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AbstrAct
Integrated analysis of metabolomics, transcriptomics and immunohistochemistry 

can contribute to a deeper understanding of biological processes altered in cancer 
and possibly enable improved diagnostic or prognostic tests. In this study, a set of 
254 metabolites was determined by gas-chromatography/liquid chromatography-
mass spectrometry in matched malignant and non-malignant prostatectomy samples 
of 106 prostate cancer (PCa) patients. Transcription analysis of matched samples 
was performed on a set of 15 PCa patients using Affymetrix U133 Plus 2.0 arrays. 
Expression of several proteins was immunohistochemically determined in 41 matched 
patient samples and the association with clinico-pathological parameters was 
analyzed by an integrated data analysis. These results further outline the highly 
deregulated metabolism of fatty acids, sphingolipids and polyamines in PCa. For the 
first time, the impact of the ERG translocation on the metabolome was demonstrated, 
highlighting an altered fatty acid oxidation in TMPRSS2-ERG translocation positive 
PCa specimens. Furthermore, alterations in cholesterol metabolism were found 
preferentially in high grade tumors, enabling the cells to create energy storage. With 
this integrated analysis we could not only confirm several findings from previous 
metabolomic studies, but also contradict others and finally expand our concepts of 
deregulated biological pathways in PCa.

IntroductIon 

Prostate cancer continues to be the most frequent 
cancer in men with a predicted incidence of 220,800 

new cases and 27,540 estimated deaths for 2015 in the 
US alone [1]. Intense research efforts aim to clarify the 
underlying molecular, physiological and biochemical 
processes of tumor initiation and progression of prostate 
cancer and “-omics” technologies such as genomics, 
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transcriptomics, proteomics and metabolomics provide 
promising and holistic research tools [2].

Metabolomics is defined as a global quantitative 
or semi-quantitative analysis of all metabolites in a 
biological system such as an organ, tissue or body fluid. 
It has become a promising -omics approach applying 
the analytical platforms of nuclear magnetic resonance 
spectroscopy or mass spectrometry in combination 
with gas chromatography/liquid chromatography [3]. 
Metabolomics can be a valuable tool to comprehensively 
understand or monitor functional alterations of the cell, 
caused by alterations of preceding biological strata, 
i.e. by genomic, transcriptomic or proteomic changes. 
Moreover, an integrated view in combination with protein 
expression and gene expression data can further improve 
the understanding of regulatory mechanisms altered in the 
cancer cell.

Prostate cells have a distinct metabolic profile 
reflecting the production of citrate, prostate specific 
antigen (PSA) and polyamines that are major components 
of prostate fluid. When prostate cells undergo neoplastic 
transformation they lose the capacity to accumulate zinc, 
which leads to restored activity of the mitochondrial 
enzyme m-aconitase and thus citrate oxidation [4]. 
Consequently citrate levels decrease and ATP generation 
is increased. Furthermore, a number of key enzymes 
involved in fatty acid and cholesterol synthesis are 
upregulated in prostate cancer cells [5]. The alterations 
seen in the prostate cancer metabolome may be of 
diagnostic or therapeutic use (see recent review [6]). For 
example, the ratios (total choline+creatine+polyamines)/
citrate (CCP/C) or (total choline+creatine)/citrate (CC/C), 
which are both increased in prostate cancer, are already 
used in magnetic resonance spectroscopic imaging (MRSI) 
and are thus implemented into clinical practice [7-9, 9].

Aims of this exploratory retrospective study, 
which complies to the recommendations of Early 
Detection Research Network [10], were: (a) to identify 
metabolites with different levels in malignant and non-
malignant tissue, (b) to correlate these metabolites with 
conventional clinical-pathological variables (tumor stage 
and grade and TMPRSS2-ERG (ERG) translocation), and 
(c) to integrate these metabolites with a targeted protein 
expression analysis data set in order to identify regulatory 
or deregulatory mechanisms that were not obvious from 
a single –omics data set alone. A strength is the analysis 
of matched malignant and normal adjacent prostate 
cancer tissue from each subject that enabled a statistical 
correction for inter-individual variability of the metabolite 
data. 

results

Patient characteristics

For metabolite analysis, 106 malignant and matched 
normal adjacent tissue (NAT) samples from prostate 
cancer patients with complete clinical characteristics were 
collected. Additionally, protein expression was analyzed in 
41 of these patient samples and transcription profiling was 
determined in 15 other patient samples (Table 1).

Metabolite levels correlate with Gleason score and 
erG translocation 

A total of 254 metabolites with 172 known and 82 
unknown spectral features were found. 134 of the known 
metabolites and 39 of the unknowns showed differential 
levels in malignant versus non-malignant samples (Table 
2). Of these 134 known metabolites, 92 were at least 
1.2 fold increased and eight metabolites were at least 
0.83 fold decreased (Supplemental Table 1). Among 
them were several metabolites already considered to be 
involved in prostate cancer such as sarcosine, polyamines 
or cholines [11] (Supplemental Table 1). No metabolites 
showed a significant change (p<0.05 and false-positive-
discovery rate <0.2) associated with body mass index 
(BMI). An analysis of the influence of pT category (pT2 
versus pT3 tumors) on the metabolome did not reveal 
significant alterations (Table 2). Unsupervised cluster and 
principal component analysis of 76 same-subject samples 
(≤10% missing values) provided evidence of a metabolic 
distinction between malignant and normal adjacent tissue 
(Supplemental Figure 1).

With regard to the Gleason score, eight known and 
four unknown metabolites were up-regulated, whereas 
four metabolites were down-regulated with increasing 
Gleason score (Table 2, Table 3A) applying a mixed 
linear model (ANOVA) with Gleason score as a numerical 
factor. For example, increased Gleason score was 
positively correlated with pantothenic acid, a constituent 
of coenzyme A and the acyl carrier protein. Maltose, 
fructose-6-phosphate, gluconic acid, and cholesterol were 
negatively correlated with the Gleason score. Gluconic 
acid has been reported before by us in an analysis of nine 
selected metabolites [12]. 

In samples of prostate cancer with an ERG 
translocation, 40 known and 15 unknown metabolites were 
found to be increased and 15 known and two unknown 
metabolites were found to be decreased in comparison 
to ERG-negative carcinomas (Table 2, Table 3B). ERG 
translocation was negatively correlated with maltotriose 
and gluconic acid, that have already been negatively 
associated with prostate cancer recurrence [12]. The 
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table 1: clinical characteristics of the study group
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Table 2: Number and percentage of significant metabolite changes out of 254 metabolites of 106 
matched malignant and adjacent normal prostate tissue samples. Statistical analysis was done via mixed 
ANOVA models; the significance level was set to p<0.05 and FDR<0.2.

Analysis Metabolite ontology
number of 
significantly 
changed 
metabolites

Malignant 
versus 
adjacent
normal

Increased 156
Amino acids 20

Amino acids related 9
Carbohydrates and related 3

Complex lipids, fatty acids and related 54
Energy metabolism and related 7

Miscellaneous 7
Nucleobases and related 9

Vitamins, cofactors and related 11
Unknown* 36

decreased 17
Amino acids 1

Carbohydrates and related 6
Complex lipids, fatty acids and related 3

Energy metabolism and related 1
Miscellaneous 2

Nucleobases and related 1
Unknown* 3

Gleason score

Increased 11
Amino acids related 1

Complex lipids, fatty acids and related 5
Nucleobases and related 1

Vitamins, cofactors and related 1
Unknown* 3

decreased 4
Carbohydrates and related 2

Complex lipids, fatty acids and related 1
Energy metabolism and related 1

ERG Translocation

Increased 53
Amino acids

Amino acids related
Carbohydrates and related

14
2
1

Complex lipids, fatty acids and related 13
Nucleobases and related

Vitamins, cofactors and related
6
4

Unknown* 13
decreased 17

Amino acids related
Carbohydrates and related

Energy metabolism and related
Miscellaneous

Nucleobases and related
Unknown*

2
8
2
2
1
2

pT3 versus pT2 - 0
BMI - 0

*Metabolites with final chemical structure pending



Oncotarget1425www.impactjournals.com/oncotarget

three fatty acids with the highest levels were cerebronic 
acid (2-OH-C24:0), 2-hydroxybehenic acid (C22:0), and 
tricosanoic acid (C23:0). Interestingly, citrate and cis-
aconitate and also the polyamines spermine and putrescine 
were significantly decreased in ERG-positive samples 
(Figure1, Table 3B). 

cox proportional hazards analysis

In order to evaluate the prognostic potential of 
metabolites from prostate cancer we performed Cox 
proportional hazards analysis for biochemical recurrence 
after prostatectomy. Among the top ten separating 
metabolites were nine amino acids or amino acid 
related metabolites and one fatty acid (Table 3C). Given 
the numbers of 36 amino acid or amino acid related 
metabolites and 68 lipids in the data set, this is apparently 
an enrichment of amino acid or amino acid related 
metabolites. The pT value showed the highest hazard ratio 
with an only marginally higher p-value than the amino 
acids tryptophan and tyrosine. 

Integrated analysis of transcription, 
immunohistochemistry, and metabolomic 
data demonstrate an altered energy and lipid 
metabolism in malignant tissue

Significantly differentially regulated metabolites/
genes discriminating between malignant and non-
malignant tissues were used for network analysis. The 
role of fatty acid metabolism in prostate cancer was 
investigated in more detail. Several intermediates, 
products and involved enzymes were found to be altered 

in malignant tissue samples compared to benign ones 
(Table 2 and Supplemental Table 1). Malignant tissue 
samples showed an increased expression of acetyl-CoA 
carboxylase (ACC), ATP citrate lyase (ACL) and fatty 
acid synthase (FASN) which represent important enzymes 
in fatty acid biosynthesis or, in the case of ACL, provide 
a link to the metabolism of carbohydrates (Figure 2 and 
Supplemental Table 2). The amounts of the matching 
input and output metabolites such as citrate, pantothenic 
acid or biotin were significantly altered in the prostate 
cancer samples compared to the non-malignant samples. 
The upregulation of palmitic acid together with the higher 
expression of acyl-CoA desaturase (SCD) both lead to a 
higher level of the monounsaturated fatty acid palmitoleic 
acid. Palmitic acid is one educt of sphingolipid de novo 
biosynthesis (Figure 2).

Correlation analysis (Spearman) between protein 
expression and the metabolite profiles revealed a 
significant correlation only for FASN if the false-positive 
discovery rate is taken into consideration, with several 
metabolites in NAT (Supplemental Figure 2). Several fatty 
acids such as 2-hydroxybehenic acid, cerebronic acid, or 
glycerol phosphate in the lipid fraction (which is therefore 
a lipid fragment and can be considered a sum parameter 
of all glycerol-phospholipids) showed significantly higher 
concentrations in malignant tissues (Supplemental Table 
1). This was consistent with the increased expression of 
FASN, both on mRNA and on protein levels in prostate 
cancer (Figure 2 and Supplemental Table 2). However, in 
contrast to benign tissues a significant correlation between 
the expression level of FASN and the concentration of 
fatty acids was not found in tumor tissues (Figure 3) 
thereby indicating a deregulation of this metabolite-
enzyme correlation in cancer metabolism.

Table 3A: Overview of ANOVA results of all significantly changed metabolites with Gleason score, unknowns not 
included. ANOVA analysis is described in the method section. Ratio gives the fold change of the metabolite when Gleason 
score increases by one SD.
Metabolite name ratio p-value ontology name

14-Methylhexadecanoic acid 1.18 1.25E-03 Complex lipids, fatty acids and 
related

Myristic acid (C14:0) 1.15 8.02E-03 Complex lipids, fatty acids and 
related

Uracil 1.13 6.50E-04 Nucleobases and related
Pentadecanol 1.12 9.29E-03 Fatty alcohols
Heptadecanoic acid (C17:0) 1.11 5.90E-03 Fatty acids, saturated
Pantothenic acid 1.11 9.15E-03 Acyl-carriers and related
Isopentenyl pyrophosphate (IPP) 1.10 1.07E-02 Mevalonate pathway
Homogentisic acid 1.08 1.22E-02 Amino acid metabolites
Cholesterol, total 0.94 9.94E-03 Cholesterol and related
Fructose-6-phosphate 0.85 6.13E-03 Glycolysis/Gluconeogenesis
Maltose 0.80 5.86E-03 Disaccharides
Gluconic acid (additional: Gluconolactone) 0.80 8.43E-03 Sugar acids
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Figure 1: Metabolic fingerprint of the ERG translocation in prostate cancer tissue. Box plot represents a plot of 5 parameters, 
i.e. median, lower quartile (Q1), upper quartile (Q3), upper adjacent value, lower adjacent value and, if present, additionally display 
outliers. Adjacent values: Let IQR be the interquartile range (Q3 – Q1). The upper adjacent value (upper whisker) is the largest observation 
that is less than or equal to the upper inner fence (UIF) which is the third quartile plus 1.5*IQR. The lower adjacent value (lower whisker) 
is the smallest observation that is greater than or equal to the lower inner fence (LIF), which is the first quartile minus 1.5*IQR. Outliers are 
values that fall outside the whiskers. Expression levels (subject-corrected residuals) of selected metabolites that are significantly regulated 
by ERG translocation with p<0.05 and FDR<0.2. P-values are given in Table 3B.
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Table 3B: Overview of ANOVA results of all significantly changed metabolites with ERG translocation, unknowns not 
included. ANOVA analysis is described in the method section. Ratio gives the fold change of ERG translocation positive 
versus ERG translocation negative samples.
Metabolite name ratio p-value ontology name

2-Hydroxybehenic acid (C22:0) 3.99 5.10E-05 Complex lipids, fatty acids and 
related

Cerebronic acid (2-OH-C24:0) 3.24 1.75E-04 Complex lipids, fatty acids and 
related

Cystine 2.82 1.12E-04 Amino acids

Tricosanoic acid (C23:0) 2.33 5.50E-05 Complex lipids, fatty acids and 
related

Xanthine 1.82 1.19E-03 Nucleobases and related

Eicosadienoic acid (C20:2) No 02 1.60 2.93E-03 Complex lipids, fatty acids and 
related

Docosapentaenoic acid (C22:cis[7, 10, 13, 16, 
19]5) 1.57 2.80E-05 Complex lipids, fatty acids and 

related
7-Methylguanine 1.55 2.53E-04 Nucleobases and related

Isopentenyl pyrophosphate (IPP) 1.55 6.40E-04 Complex lipids, fatty acids and 
related

erythro-Dihydrosphingosine (d16:0) 1.51 1.20E-02 Complex lipids, fatty acids and 
related

Cysteine (additional: Cystine) 1.47 9.90E-05 Amino acids

Glycerophosphoethanolamine, polar fraction 1.46 4.70E-02 Complex lipids, fatty acids and 
related

Heptadecanoic acid (C17:0) 1.40 6.58E-03 Complex lipids, fatty acids and 
related

gamma-Tocopherol 1.39 1.40E-02 Vitamins, cofactors and related
Uracil 1.38 3.00E-05 Nucleobases and related
Methionine 1.37 4.44E-04 Amino acids
Histidine 1.36 1.94E-02 Amino acids
Uridine 1.36 3.11E-02 Nucleobases and related
Pantothenic acid 1.34 6.73E-03 Vitamins, cofactors and related
Biotin 1.32 5.45E-03 Vitamins, cofactors and related
Hypoxanthine (additional: Inosine) 1.31 3.77E-02 Nucleobases and related
Threonic acid 1.31 6.35E-03 Vitamins, cofactors and related

Linoleic acid (C18:cis[9, 12]2) 1.31 3.47E-03 Complex lipids, fatty acids and 
related

Glycine 1.27 4.02E-03 Amino acids
Aspartate 1.27 1.48E-02 Amino acids

Sphingomyelin (d18:1,C23:0) 1.26 8.10E-05 Complex lipids, fatty acids and 
related

Proline 1.25 2.03E-02 Amino acids
Ribose 1.24 3.49E-02 Carbohydrates and related
trans-4-Hydroxyproline 1.23 1.70E-02 Amino acids related
Arginine 1.22 2.08E-02 Amino acids
Tyrosine 1.21 3.60E-02 Amino acids
Isoleucine 1.20 1.11E-02 Amino acids
Leucine 1.19 3.14E-02 Amino acids
Phenylalanine 1.19 3.98E-02 Amino acids
Cytosine (additional: 2'-Deoxycytidine) 1.16 5.83E-03 Nucleobases and related
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Lysophosphatidylcholine (C18:2) 1.16 4.15E-02 Complex lipids, fatty acids and 
related

Tryptophan 1.16 4.28E-02 Amino acids
Glutamate 1.16 4.10E-02 Amino acids
5-Oxoproline (additional: Folic acid, 
Glutamate, Glutamine) 1.14 3.09E-02 Amino acids related

Ceramide (d18:1,C24:1) (additional: Ceramide 
(d18:2,C24:0)) 1.09 2.59E-02 Complex lipids, fatty acids and 

related
myo-Inositol 0.86 4.37E-02 Carbohydrates and related
Creatinine 0.85 3.86E-02 Amino acids related
scyllo-Inositol 0.85 1.21E-02 Carbohydrates and related
Creatine 0.83 1.08E-03 Amino acids related
Adenosine monophosphate (AMP) 0.75 3.76E-02 Nucleobases and related
Mannose 0.66 1.89E-02 Carbohydrates and related
Maltose 0.65 2.53E-02 Carbohydrates and related
Citrate 0.65 3.64E-02 Energy metabolism and related
Glucuronic acid 0.62 1.92E-02 Carbohydrates and related
Glucose 0.61 2.81E-02 Carbohydrates and related
cis-Aconitate (additional: Citrate) 0.58 3.30E-02 Energy metabolism and related
Maltotriose 0.56 2.98E-02 Carbohydrates and related
Gluconic acid (additional: Gluconolacton) 0.53 1.84E-03 Carbohydrates and related
Spermine 0.48 9.97E-03 Miscellaneous
Putrescine (additional: Agmatine) 0.36 3.30E-05 Miscellaneous

Figure 2: Prostate cancer metabolism is associated with increased fatty acid synthesis. Pathway of energy and lipid 
metabolism: The corresponding mRNA as well as metabolite expression values (ratio: tumor/adjacent normal) were indicated. * indicates 
a significant level of p<0.05 and FDR<0.2 (for metabolites) and a corrected (Benjamini & Hochberg method) p<0.05 (for proteins and 
transcripts), respectively. ACL: ATP citrate synthase. ACC: Acetyl-CoA carboxylse. FASN: Fatty acid synthase complex. SCD: Acyl-CoA 
desaturase. SGMS1: Phosphatidylcholine:ceramide cholinephosphotransferase 1.
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Figure 3: Expression levels (subject-corrected residuals) of selected metabolites in correlation to FASN protein 
expression in both prostate cancer (malignant) tissue and the corresponding adjacent normal tissue. Only in normal 
adjacent tissue FASN protein expression correlates with the level of metabolites. P-values are from tissue-type-specific ANOVA with FASN 
protein expression, age, BMI and storage time as numerical factors.
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Polyamine, glutathione, and myo-inositol 
metabolism is changed in prostate cancer

Though most metabolites were upregulated in 
prostate cancer compared to normal tissues, we have also 
analyzed the few decreased ones. Several metabolites 
involved in polyamine metabolism were changed in 
prostate cancer. While putrescine and spermine were 
decreased, spermidine was increased (Supplemental Table 
1). Furthermore, the important antioxidant glutathione 
(GSH) was increased in cancer samples. The oxidized 
state of GSH glutathione disulfide (GSSG) however, 
showed lower levels in malignant tissues (Supplemental 
Table 1). A decrease of myo-inositol from the polar 
fraction of the tissue and an increase of myo-inositol-1-
phosphate from the lipid fraction (Supplemental Table 1) 
was also observed. Inositol-1-phosphate (lipid fraction) 
is an integrative measure of all inositol-1-phosphate 
containing lipids and is generated during the derivatization 
of the lipid extract prior to GC-MS analysis.

dIscussIon

The field of cancer metabolism has rapidly 
progressed in recent years. In contrast to earlier 
assumptions, the theory has emerged that altered 
metabolite concentrations may also causally promote 
tumor progression and are thus not merely a downstream 
effect of the characteristic neoplastic growth interfering 
with metabolism. However, many open questions remain: 
Which metabolic pathways are deregulated in which 
type of cancer and by which specific oncogenes? Which 
nutrients are essential? Finally, does diet influence cancer 
development and/or progression (reviewed in [13])? 
Earlier studies tackling the issue of prostate cancer 
metabolism lacked the power to answer these questions 
and often included either too few patient samples or 

used cell lines. In the present study, we performed global 
metabolite profiling of 106 matched malignant and non-
malignant samples from the same patient. Furthermore, 
we conducted a transcription profiling study from an 
additional set of 15 prostate cancer patients. This study 
therefore comprises the largest cohort so far analyzed 
in addressing this issue. With this integrated analysis of 
metabolic, transcriptional and immunohistochemical 
data, we were not only able to confirm specific findings 
from previous metabolomic studies, but also to contradict 
others. Finally, and perhaps more importantly, we were 
able to extend our concept of the role of deregulated 
biological pathways in prostate cancer.

Fatty acid and sphingolipid pathway

FASN expression and lipid metabolism is 
deregulated in malignant tissue. The strong correlation of 
FASN with the concentration of fatty acids was observed 
exclusively in benign prostate tissue. This could be due to 
the specific metabolism of the normal prostate. In normal 
ductal prostate cells high zinc levels block the Krebs 
cycle [4, 14] thereby compromising the oxidation of fatty 
acids. As a result, the content of fatty acids can be directly 
related to the level of FASN in normal tissue. This specific 
metabolic characteristic of ductal prostate cells is altered 
in transformed prostate cells [4, 14] leading to activation 
of the Krebs cycle. Since increased fatty acid metabolism 
characterizes prostate cancer [15], the correlation between 
FASN expression and fatty acid content vanishes. This is 
in accordance with a previous study by Svinnen et al. who 
also described this absence of a correlation between FASN 
and fatty acid content in prostate cancer samples [16]. 
This may further explain why [F-18]-fluorodeoxyglucose-
positron emission tomography (FDG-PET), which detects 
cancer based on the Warburg effect, is limited to the 
detection of advanced prostate cancers [17]. 

As a result of the aberrantly activated Krebs cycle 

Table 3C: Top ten metabolites and pathological state (pT) in Cox Hazard Ratio analysis of recurrance of 
prostate cancer ordered by p-value. The statistical method is described in the method section. CI, confidence 
interval; FDR, false-discovery rate.
Variable Hazard Ratio (± 95% CI) p-value Fdr
Tryptophan 2.17 (1.54, 3.05) 0.00001 0.0022
Tyrosine 1.88 (1.36, 2.59) 0.0001 0.0133
Pathological state 8.02 (2.69, 23.89) 0.0002 0.0133
Ornithine (additional: Arginine, Citrulline) 1.66 (1.27, 2.18) 0.0002 0.0133
Lysine 1.84 (1.32, 2.56) 0.0003 0.0157
Isoleucine 1.93 (1.34, 2.76) 0.0004 0.0157
Aspartate 1.73 (1.27, 2.35) 0.0005 0.0181
Threonine 1.67 (1.23, 2.26) 0.0010 0.0283
Valine 1.84 (1.28, 2.64) 0.0010 0.0283
Sarcosine 1.44 (1.15, 1.8) 0.0016 0.0418
Stearic acid (C18:0) 1.91 (1.27, 2.88) 0.0019 0.0451
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in prostate cancer cells, decreased citrate levels are 
to be expected. In the present study, citrate was indeed 
decreased in the malignant compared to the non-malignant 
tissue (ratio 0.82). Although this change was statistically 
non-significant, the cut-off was missed only narrowly 
(p=0.056). Despite citrate being a robust metabolite from 
an analytical point of view, an earlier study also revealed 
that a citrate decrease in prostate cancer tissue could not 
always be reproducibly detected in independent cohorts 
[18]. This might be due to the relatively small difference 
of citrate levels in cancer cells compared to normal cells 
on the one hand and/or high variance among patients on 
the other, both of which would impede the detection of 
statistically significant differences. 

Our study contradicts the findings of Moore et al. 
2005 [19], who reported SCD loss in prostate cancer, 
whereas our analyses showed an increase in the SCD 
expression at both the mRNA and protein level. This 
is further supported by the metabolomic data, which 
demonstrated increased levels of oleic acid, a product of 
SCD. Our results are in agreement with those from other 
authors who also reported an overexpression of SCD1 in 
prostate cancer cells [20].

The metabolomic fingerprint of Gleason score 

Higher Gleason scores are positively correlated 
with pantothenic acid, a constituent of coenzyme A 
and the acyl carrier protein, which are key factors of 
primary metabolism including the citrate cycle and fatty 
acid biosynthesis. The negative correlation of maltose 
and fructose-6-phosphate with the Gleason score could 
indicate increased catabolism of tumor cells. This might 
reflect the raised importance of glycolysis in hypoxic 
malignant prostate tissue as found predominantly in high 
grade cancers. This is in line with the significant positive 
correlations between Gleason score and the hypoxia 
markers glucose transporter-1 and lysyl oxidase as shown 
earlier [21]. 

cholesterol metabolism is altered in prostate 
cancers with high Gleason score

The levels of isopentenyl pyrophosphate (IPP), 
an intermediate of the HMG-CoA reductase pathway 
(mevalonate pathway), were positively correlated with 
Gleason score whereas cholesterol levels were inversely 
correlated. However, cholesterol levels in the malignant 
tissue were significantly higher than in the non-malignant 
tissue. This observation could point to the modification 
of cholesterol metabolism resulting from the increased 
aggressiveness of prostate cancer cells. SREBP (sterol 
regulatory element-binding protein) is a direct target of 
phosphatidylinositol-3 kinases/Akt (PI3K/Akt) and of 
mitogen-activated protein kinase (MAPK) pathways. 

SREBP senses low cholesterol levels and stimulates 
the expression of key enzymes or receptors (LDL-
receptor) of lipid synthesis and uptake by the HMG-
CoA-reductase pathway [22, 23]. Recently, Yue et al. 
[24] reported an accumulation of cholesteryl esters in the 
most aggressive cancer cells but not in normal prostate 
cells. The increased cholesteryl ester levels arose from the 
significantly enhanced uptake of exogenous lipoproteins, 
themselves induced by PTEN (phosphatase and tensin 
homolog) loss and PI3K/Akt activation. Normally when 
cholesterol is abundant in the cell, SREBPs are retained 
in the endoplasmic reticulum. When cholesterol levels 
decrease however, SREBPs are cleaved and act as 
transcription factors. ACAT (acyl coenzyme A cholesterol 
acyltransferase) converts a surplus of free cholesterol 
to cholesterol esters that accumulate in the cytoplasm 
as cholesteryl esters. It has been proposed that ACAT 
guards against excessive synthesis of cholesterol in the 
endoplasmic reticulum [25]. The deregulation of this 
mechanism in more aggressive tumors, as suggested by 
the findings of Yue et al. [24] and by those in the present 
study, could therefore lead to the artificial reduction of 
cholesterol levels in the endoplasmic reticulum and in 
doing so prevent inhibition of the cleavage/activation of 
SREBPs. In this way the cells would be able to maintain 
an energy store as cholesteryl esters while not interfering 
with SREBP-mediated lipid synthesis and uptake. This is 
in accordance with findings from previous studies in that 
myristic acid (increased with higher Gleason score) was 
found to increase cholesterol levels [26] and high serum 
levels were associated with an increased risk of prostate 
cancer [27]. 

ERG translocation shows a fingerprint in 
metabolomics data

Although ERG translocation is considered 
characteristic of prostate cancers, its influence on the 
metabolome has as yet not been investigated. The present 
study showed that ERG translocation is negatively 
correlated with both maltotriose and gluconic acid. 
Decreased levels of these metabolites have already been 
reported to be associated with earlier prostate cancer 
(biochemical) recurrence [12]. Furthermore, we found 
a positive correlation between ERG translocation and 
tryptophan, tyrosine, isoleucine, and aspartate. Patients 
with elevated levels of these metabolites had a higher 
risk of biochemical recurrence. This finding is supported 
by the positive association of ERG translocation with an 
increased risk of progression during active surveillance 
[28] and in several watchful waiting cohorts [29, 30]. 
Furthermore, serum levels of sulfur-containing amino 
acids (increased in ERG-positive tumors), especially 
cysteine, were also shown to be associated with prostate 
cancer recurrence [31]. On the other hand, the significantly 
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decreased citrate levels found in ERG-positive tumors 
suggest a role of ERG translocation in the initiation of 
prostate cancer, as both factors have been previously 
described as early events in tumorigenesis [4, 32, 33]. 
ERG overexpression may also lead to altered intracellular 
zinc concentration and/or distribution. In this way the 
switch from glycolytic to fatty acid metabolism (functional 
citrate metabolism) could be initiated and/or promoted by 
ERG. The significantly decreased levels of several sugars 
(glucose, mannose, maltose, maltotriose) and cis-aconitate 
together with a simultaneous increase of several fatty acids 
in ERG-positive tumors support this hypothesis. This is 
further underpinned by the observed increased levels of 
the zinc-binding amino acids cysteine, histidine, aspartate 
and glutamate. The increased levels of various nucleobases 
and amino acids could reflect an increased proliferation in 
ERG-positive tumors which may also be an effect of low 
zinc levels. The three fatty acids with the highest increase 
in ERG-positive tumors compared to ERG-negative 
tumors were cerebronic acid, 2-hydroxybehenic acid 
and tricosanoic acid (C23:0). These metabolites further 
showed the highest discriminative power between normal 
and cancerous prostate tissue [12]. As already reported by 
Jung et al. [12], cerebronic acid and 2-hydroxybehenic 
acid cannot be metabolized by β-oxidation but only by 
α-oxidation localized in the peroxisome. Cerebronic acid is 
decarboxylated by α-oxidation to tricosanoic acid and CO2 
[34]. Peroxisomal fatty acid oxidation was reported to be 
upregulated in prostate cancer [35] and ERG translocation 
might promote this shift. Interestingly, we found a 
significant decrease of creatine in malignant samples, 
predominantly in ERG-positive tumors. Phosphocreatine, 
the phosphorylated counterpart of creatine, supports 
cells with energy in times of high energy demand [36]. 
It is synthesized from glycine, arginine and methionine 
which are all increased in the ERG-positive tumors, thus 
implying such a demand.

In summary, ERG translocation seems to affect 
energy metabolism of prostate cells with particular 
attention to fatty acid metabolism. This is in very good 
accordance with the results of Pettersson et al. [37] who 
showed that obesity is associated with poorer prognosis 
primarily in patients with ERG-positive tumors. Another 
important finding of our study was the negative correlation 
of spermine and putrescine with ERG rearrangement. 
Although polyamine down regulation in prostate cancer 
has already been described in several studies [38-40], until 
now it has never been contextualized in relation to ERG 
translocation.

Interestingly, amino acids dominated among the 
metabolites significantly associated with biochemical 
recurrance. This finding supports the idea of amino acid 
based PET for prostate cancer recurrence, as described for 
leucine and tryptophan by Hong et al. [41] and also lends a 
translational aspect to promote future directions of clinical 
applications. However, the superiority of the amino acid 

analysis over the pT score has to be validated in further 
studies.

Several limitations of the study need to be 
mentioned. To avoid a selection bias, the samples were 
used according to the availability of cryopreserved tissue 
in consecutive order. Multiple testing problems were 
addressed by calculating the false discovering rate. It has 
been shown that prostate cancer exhibits a “field effect” 
that influences the metabolome of the normal adjacent 
tissue [42, 43]. Therefore, matched normal tissue was 
sampled with maximum possible spatial discrimination 
from the direct vicinity of the carcinoma, ideally from a 
separate block. To be able to correct for inter-individual 
variability during statistical analysis of the metabolite 
data, it was also necessary to work with paired (same 
patient) samples (NAT and cancer), which is not possible 
when sampling prostate tissue from healthy patients. In 
addition, the availability of healthy prostate tissue is very 
limited. This field effect could also partly explain the 
often modest fold changes of the differentially-expressed 
metabolites and the borderline significance of citrate. The 
robustness of the results from this medium-sized unicentric 
cohort study requires external validation. With respect 
to the findings from the survival analyses, a limitation 
of our study is that we used prostatectomy specimens. 
The potential of medical application would be greatly 
increased by the transferability of the results to prostate 
biopsies and, although more challenging, to formalin-fixed 
paraffin embedded prostate biopsy specimens. 

In summary, this integrated analysis further outlines 
the highly deregulated fatty acid and sphingolipid 
metabolism in prostate cancer. Furthermore, we could 
show that individual metabolites correlate with Gleason 
scores and for the first time the impact of the ERG 
translocation on the metabolome could be demonstrated. 
These data point to an altered cholesterol metabolism 
in more aggressive cancer types and an altered fatty 
acid oxidation in ERG-positive tumors. These findings 
imply that metabolomics may be able to more clearly 
characterize altered cellular networks and activity 
associated with disease states. 

MATERIAlS ANd METHOdS

study design 

Tumor tissue and matched normal adjacent 
tissue were taken from prostate specimens after radical 
prostatectomy between 2001 and 2007. For subsequent 
metabolite and expression analysis a full frontal tissues 
slice of 2-4 mm thickness was immediately cryopreserved 
in liquid nitrogen. Methodical details about the obtainment 
of pure tumor tissue (>90%) and matched adjacent normal 
tissue were described previously [44]. For each patient, 
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clinicopathological information on age, body mass index, 
tumor classification according to the UICC 2002 TNM 
System, and tumor Gleason grade based on the whole 
specimen were compiled (Table 1). The study protocol 
was approved by the local ethical board. 

MxP® Broad Profiling analysis

Two types of mass spectrometry analyses were 
applied to all samples. GC-MS (gas chromatography-mass 
spectrometry; Agilent 6890 GC coupled to an Agilent 
5973 MS-System, Agilent, Waldbronn, Germany) and LC-
MS/MS (liquid chromatography-MS/MS; Agilent 1100 
HPLC-System (Agilent, Waldbronn, Germany) coupled to 
an Applied Biosystems API4000 MS/MS-System (Applied 
Biosystems, Darmstadt, Germany)) were used for MxP® 
Broad Profiling [45, 46]. The sample preparation process 
was optimized for this specific tissue type previously to 
enable this study. The fresh-frozen tissue material was 
freeze-dried and extracted with polar (water) and non-
polar (ethanol/dichloromethane/acetonitrile) solvents. 
The extract was fractioned into an aqueous, polar phase 
(polar fraction) and an organic, lipophilic phase (lipid 
fraction). For GC-MS analyses, the non-polar fraction 
was treated with methanol under acidic conditions to 
yield the fatty acid methyl esters derived from both free 
fatty acids and hydrolyzed complex lipids. The polar 
and non-polar fractions were further derivatized with 
O-methyl-hydroxylamine hydrochloride (20 mg/ml in 
pyridine, 50 µl) to convert oxo-groups to O-methyloximes 
and with a silylating agent (N-Methyl-N-(trimethylsilyl) 
trifluoroacetamide, 50 µl) before GC-MS analysis. For 
LC-MS/MS analyses, both fractions were reconstituted 
in appropriate solvent mixtures. HPLC was performed 
by gradient elution using methanol/water/formic acid 
on reversed phase separation columns. A special mass 
spectrometric detection technology was applied, which 
allowed for targeted and high sensitivity multiple reaction 
monitoring (MRM) profiling in parallel with a full screen 
analysis. For the polar fraction, the instrument was 
operated in negative ionization mode, for the lipid fraction 
in positive ionization mode. Mass spectrometry detection 
was performed with repetitive cycles of MRM transitions 
for important pre-selected metabolites followed by a full 
scan from m/z of 100 to 1000.

data normalization, data set alignment, 
metabolite levels and nomenclature

Metabolite profiling based on a semi-quantitative 
analytical platform results in relative metabolite levels 
referenced to a defined control group (“ratio”). To support 
this concept, aliquots of pooled samples (= “pool”) 
generated from extra samples provided for this purpose 
were run in parallel throughout the whole process. For 

all semi-quantitatively analyzed metabolites, the data 
were normalized against the median in the pool reference 
samples within each analytical sequence to provide 
pool-normalized ratios (performed for each sample per 
metabolite). This process step compensated for inter- and 
intra-instrumental variation.

The limit of detection and the dynamic range of 
the semi-quantitative measurements were determined 
by dilution and spiking experiments during method 
development. In total, 254 metabolites were analyzed 
semi-quantitatively, 82 thereof being “unknown”, i.e. 
metabolites with known retention time and mass spectrum 
but chemical structure pending. The raw peak data were 
normalized to the sample weight and to the median of pool 
samples per analytical sequence to account for process 
variability (so called “ratios versus pool”). 

A rigorous quality control was performed on 
peak, analyte and sample level. Within each analytical 
sequence, the signals of the internal standards were 
plotted onto control charts. Samples that displayed >30% 
standard deviation of one of the internal standards, were 
invalidated. Outlier peaks on group level (carcinoma 
tissue, control tissue) were identified by boxplot analyses, 
manually checked for correct annotation and integration 
and, if necessary, manually corrected. Peaks with very low 
metabolite abundance, e.g. that did not allow reliable peak 
integration or that did not meet requirements of retention 
time index, were not analyzed but converted to missing 
values. 

Details on metabolite nomenclature are available 
[47] but in short, the term “additional” (add.) was 
applied to indicate that quantification can be disturbed by 
metabolites exhibiting identical analytical characteristics 
with respect to the quantitation method. Further, 
components of the lipid backbone (i.e. glycerol) were 
quantified in the non-polar phase (carrying the term “lipid 
fraction“ following the metabolite name). For example, 
“glycerol, lipid fraction” represents glycerol liberated 
during the derivatization process from complex lipids – 
in contrast, “glycerol, polar fraction” represents glycerol 
present originally in the polar phase of the biological 
sample.

Analysis of protein expression levels and erG 
translocation

Protein expression levels were measured by 
immunohistochemistry on formalin-fixed and paraffin-
embedded tissue samples. Immunohistochemical 
staining of the tissue sections were performed on the 
Leica BondMax (Bond; Labvision, Fremont, CA, USA) 
automated staining system along with Leica Reagents and 
the Refine DAB detection kit with Heat-Epitope-Retrieval-
Buffer using the following antibodies and dilutions: AR, 
Biogenex USA, clone F39.4.1 (1:500); PSA, Dako, 
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Denmark, clone ER-PR8 (1:4000); Racemase (AMACR), 
Dako, Germany, clone 13H4 (1:200); FASN, Abnova, UK, 
clone 3F2-1F3 (1:2000); PSMA, Dako, Germany, clone 
3E6 (1:50); SCD1, Abcam, UK, polyclonal ab111301 
(1:200); GSTP1, Goldenbridge Biotechnology, China, 
clone ZM-0110 (1:1000). Slides were counterstained with 
hematoxylin, dehydrated, and mounted. ERG translocation 
status was taken from a previous study [48].

Gene expression data

Transcript profiling data were obtained by micro 
array experiments. Each malignant and non-malignant 
prostatectomy samples from 15 prostate cancer patients 
were analyzed (Table 1). Total RNA was isolated from 
frozen tissues according to the manufacturer’s RNA 
extraction protocol (Qiagen, Hilden, Germany). The 
quantity and quality of isolated RNA were determined 
by a NanoDrop ND-1000 spectrophotometer (NanoDrop 
Technologies, Wilmington, DE, USA) and a Bioanalyzer 
2100 (Agilent Technologies, Santa Clara, CA, USA). The 
RNA samples isolated from non-malignant as well as 
from malignant tumor tissue samples showed comparable 
median 260/280 absorbance ratios (2.01 and 2.00; Mann-
Whitney-U-test; P=0.738) and median RIN values (7.75 
and 8.25; Mann-Whitney–U-test; P=0.197). Samples with 
RNA integrity number (RIN) values >6 were used for 
mRNA expression analysis.

mRNA expression analysis was performed by one-
color hybridizations on Human Genome U133 Plus 2.0 
Arrays from Affymetrix (Santa Clara, CA, USA). After 
hybridization, microarrays were washed, scanned, and 
processed according to the supplier’s protocol. The raw 
data were normalized using Genespring GX11 Software 
(Agilent Technologies, Santa Clara, CA, USA) with 
default parameters (MAS5 Summarization Algorithm, 
median of all samples as baseline transformation).

statistical analysis and data visualization

Prior to statistical analysis, log transformation of 
data was conducted to approach a normal distribution. The 
software tools R 2.8.0 (package nlme), R 3.0.2 (function 
coxph), TIBCO® Spotfire® 3.3.1, Genespring GX11 
(Agilent), and GENESIS [49] were used for data analyses 
and visualisations.

Univariate statistical analyses were done by three 
mixed linear models (ANOVA) with subject as random 
intercept to account for individual baseline differences. 
First, for analysis of the metabolite differences between 
malignant and adjacent normal tissue samples, tissue 
type was included as a categorical fixed factor and BMI, 
age and storage time were included as numerical fixed 
factors. The interaction between tissue type and body mass 
index was taken into account to analyze BMI effects of 

tumor metabolism. Second, for analysis of the metabolite 
correlations with the Gleason score, a model with the 
fixed effects “Gleason score, body mass index, age and 
storage time“ including the interaction between body mass 
index and Gleason score was applied. Third, for analysis 
of the metabolite correlations with the ERG translocation, 
a model with the fixed effects ERG translocation, body 
mass index, age and storage time including the interaction 
between body mass index and ERG translocation was 
applied. Correlation analysis of metabolite data versus 
protein expression levels was done within each tissue type 
using the Spearman method. Significance level was set to 
an alpha-error of 5%. The multiple testing problem was 
addressed by calculating the false-discovery rate (FDR) 
[50] with a q-value threshold of <0.2. Principal component 
analysis was done on the residuals from a mixed linear 
model with “subject” as random intercept in order to 
correct for inter-individual variability. The same residuals 
were used for hierarchical cluster analysis (average 
linkage), which provided a tree view of the distances 
between the metabolites expression profiles as well as 
the distance between tissue samples. Principal component 
analysis and cluster analysis were done on a subset of 76 
subjects (≤10% missing values) in order to avoid effects 
due to imputation of missing values.

In Cox proportional hazards regression models 
standardized pool-normalized metabolite ratios of the 
tumor tissue as well as the tumor status (pT) and the 
categorized (<7, =7, >7) Gleason score were analyzed. The 
outcome of interest was the time until the clinical endpoint 
(biochemical (PSA) recurrence) was reached. Ties were 
dealt with by using Breslow’s method. Correction for 
multiple comparisons was carried out as described earlier 
[50].

Statement of significance

This large scale metabolomic profiling study of 
primary prostate cancers allowed for detailed sub-analyses 
in correlation with transcriptomic and proteomic data 
and is the first to demonstrate significant differences in 
the metabolome in dependence on the TMPRSS2-ERG 
translocation status.

AcknowledGMents

We thank Britta Beyer (Institute of Pathology, 
Charité) for technically maintaining the prostate tissue 
biobank, which enabled this study. The excellent technical 
support of Silvia Behnke in immunohistochemistry is also 
gratefully acknowledged. We thank Dr. Gareth Catchpole 
for thoroughly reading the manuscript. 



Oncotarget1436www.impactjournals.com/oncotarget

conFlIcts oF Interest

Beate Kamlage, Sandra González Maldonado, Erik 
Peter, Bianca Bethan, Regina Reszka, and Philipp Schatz 
were employees of metanomics GmbH or Metanomics 
Health GmbH, and received salary from these companies 
during the study.

reFerences

1. R. L. Siegel, K. D. Miller, and A. Jemal.Cancer statistics, 
2015. CA Cancer J. Clin. 2015; 65: 5-29.

2. O. A. Aboud and R. H. Weiss.New opportunities from the 
cancer metabolome. Clin. Chem. 2013; 59: 138-146.

3. S. P. Putri, Y. Nakayama, F. Matsuda, T. Uchikata, 
S. Kobayashi, A. Matsubara, and E. Fukusaki.Current 
metabolomics: practical applications. J. Biosci. Bioeng. 
2013; 115: 579-589.

4. L. C. Costello and R. B. Franklin.Novel role of zinc 
in the regulation of prostate citrate metabolism and its 
implications in prostate cancer. Prostate. 1998; 35: 285-296.

5. L. C. Costello and R. B. Franklin.Concepts of citrate 
production and secretion by prostate. 1. Metabolic 
relationships. Prostate. 1991; 18: 25-46.

6. B. J. Trock.Application of metabolomics to prostate cancer. 
Urol. Oncol. 2011; 29: 572-581.

7. M. G. Swanson, D. B. Vigneron, Z. L. Tabatabai, R. G. 
Males, L. Schmitt, P. R. Carroll, J. K. James, R. E. Hurd, 
and J. Kurhanewicz.Proton HR-MAS spectroscopy and 
quantitative pathologic analysis of MRI/3D-MRSI-targeted 
postsurgical prostate tissues. Magn Reson. Med. 2003; 50: 
944-954.

8. S. Verma, A. Rajesh, J. J. Futterer, B. Turkbey, T. W. 
Scheenen, Y. Pang, P. L. Choyke, and J. Kurhanewicz.
Prostate MRI and 3D MR spectroscopy: how we do it. AJR 
Am. J. Roentgenol. 2010; 194: 1414-1426.

9. J. J. Futterer, T. W. Scheenen, S. W. Heijmink, H. J. 
Huisman, Hulsbergen-Van de Kaa CA, J. A. Witjes, A. 
Heerschap, and J. O. Barentsz.Standardized threshold 
approach using three-dimensional proton magnetic 
resonance spectroscopic imaging in prostate cancer 
localization of the entire prostate. Invest Radiol. 2007; 42: 
116-122.

10. M. S. Pepe, R. Etzioni, Z. Feng, J. D. Potter, M. L. 
Thompson, M. Thornquist, M. Winget, and Y. Yasui.Phases 
of biomarker development for early detection of cancer. J. 
Natl. Cancer Inst. 2001; 93: 1054-1061.

11. A. P. Khan, T. M. Rajendiran, B. Ateeq, I. A. Asangani, 
J. N. Athanikar, A. K. Yocum, R. Mehra, J. Siddiqui, G. 
Palapattu, J. T. Wei, G. Michailidis, A. Sreekumar, and A. 
M. Chinnaiyan.The role of sarcosine metabolism in prostate 
cancer progression. Neoplasia. 2013; 15: 491-501.

12. K. Jung, R. Reszka, B. Kamlage, B. Bethan, C. Stephan, 

M. Lein, and G. Kristiansen.Tissue metabolite profiling 
identifies differentiating and prognostic biomarkers for 
prostate carcinoma. Int. J. Cancer. 2013; 133: 2914-2924.

13. C. Munoz-Pinedo, M. N. El, and J. E. Ricci.Cancer 
metabolism: current perspectives and future directions. Cell 
Death. Dis. 2012; 3: e248.

14. L. C. Costello and R. B. Franklin.Prostatic fluid electrolyte 
composition for the screening of prostate cancer: a potential 
solution to a major problem. Prostate Cancer Prostatic. Dis. 
2009; 12: 17-24.

15. P. J. Effert, R. Bares, S. Handt, J. M. Wolff, U. Bull, and 
G. Jakse.Metabolic imaging of untreated prostate cancer 
by positron emission tomography with 18fluorine-labeled 
deoxyglucose. J. Urol. 1996; 155: 994-998.

16. J. V. Swinnen, T. Roskams, S. Joniau, P. H. Van, R. Oyen, 
L. Baert, W. Heyns, and G. Verhoeven.Overexpression of 
fatty acid synthase is an early and common event in the 
development of prostate cancer. Int. J. Cancer. 2002; 98: 
19-22.

17. J. J. Fox, H. Schoder, and S. M. Larson.Molecular imaging 
of prostate cancer. Curr. Opin. Urol. 2012; 22: 320-327.

18. J. E. McDunn, Z. Li, K. P. Adam, B. P. Neri, R. L. Wolfert, 
M. V. Milburn, Y. Lotan, and T. M. Wheeler.Metabolomic 
signatures of aggressive prostate cancer. Prostate. 2013; 73: 
1547-1560.

19. S. Moore, B. Knudsen, L. D. True, S. Hawley, R. Etzioni, 
C. Wade, D. Gifford, I. Coleman, and P. S. Nelson.Loss of 
stearoyl-CoA desaturase expression is a frequent event in 
prostate carcinoma. Int. J. Cancer. 2005; 114: 563-571.

20. S. J. Kim, H. Choi, S. S. Park, C. Chang, and E. Kim.
Stearoyl CoA desaturase (SCD) facilitates proliferation 
of prostate cancer cells through enhancement of androgen 
receptor transactivation. Mol. Cells. 2011; 31: 371-377.

21. G. D. Stewart, K. Gray, C. J. Pennington, D. R. Edwards, 
A. C. Riddick, J. A. Ross, and F. K. Habib.Analysis of 
hypoxia-associated gene expression in prostate cancer: lysyl 
oxidase and glucose transporter-1 expression correlate with 
Gleason score. Oncol. Rep. 2008; 20: 1561-1567.

22. J. R. Krycer, L. J. Sharpe, W. Luu, and A. J. Brown.The 
Akt-SREBP nexus: cell signaling meets lipid metabolism. 
Trends Endocrinol. Metab. 2010; 21: 268-276.

23. Y. A. Yang, W. F. Han, P. J. Morin, F. J. Chrest, and E. 
S. Pizer.Activation of fatty acid synthesis during neoplastic 
transformation: role of mitogen-activated protein kinase and 
phosphatidylinositol 3-kinase. Exp. Cell Res. 2002; 279: 
80-90.

24. S. Yue, J. Li, S. Y. Lee, H. J. Lee, T. Shao, B. Song, L. 
Cheng, T. A. Masterson, X. Liu, T. L. Ratliff, and J. X. 
Cheng.Cholesteryl ester accumulation induced by PTEN 
loss and PI3K/AKT activation underlies human prostate 
cancer aggressiveness. Cell Metab. 2014; 19: 393-406.

25. T. Y. Chang, C. C. Chang, and D. Cheng.Acyl-coenzyme 
A:cholesterol acyltransferase. Annu. Rev. Biochem. 1997; 
66: 613-638.



Oncotarget1437www.impactjournals.com/oncotarget

26. P. L. Zock, J. H. de Vries, and M. B. Katan.Impact of 
myristic acid versus palmitic acid on serum lipid and 
lipoprotein levels in healthy women and men. Arterioscler. 
Thromb. 1994; 14: 567-575.

27. S. Mannisto, P. Pietinen, M. J. Virtanen, I. Salminen, D. 
Albanes, E. Giovannucci, and J. Virtamo.Fatty acids and 
risk of prostate cancer in a nested case-control study in male 
smokers. Cancer Epidemiol. Biomarkers Prev. 2003; 12: 
1422-1428.

28. K. D. Berg, B. Vainer, F. B. Thomsen, M. A. Roder, T. A. 
Gerds, B. G. Toft, K. Brasso, and P. Iversen.ERG Protein 
Expression in Diagnostic Specimens Is Associated with 
Increased Risk of Progression During Active Surveillance 
for Prostate Cancer. Eur. Urol. 2014.

29. F. Demichelis, K. Fall, S. Perner, O. Andren, F. Schmidt, 
S. R. Setlur, Y. Hoshida, J. M. Mosquera, Y. Pawitan, 
C. Lee, H. O. Adami, L. A. Mucci, P. W. Kantoff et al..
TMPRSS2:ERG gene fusion associated with lethal prostate 
cancer in a watchful waiting cohort. Oncogene. 2007; 26: 
4596-4599.

30. G. Attard, J. Clark, L. Ambroisine, G. Fisher, G. Kovacs, P. 
Flohr, D. Berney, C. S. Foster, A. Fletcher, W. L. Gerald, 
H. Moller, V. Reuter, J. S. De Bono et al..Duplication of 
the fusion of TMPRSS2 to ERG sequences identifies fatal 
human prostate cancer. Oncogene. 2008; 27: 253-263.

31. S. Stabler, T. Koyama, Z. Zhao, M. Martinez-Ferrer, 
R. H. Allen, Z. Luka, L. V. Loukachevitch, P. E. Clark, 
C. Wagner, and N. A. Bhowmick.Serum methionine 
metabolites are risk factors for metastatic prostate cancer 
progression. PLoS. One. 2011; 6: e22486.

32. J. F. COOPER and I. FARID.The role of citric acid in the 
physiology of the prostate. A chromatographic study of 
citric acid cycle intermediates in benign and malignant 
prostatic tissue. J. Surg. Res. 1963; 3: 112-121.

33. S. A. Tomlins, B. Laxman, S. Varambally, X. Cao, J. Yu, 
B. E. Helgeson, Q. Cao, J. R. Prensner, M. A. Rubin, R. 
B. Shah, R. Mehra, and A. M. Chinnaiyan.Role of the 
TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 
2008; 10: 177-188.

34. R. Sandhir, M. Khan, and I. Singh.Identification of 
the pathway of alpha-oxidation of cerebronic acid in 
peroxisomes. Lipids. 2000; 35: 1127-1133.

35. S. Zha, S. Ferdinandusse, J. L. Hicks, S. Denis, T. A. Dunn, 
R. J. Wanders, J. Luo, A. M. De Marzo, and W. B. Isaacs.
Peroxisomal branched chain fatty acid beta-oxidation 
pathway is upregulated in prostate cancer. Prostate. 2005; 
63: 316-323.

36. T. Wallimann, M. Tokarska-Schlattner, and U. Schlattner.
The creatine kinase system and pleiotropic effects of 
creatine. Amino. Acids. 2011; 40: 1271-1296.

37. A. Pettersson, R. T. Lis, A. Meisner, R. Flavin, E. C. 
Stack, M. Fiorentino, S. Finn, R. E. Graff, K. L. Penney, 
J. R. Rider, E. J. Nuttall, N. E. Martin, H. D. Sesso et al..
Modification of the association between obesity and lethal 

prostate cancer by TMPRSS2:ERG. J. Natl. Cancer Inst. 
2013; 105: 1881-1890.

38. L. L. Cheng, C. Wu, M. R. Smith, and R. G. Gonzalez.
Non-destructive quantitation of spermine in human prostate 
tissue samples using HRMAS 1H NMR spectroscopy at 9.4 
T. FEBS Lett. 2001; 494: 112-116.

39. M. van der Graaf, R. G. Schipper, G. O. Oosterhof, J. A. 
Schalken, A. A. Verhofstad, and A. Heerschap.Proton MR 
spectroscopy of prostatic tissue focused on the detection of 
spermine, a possible biomarker of malignant behavior in 
prostate cancer. MAGMA. 2000; 10: 153-159.

40. G. F. Giskeodegard, H. Bertilsson, K. M. Selnaes, A. J. 
Wright, T. F. Bathen, T. Viset, J. Halgunset, A. Angelsen, 
I. S. Gribbestad, and M. B. Tessem.Spermine and citrate 
as metabolic biomarkers for assessing prostate cancer 
aggressiveness. PLoS. One. 2013; 8: e62375.

41. H. Hong, Y. Zhang, J. Sun, and W. Cai.Positron emission 
tomography imaging of prostate cancer. Amino. Acids. 
2010; 39: 11-27.

42. M. C. Risk, B. S. Knudsen, I. Coleman, R. F. Dumpit, A. 
R. Kristal, N. LeMeur, R. C. Gentleman, L. D. True, P. 
S. Nelson, and D. W. Lin.Differential gene expression in 
benign prostate epithelium of men with and without prostate 
cancer: evidence for a prostate cancer field effect. Clin. 
Cancer Res. 2010; 16: 5414-5423.

43. A. P. Khan, T. M. Rajendiran, B. Ateeq, I. A. Asangani, 
J. N. Athanikar, A. K. Yocum, R. Mehra, J. Siddiqui, G. 
Palapattu, J. T. Wei, G. Michailidis, A. Sreekumar, and A. 
M. Chinnaiyan.The role of sarcosine metabolism in prostate 
cancer progression. Neoplasia. 2013; 15: 491-501.

44. F. Jentzmik, C. Stephan, M. Lein, K. Miller, B. Kamlage, 
B. Bethan, G. Kristiansen, and K. Jung.Sarcosine in prostate 
cancer tissue is not a differential metabolite for prostate 
cancer aggressiveness and biochemical progression. J. Urol. 
2011; 185: 706-711.

45. B. van Ravenzwaay, G. C. Cunha, E. Leibold, R. Looser, 
W. Mellert, A. Prokoudine, T. Walk, and J. Wiemer.The 
use of metabolomics for the discovery of new biomarkers 
of effect. Toxicol. Lett. 2007; 172: 21-28.

46. D. Allaway, B. Kamlage, M. Gilham, A. Hewson-Hughes, 
J. Wiemer, A. Colyer, and D. Rein.Effects of dietary 
glucose supplementation on the fasted plasma metabolome 
in cats and dogs. Metabolomics. 2013; 9: 1096-1108.

47. D. M. Mutch, J. C. Fuhrmann, D. Rein, J. C. Wiemer, 
J. L. Bouillot, C. Poitou, and K. Clement.Metabolite 
profiling identifies candidate markers reflecting the clinical 
adaptations associated with Roux-en-Y gastric bypass 
surgery. PLoS. One. 2009; 4: e7905.

48. R. Esgueva, S. Perner, J. LaFargue, V. Scheble, C. Stephan, 
M. Lein, F. R. Fritzsche, M. Dietel, G. Kristiansen, and M. 
A. Rubin.Prevalence of TMPRSS2-ERG and SLC45A3-
ERG gene fusions in a large prostatectomy cohort. Mod. 
Pathol. 2010; 23: 539-546.



Oncotarget1438www.impactjournals.com/oncotarget

49. A. Sturn, J. Quackenbush, and Z. Trajanoski.Genesis: 
cluster analysis of microarray data. Bioinformatics. 2002; 
18: 207-208.

50. Y. Benjamini and Y. Hochberg.Controlling the false 
discovery rate: a practical and powerful approach to 
multiple testing. Journal of the Royal Statistical Society. 
Series B (Methodological). 1995; 289-300.


