ 60 [275]

miR-193a-3p, miR-23a, miR-338-5p signature 162(222) [276]

miR-375, miR-206, miR-150, miR-125b, miR-126* ↓ 140(228) [277]

miR-409-3p, miR-7, miR-93 signature 241 [278]

miR-423-5p, miR-210, miR-720, miR-320a, miR-378, miR-106a, miR-143, miR-103, miR-
199a-3p, miR-382, miR-151-5p signature 90 [279]

miR-423-5p, miR-484 , diverse 103 [280]

miR-532-3p, miR-331, miR-195, miR-17, miR-142-3p, miR-15b, miR-532, miR-652, miR-
431, miR-15b, miR-139-3p signature 128 [281]

miR-574-5p ↑ 14(146) [281]

miR-601, miR-760 ↓ 191 [282]

Prognosis/
Survival/
Metastasis

miR-7, miR-17-3p, miR-20a, miR-21, miR-92a, miR-96, miR-183, miR196a and miR-214, 
miR-124, miR-127-5p, miR-138, miR-143, miR-146a, miR-222 expression, diverse 20(40) [283]

miR-21 ↑ 102 [284]

miR-124-5p, miR-26a ↓ 71(142) [285]

miR-141 ↑ 278 [286]

miR-155 ↑ 206 [287]

miR-182 ↑ 51(161) [66]

miR-200c ↑ 230(446) [288]

miR-218 ↓ 90(331) [289]

miR-221 ↑ 140 [61]

miR-23a ↑ 102(162) [290]

miR-29a, miR-92a ↑, no associations for 
miR-92a 74(114) [291]

miR-92a ↑ 56(94) [292]

let-7i, miR-10b, miR-221, miR-320a, miR-885-5p signature 169(478) [293]

miR-126, Let-7a, miR-141, miR-21 signature 224 [294]

miR-15a, mir-103, miR-148a, miR-320a, miR-451, miR-596 signature 40 [295]

miR-18a, miR-29a ↑ 56(80) [296]

miR-29c ↑ 84(191) [297]

miR-148a ↓ 85(195) [298]

miR-183 ↑ 179(195) [65]

MIRNA BIOMARKERS IN STOOL specimens #2  
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MIRNAS REGULATING PROLIFERATION 
AND APOPTOSIS

The effect of miRNAs on cellular proliferation could 
be subdivided into miRNAs targeting 1) mitogen receptor 
tyrosine kinases, or G-protein signal transducers such as 
KRAS, and the intermediary signal transducing molecules 
that convey mitogenic information to its intracellular 
targets, 2) cell cycle regulators, such as late-G1 checkpoint 
regulators RB and CDKs, and 3) reciprocal miRNA 
interactions with MYC and TP53. The comparisons of the 
proliferative potential of two cell populations, frequently 
addressed in many studies, may reflect not only efficiency 
of cell cycle, but also cell differentiation and senescence, 
survival or apoptosis. In addition, cell proliferation and 
metabolism are tightly linked cellular processes, since 
cells need to increase their biomass and replicate their 
genome prior to proliferation. The effect of miRNAs on 
apoptosis is mediated by their regulation of pro-apoptotic 
and anti-apoptotic mRNAs or their positive regulators. 
Augmented cell proliferation together with suppressed 
apoptosis constitutes the minimal common platform 
upon which all neoplastic development occurs. MiRNAs 
with pro-proliferative and/or anti-apoptotic activities 
would likely promote oncogenesis and thus may be 
overexpressed in cancer cells. Likewise, miRNAs with 
anti-proliferative and/or pro-apoptotic activities are likely 
to function as tumor suppressor genes and thus may be 
downregulated in cancer cells. 

The effect of miRNA deregulation on cell 
proliferation and apoptosis has frequently been measured 
after perturbations of single miRNAs in cell line models. 
The ectopic expression of miR-638 inhibited CRC cell 

proliferation by targeting TSPAN1 and arresting the cell 
cycle in G1 phase [70]. Overexpression of miR-29b 
induced apoptosis and arrested the cell cycle in the G1/S 
transition by repressing MCL1 and CDK6 [71]. High 
throughput approaches analyzing the effect of multiple 
miRNAs simultaneously, have also been performed [39, 
43, 72]. The perturbations of entire population of miRNAs 
by employing a comprehensive miRNA library screen, 
have shown that approximately 15% and 30% of miRNAs 
had an effect on proliferation and apoptosis, respectively 
[39]. However, only some of these are relevant to CRC 
development and progression. By integrating miRNA 
expression from CRC patients and applying in-depth 
functional validation, the strongest candidates have been 
identified, including miR-9, miR-31, miR-182, miR-375 
and miR-491 [39, 72, 73]. MiR-491 induced apoptosis 
via silencing of BCL2L1 that is commonly overexpressed 
in CRC, and treatment with miR-491 suppressed in 
vivo tumor growth [72]. Interestingly, the genomic 
micro-deletions at chromosome 9 (cytoband 9p21.3) 
and chromosome 20 (cytoband 20q13.33) that include 
the mir-491/KIAA1797 and AK309218/mir-646 genes, 
respectively, have been associated with familial and early-
onset CRC [74]. Enhanced expression of miR-182 in CRC 
has been reported in multiple studies [39, 52, 75, 76] and 
associated with lymph node metastasis and poor prognosis 
[52, 75]. MiR-182 exhibited anti-apoptotic effect by 
targeting ENTPD5 [77], FBXW7, SATB2 [78] and THBS1 
[79], and stably blocking its expression in animal models 
has been shown to inhibit tumor formation [80].

Diagnosis

miR-7, miR-17, miR-20a, miR-21, miR-92a, miR-96, miR-106a, 
miR-134, miR-183, miR-196a, miR-199a-3p, miR-214, miR-9, 
miR-29b, miR-127-5p, miR-138, miR-143, miR-146a, miR-222 , 
miR-938

signature 60(75) [299]

miR-21, miR-106a ↑ 37(42) [300]
miR-34b, miR-34c methylation 122(286) [301]
miR-34b, miR-34c, miR-148a methylation 67(189) [302]
miR-106a ↑ 224 [303]
miR-135b ↑ 424(490) [304]
miR-143, miR-145 ↓ 51 [305]
miR-144* ↑ 75(105) [306]
miR-221, miR-18a ↑ 595(675) [307]
miR-451, miR-223 ↑ 45(61) [308]
miR-J1-5p ↓ 56(68) [309]
miR-21, miR-92a ↑ 239(326) [310]
miR-135a, miR-135b, miR-18a, miR-19a ↑ 340(402) [311]
miR-20a-5p, miR-21-3p, miR-141 ↑ 40(80) [312]

* ↑, upregulated expression in CRC vs. normal control; ↓, downregulated expression in CRC vs. normal control; methylation, 
cancer specific DNA methylation; signature, multiple miRNAs considered collectively; expression, diverse, multiple 
miRNAs considered separately, #total number of samples included in the study, CRCs, adenomas and normal control samples 
collectively; specimens #1 – serum or plasma samples from healthy controls, individuals with adenomas and cancer patients, 
total number of samples, including tissue samples are given in parenthesis; specimens #2 - stool samples from healthy controls, 
individuals with adenomas and cancer patients, total number of samples, including tissue samples are given in parenthesis.
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MIRNA ABERRATIONS IN THE 
MOLECULAR PHENOTYPES OF CRC

CRCs are primarily subdivided into three molecular 
phenotypes. The chromosomal instability phenotype 
(CIN) accounts for about 85 % of all sporadic CRCs and is 
characterized by large-scale genomic rearrangements [81]. 
The microsatellite instability (MSI) phenotype accounts 
for about 15 % of all CRCs and is associated with a defect 
DNA mismatch-repair system (MMR), and an accordingly 
hypermutated genome [82, 83]. Cancers with the CpG 
island methylator phenotype (CIMP) display promoter 
hypermethylation and subsequent inactivation of multiple 
genes. CIMP cancers overlap with both the CIN and MSI 
types, but are mainly associated with MSI [84]. Recently, 
transcriptome instability (TIN) was introduced as a fourth 
molecular phenotype, characterized by excess aberrant 
pre-mRNA splicing [85].

The impact of abnormalities of the miRNA-ome is 
still limited for these individual molecular phenotypes. 
Most studies have focused on comparison of the most 
common phenotypes CIN to MSI where differential 
expression of miRNAs has been reported. Further, in 
MSI cancers, expression levels of certain miRNAs have 
been associated with resistance to chemotherapy [86-93]. 
Furthermore, miR-155 and miR-21, which are frequently 
overexpressed in CRC, have been demonstrated to down-
regulate the core MMR proteins MSH2, MSH6, and 
MLH1, inducing the MSI mutator phenotype [88, 92, 94]. 
MiR-155 has been found overexpressed in MSI tumors 
with unknown cause of MMR inactivation and therefore 
suggested as a potential mechanism of MSI induced cancer 
pathogenesis [88]. The MSI phenotype is characterized 
by a dramatic increase of insertions and deletions at 
repetitive sequences. Even though mutated DNA repeats 
in miRNA hairpin sequences are relatively rare, cancers 
with MSI phenotype also have an elevated rate of single 
nucleotide mutations. Thus, miRNA genes are as well 
potential mutation targets MSI CRCs. A single miRNA, 
miR-1303, displayed frequent mutations due to MSI and 
was expressed in colonic tissues [95]. Functional studies 
are required to conclude whether this miRNA might have 
a role in MSI tumorigenesis. 

MiRNAs are frequently located at fragile sites of 
the genome, which are usually either amplified or deleted 
in human cancers [96]. The aberrant miRNA expression 
in CRC could be due to these genomic rearrangements 
associated with CIN phenotype. DNA copy number gain 
on chromosome band 13q31 has been shown to increase 
the expression of the oncogenic miR-17-92 cluster [97]. 
Reduced expression of miR-497 and miR-195 in CRC was 
associated with DNA copy number loss of a segment of 
chromosome band 17p13.1 [98]. However, to which extent 
these miRNAs are oncogenic drivers for cancers with the 
recurring rearrangements is not proven.

One of the most common causes of the loss of 

tumor suppressor miRNAs in CRC is the silencing of their 
primary transcripts by cancer-specific DNA methylation 
in associated CpG islands [99-102]. However, there is 
no evidence whether more miRNA genes are affected in 
CIMP positive tumors displaying higher frequency and 
extent of DNA methylation as compared to other subtypes. 
So far, only two miRNAs, miR-31 [103] and miR-146a 
[104], have been associated with the CIMP positive CRCs.

MIRNA REGULATION OF TARGET 
GENES

Approximately 450 unique miRNAs have been 
associated with CRC, of which twenty account for one 
third of all miRNA quotations. MiRNAs miR-21, miR-143 
and miR-145 were the most frequently reported, followed 
by miR-31, miR-34a, miR-200c, miR-20a and miR-92a. 
Recent experimental analyses have validated a total of 530 
miRNA-mRNA pairs in CRC, 200 unique miRNAs and 
347 unique targets (Figure 3A-3B).

Modeling cross-talk in miRNA and their target 
networks based on validated interactions

Most of the studies reporting miRNAs and their 
targets in CRC validated only a single miRNA-mRNA 
pair, despite that 1) miRNAs may have target sites in 
multiple transcripts and 2) several miRNAs may play 
together in controlling a single mRNA transcript. To 
explore the underlying regulatory circuits of miRNAs 
and their targets, we extracted all experimentally 
validated interactions and built a miRNA-target network 
by combining all miRNA-mRNA pairs reported in the 
reviewed studies. The four nodes of miR-21-PTEN/
PDCD4, miR-143/miR-145-KRAS-let-7a, miR-34a-
SIRT1/LEF1 and miR-200c-ZEB1 were prominent in 
the miRNA-target interaction network. In addition, a 
small number of miRNA-mRNA nodes included two to 
four partners, and the bulk of miRNAs that so far have 
reported with only one validated target. The miRNA-
target interaction network is available in Supplementary 
Figure S1, and selected enlarged nodes are highlighted in 
Figure 3C. The node of miR-143/miR-145-KRAS should 
be interpreted with precaution in light of the recent results 
by Chivukala et. al. [105] (further discussed on page 13).

Although the network analysis illustrates the 
complexity of miRNA-induced regulation, it is strongly 
biased towards well-studied protein coding genes and 
miRNAs. Since the miRNA functions are dependent 
on available cellular transcripts, the cell composition 
of a tumor may further influence this interaction map. 
Moreover, some of the miRNAs targets may be repressed 
more strongly than others. Ideally, one should therefore 
predict not only miRNA-target pairs, but also the expected 
degree of translational suppression, taking into account 
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Figure 3: MiRNA regulation of target genes. A. and B. The most frequently validated miRNA and target genes. C. The enlarged 
leading miRNA-targets nodes generated using the validated miRNA-target pairs. The network edges are coded by degree of expressional 
miRNA-mRNA associations obtained in TCGA CRC patients. MiRNA nodes are indicated by rectangles, target nodes as ovals. Size of 
nodes reflects the number of connections, with bigger nodes representing more densely connected regions. The node of miR-143/miR-145-
KRAS should be taken with precaution in light of the recent results by Chivukala et. al.[105].
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seed complementarity and mRNA secondary structure 
[106]. Recently, the distribution of the recurrent miRNA-
target interactions have been analyzed employing TCGA 
data across multiple cancer types, including CRC [44, 
107]. We have integrated miRNA-mRNA associations 
obtained in the TCGA CRC patients [44] with the network 
of validated miRNA-target pairs. More than 60% of 
validated miRNA-target interactions collected across all 
reviewed studies had, as expected, negative expression 
associations in the TCGA CRC patients (Figure 3C). 
This also suggests that a part of these experimentally 
validated interactions in CRCs and/or CRC cell lines had 
no association or even displayed positive associations 
in the TCGA CRC patients. This might be explained 
by some targets that reciprocally control the level and 
function of miRNAs. Furthermore, we cannot exclude the 
patient cohort specificity, or that some miRNA-mRNA 
interactions validated in CRC cell lines only, are not 
relevant to CRC patients.

MIRNAS REGULATE KEY COLORECTAL 
CANCER SIGNALING PATHWAYS

CRC tumorigenesis is driven by molecular 
alterations resulting in activation of pro-survival 
signaling pathways such as the canonical WNT signaling 
pathway, the EGFR pathway, the TP53 network, and the 

transforming growth factor beta (TGF-β) (Figure 4).

Activation of canonical WNT signaling

WNT signals are pivotal for the regulation of stem 
cell activity to the crypt bottom in the intestines and 
ultimately for the renewal of the epithelial cells [108]. 
Inappropriate activation of WNT signaling promotes cell 
survival, inhibits cell death and differentiation and triggers 
the development of upper- and lower- gastrointestinal 
polyps and carcinoma [109]. The APC tumor suppressor 
is a negative regulator of free CTNNB1, a central player 
of WNT signaling, and up to 80% of CRCs have mutations 
in the APC gene resulting in a truncated protein [110]. 
MiRNAs may also contribute to reduced APC levels. The 
elevated expression of miR-135a/b, negative regulator of 
APC, has been observed in adenocarcinomas as well as 
premalignant colorectal adenomas and correlated with 
concomitant reduced levels of APC leading to WNT 
pathway activation [111]. Interestingly, miR-135a/b 
suppressed APC expression, even when APC mutations 
were present, suggesting that miR-135a/b may function 
as complementary players in WNT pathway addiction. 
Furthermore, overexpression of miR-135b, activated 
by the WNT pathway, has been observed in sporadic as 
well as inflammatory bowel disease-associated CRCs and 

Figure 4: An overview of key signaling pathways in CRC and the regulation of their components by miRNAs. MiRNAs 
that are involved in multiple pathways and contribute to the cross-talk among the pathways are marked in bold. 
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correlated with tumor stage and poor clinical outcome 
[112].

A critical point of WNT signaling is nuclear 
translocation of CTNNB1 that binds to the LEF/TCF 
transcription complex and activates transcription of 
multiple target genes, including CCND1 and MYC 
[113]. MiR-26b and miR-34a/b/c directly targeted LEF1 
3’UTR and inhibited its expression [114], while miR-145 
directly targeted CTNNG1, contributing to the aberrant 
translocation of CTNNB1 through impaired nuclear 
shuttling with PAK4 [115]. A reduced miR-143/145 
expression in CRC [11] was reported in the first study 
associating miRNA and CRC, and roughly 40 other 
studies have reproduced these results. Nevertheless, 
the tumor suppressor role of miR-143/145 in CRC has 
been challenged by the recent results of Chivukula and 
colleagues, who reported that miR-143/145 were expressed 
exclusively within the mesenchymal compartment of 
the normal intestine and that the repeatedly observed 
repression of miR-143/145 in CRC was rather the result 
of depletion of mesenchymal cells in tumors relative 
to normal mucosal biopsies [105]. Nonetheless, loss 
of miR-143/145 expression has been shown to predict 
poor prognosis and serve as CRC biomarkers [116-118]. 
In light of the new evidence regarding the lack of miR-
143/145 functionality in intestinal epithelial cells, one 
may hypothesize that miR-143/145 may function as a 
surrogate marker for tumor infiltration with mesenchymal 
cells rather than repression of target genes, such as KRAS. 
Thus it would be interesting to see an expression analysis 
of miR-143/145 using in situ hybridization of CRC tissue 
microarrays, and examine co-localization with their 
validated target genes, such KRAS, NKRAS, CTNNG1, 
ERK and KLF5. 

The LEF/TCF complex activates numerous pro-
survival signaling cascades and some miRNAs may be 
under direct LEF/TCF control and/or being regulated 
by downstream effectors [119, 120]. By using either a 
bioinformatics approach to discover miRNA transcription 
start sites within close proximity to TCF4 chromatin 
occupancy sites [120] or profiling miRNA expression in 
CRC cells with disrupted CTNNB1/TCF4 activity followed 
by integration of TCF4 chromatin data [119], roughly 30 
TCF4-responsive miRNAs have been identified. However, 
only miR-23b was found in both studies. 

The TCF/LEF–dependent transcriptional activity 
is most likely regulated by miR-34 family members, 
since the UTRs of multiple WNT pathway genes contain 
binding sites for this family of miRNAs [27, 121-123]. 
MiR-34, activated by TP53, inhibited activity of the TCF/
LEF complex and linked the canonical WNT pathway 
with TP53 activity [122] (Figure 4). Loss of TP53 function 
resulted in increased activity of WNT signaling cascade 
and promoted the Snail-dependent EMT program [122]. 
Interestingly, UTRs of oncogenes, including CTNNB1, 
are often shortened in cancer cells as a consequence of 

alternative cleavage, leading to loss of miR-34 mediated 
regulation [121, 122]. Furthermore MYC, induced by 
WNT, upregulated the oncogenic miR-17-92 miRNA 
cluster that encode miRNAs, directly targeting the key 
effector of TGFR signaling pathway, SMAD4 [124].

Activation of EGFR signaling

The epidermal growth factor receptor (EGFR) 
signaling pathway coordinates a variety of cellular 
activities [125]. The cancers with mutated EGFR have 
been suggested to have an “oncogene addiction”, serving 
as the basis for EGFR targeted therapies. However, the 
clinical benefit from EGFR-targeted therapies has so far 
been rather limited in CRC. Activating KRAS mutations, 
functioning downstream of EGFR, have been reported 
in 30–60% of CRCs [126]. These patients do not benefit 
from anti-EGFR treatment. Furthermore, among patients 
with wild type KRAS, a clinical benefit is only seen in 10 
– 20% [127, 128]. Activating mutations of BRAF, as well 
as of PIK3CA and loss of PTEN are also associated with 
lack of response to anti-EGFR therapy. Nevertheless, they 
cannot alone explain the low success rate of the treatment. 
In search of additive deregulation mechanisms, multiple 
studies have focused on miRNA association with KRAS 
and PTEN, while other genes of the EFGR pathway have 
received less attention.

The KRAS gene is directly targeted by the let-
7 miRNA family [129]. A SNP, present in the KRAS 
3’UTR, disturbs the let-7 binding site, resulting in 
increased KRAS mRNA levels. KRAS-let-7 SNP variant 
carriers were shown to have an increased presentation of 
advanced colon cancer [130], however, conflicting results 
are published regarding the response to chemotherapy 
and CRC outcome [130-133]. Recently, the KRAS-let-7 
SNP variant was reported to correctly predict a clinical 
response to anti-EGFR therapy in a large cohort of 
patients with metastatic CRC [134]. Other miRNAs have 
been shown to repress KRAS, in particular, miR-143 and 
miR-145 have received a lot of attention [135]. Restoring 
miR-143/145 in colon cancer cells decreased proliferation, 
migration and chemoresistance, however, in light of 
the recent results by Chivukala and colleagues [105], 
the biological relevance of miR-143/145 in epithelial 
malignancies needs re-examination. Other studies revealed 
that the star strand of mir-18a and miR-4689 function as 
potential tumor suppressors by targeting KRAS [136, 137]. 
In addition, miR-31 activated the RAS signaling pathway 
by repressing RASA1 [138].

Multiple miRNAs have been shown to target the 
PIK3/AKT hub downstream in the EGFR signaling 
pathway [139]. Mutations in the PIK3CA coding 
sequence (exons 9 and 20) and a novel 3’UTR mutation, 
reducing binding affinity for miR-520a and miR-525a, 
were associated to increased sensitivity to saracatinib, a 
Src kinase inhibitor [140]. This mutation could be used 
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as predictive marker for saracatinib therapy and may 
improve effectiveness of this drug. Importantly, a phase 
II study of saracatinib in unselected metastatic CRC 
patients showed no improvement in progression-free 
survival [141]. MiR-126, which expression is frequently 
lost in CRC, modulated the activity of PI3K at the level 
of signal initiation by limiting PIK3R2 levels in normal 
colon epithelium [142], while miR-30a, which expression 
is also reduced in metastatic CRC, has been reported to 
target PIK3CD [143].

PTEN, a central negative regulator of the PIK3/
AKT, is inactivated by mutations and/or deletions in 
many primary and metastatic human cancers [144, 145]. 
In CRC the PTEN transcript has been shown to be targeted 
by multiple miRNAs (Figure 4C), including miR-19 [146], 
miR-21 [147], miR-32 [148] and miR-92-1-5p [149]. 
Despite the fact that PTEN was most frequently reported 
to be repressed by miR-21, miR-21 and PTEN expression 
showed no association in TCGA CRC patient cohort [44]. 
Upon enforced miR-26a in APCmin/+ mice, a model known 
to be sensitive to PTEN dosage [19], potent reduction 
of tumor number and size was observed, suggesting a 
therapeutic potential of miR-26a.

Impairment of TP53 function

The tumor suppressor TP53 responds to diverse 
stress signals by coordinating specific cellular responses, 
including cell cycle arrest, senescence, apoptosis, invasion 
and metastasis, as well as cell–cell communication within 
the tumor microenvironment [150]. The importance of 
TP53 in tumor suppression is unequivocal, as shown by 
its inactivation in more than half of all sporadic human 
cancers, including CRC [151]. Wild-type TP53 encodes 
a sequence-specific activator which exerts its function 
through transcriptional regulation of protein-coding 
genes to initiate cellular responses. Many genes have 
been identified to contain TP53-responsive elements 
and be induced upon TP53 activation. Despite that 
global bioinformatic sequence analysis suggested that 
up to 46% of the miRNA putative promoters contain a 
potential TP53-binding site [152], only approximately 50 
miRNAs have been experimentally validated to be under 
transcriptional control of TP53. Among them, miRNAs, 
let-7i, miR-20a, miR-21, miR-25, miR-34a/b/c, miR-145, 
miR-181b, miR-183, miR-195, miR-215, and miR-451 
have been reported by two or more studies. MiR-34a and 
other members of the miR-34 family were identified as 
TP53-inducible miRNAs in several cancer types [153, 
154]. The miR-34 family comprises three miRNAs; miR-
34a is encoded by its own transcript, whereas miR-34b 
and miR-34c share a common primary transcript. MiR-34a 
is expressed at high levels in CRC patients, while miR-
34b/c expression is not detectable. An epigenetic silencing 
of miR-34b/c has been reported in CRC cell lines [155]. 
Silencing of miR-34 by aberrant CpG methylation was 

dominant over its transactivation by TP53 after DNA 
damage [102], impairing the tumor suppressive role of 
TP53, particularly for cancer cells not exhibiting TP53 
mutation. Finally, miR-34a was found to activate TP53 
by inhibiting SIRT1, the major regulator of TP53 [156, 
157] suggesting a positive feedback loop between TP53 
and miR-34a.

Interestingly, miR-192 and miR-215 may act as 
effectors as well as regulators of TP53 by suppressing 
tumorigenesis through CDKN1A [158]. The fact that miR-
192 and miR-215 were reduced in CRC while being highly 
expressed in normal colon further supports the idea that 
these miRNAs carry out a tumor suppressive function. 
Among other TP53 responsible miRNAs, miR-200 
cluster family members play a critical role in metastasis, 
as previously discussed. 

TP53 itself is subjected to miRNA induced 
regulation and miR-125b has been validated as such 
a negative regulator in CRC [159], which upon high 
expression is associated with tumor initiation, progression, 
invasiveness, and poor prognosis. Intriguingly, in relation 
to miR-125 expression levels, no significant difference 
was observed between patients with wild type TP53 or 
TP53 mutation [159]. Other miRNAs have been reported 
to control TP53 indirectly, by regulating MDM2 (miR-
339-5p) [160] and RFFL (miR-133a) [138].

Although, several of the examples described above 
illustrate importance of miRNA induced regulation, we 
have only begun to understand the role of the complex 
regulatory loops in the TP53-miRNA network. It also 
should be noted that besides the expression regulation 
of miRNA-coding genes, TP53 may directly affect the 
processing of miRNAs [161].

Inactivation of TGF-β signaling

A wide spectrum of cellular functions such as 
proliferation, apoptosis, differentiation, migration and 
interactions with the microenvironment are regulated by 
TGF-β family members. The TGF-β pathway is activated 
when the ligand binds to TGFBR2 at the cell surface 
and TGFBR1 is recruited and phosphorylated. TGFBR2 
is pivotal to trigger the signaling pathway, and signals 
through SMADs or non-SMAD pathways [162]. Tumor 
cells often escape from the anti-proliferative effects of 
TGF-β by mutational inactivation of its components. 
Mutations in TGFBR2 are estimated to occur in 
approximately 90% of MSI and in 15% of microsatellite 
stable (MSS) CRCs [163]. Germline mutations in 
SMAD4 and BMPR1A are found in patients with familial 
juvenile polyposis, an autosomal dominant condition, and 
associated with increased risk of CRC [164]. Multiple 
miRNAs have been confirmed to regulate TGFBR2, such 
as miR-17-5p, miR-20a, miR-21, miR-23b, miR-106a 
and miR-301a (Figure 3C). The miR-21-TGFBR2 pair 
had also significant negative associations in TCGA CRC 
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patients, confirming this regulatory node in large patient 
series. Notably, miR-21, activated by the WNT signaling 
pathway, regulated stemness by modulating TGFBR2 
signaling, which induced chemoresistance in animal 
models [165]. 

The oncogenic miR-17-92 cluster, regulated 
by MYC, has executed TGF-β responses by targeting 
TGFBR2 and SMAD4 [124], interconnecting the TGF-β 
and WNT signaling pathways. On the other hand, 
overexpression of MYC and DNA copy number gain of the 
miR-17-92 locus on 13q31 were frequently seen in non–
MSI tumors, indicating that miR-17-92 induced repression 
could be an alternative mechanism for inactivation of the 
TGF-β pathway. Interestingly, the miR-106a/363 and miR-
106b/25 clusters encode paralogous miRNAs to those in 
the miR-17-92 cluster and, consequently, target some of 
the same genes and pathways including TGFBR2 and 
SMAD2/SMAD4 [124, 166]. Furthermore, miR-130a, 
miR-301a, and miR-454, frequently upregulated in CRC 
tissues, have been shown to target SMAD4 resulting in 
enhanced cell proliferation and migration [167]. The 
activation of SMAD7, a negative regulator of the TGF-β 
signaling pathway, promoted EMT and metastasis as a 
result of reduced miR-25 expression [168]. The non-
SMAD TGF-β pathways include various branches of 
MAP/PIK3/AKT and RHO-like GTPase signaling. 
Alterations in Rho GTPase gene expression levels, rather 
than constitutive mutations, are often associated with 
tumorigenesis and cancer progression [169]. The reduced 
expression may be caused, at least in part, by the matched 
3’UTRs repression by miRNAs. For example, miR-185 
inhibited the expression of RHOA and CDC42 resulting in 
reduced proliferation and induced G1 cell cycle arrest and 
apoptosis [170]. CDC42 has also been validated as a target 
for miR-137 [171], while RHOB and RHOBTB1 have been 
repressed by miR-21 and miR-31, respectively. This links 
regulation of RHO GTPase gene expression with WNT 
and EGFR signaling pathways.

CONCLUDING REMARKS

The field of miRNA research has grown 
tremendously due to methodological developments and 
discoveries of new cellular roles of miRNAs. They seem 
to play a role at every stage of the tumor development, 
however, their necessity in driving of tumor growth still 
needs to be proven. So far, metastasis stands out as the 
process most tightly regulated by miRNAs. Despite the 
fact that miRNAs are known to have multiple targets, 
pair-wise miRNA-target validation has dominated target 
investigations in CRC as summarized and discussed in this 
review. As a result, our understanding of the regulatory 
miRNA networks and how family miRNAs could 
compensate for each others’ functions remains limited.

The identified altered miRNA expression in CRC has 
also raised exciting opportunities for clinical applications 

and we have here reviewed several miRNAs with potential 
as biomarkers for diagnosis and prognosis. However, 
the challenge remains to validate miRNA biomarkers 
in large, independent patient cohorts. Evidence that 
miRNAs contribute to several aspects of tumorigenesis 
suggests that inhibition of highly expressed miRNAs, or 
replacement of miRNAs with reduced expression, could 
become treatment strategies. On the other hand, the ability 
of miRNAs to regulate multiple targets might increase 
the efficacy of miRNA-based drugs as well as lead to 
undesirable side effects. Understanding the molecular 
and cellular pathways that are controlled by miRNAs, as 
illustrated for the main pathways of CRC development, 
may facilitate development of miRNA-therapeutics. 

Taken together, these directions are innovative and 
promising. Nonetheless, the clinical impact for CRC of 
miRNAs identified in the proof–of-concept studies in cell 
lines, animal models and small patient cohorts has to be 
confirmed in carefully designed clinical studies. 
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