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ABSTRACT
One of the main areas of behavioural neuroscience is forecasting the human 

behaviour. Epilepsy is a central nervous system disorder in which nerve cell activity 
in the brain becomes disrupted, causing seizures or periods of unusual behaviour, 
sensations and sometimes loss of consciousness. An estimated 5% of the world 
population has epileptic seizure but there is not any method to cure it. More than 
30% of people with epilepsy cannot control seizure. Epileptic seizure prediction, 
refers to forecasting the occurrence of epileptic seizures, is one of the most important 
but challenging problems in biomedical sciences, across the world. In this research 
we propose a new methodology which is based on studying the EEG signals using 
two measures, the Hurst exponent and fractal dimension. In order to validate the 
proposed method, it is applied to epileptic EEG signals of patients by computing the 
Hurst exponent and fractal dimension, and then the results are validated versus the 
reference data. The results of these analyses show that we are able to forecast the 
onset of a seizure on average of 25.76 seconds before the time of occurrence.

INTRODUCTION

An epileptic seizure is a brief episode of signs and/
or symptoms due to abnormal excessive or synchronous 
neuronal activity in the brain. More than 50 million people 
worldwide suffer from epilepsy [1]. Seizure symptoms 
can vary widely. Some people with epilepsy simply stare 
blankly for a few seconds during a seizure, while others 
repeatedly twitch their arms or legs. Seizures have a 
beginning, middle, and end. Not all parts of a seizure may 
be visible or easy to separate from each other. Every person 
with seizures will not have every stage. The epileptic 
seizure can have external or internal reasons. Sometimes 
an external stimulus can cause the onset of a seizure. On 
the other hand, an internal stimulus can cause the degrees 
of freedom of the inherent brain dynamical system to get 

reduced, which takes the brain to an abnormal status. 
The recurrent and sudden incidence of seizures can cause 
dangerous and possibly life-threatening situations [2].

Since disturbance of consciousness and sudden 
loss of motor control often occur without any warning, 
the ability to predict epileptic seizures would reduce 
patients’ anxiety, thus improving quality of life and safety 
considerably. In this light, in the absence of completely 
controlling a patient’s epilepsy, seizure prediction is an 
important aim of clinical management and treatment. 

During years different methods have been developed 
for prediction of epileptic seizure. Electroencephalogram 
is one of the important tools for diagnosis and analysis 
of epilepsy. In fact, Electroencephalography changes 
preceding seizures can theoretically be detected to permit 
anticipation of oncoming seizures. 
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In order for EEG-based seizure forecasting systems 
to work effectively, computational algorithms must reliably 
identify periods of increased probability of seizure occurrence.

The first EEG-based attempts at identifying 
preictal patterns relied primarily on linear approaches 
for computing features of the EEG on a sliding window  
[3–4]. These models gave way to nonlinear signal processing 
methodologies, which analyzed the spontaneous formation 
of spatial, temporal, and spatiotemporal patterns [5].

Various features have been computed from EEG 
time series in order to detect changes immediately prior 
to the onset of seizures. These include some of the more 
traditional frequency-based methods discussed below, 
as well as more recent measures derived from complex 
system theory. 

In case of linear feature extraction, employing some 
methods such as Principal Components Analysis (PCA) 
[6–8], auto regressive spectral analysis [9–10], Support 
Vector Machine [11–13], are noteworthy to mention.

On the other hand some researchers have focused 
on using nonlinear methods/measures such as phase 
synchronization analysis [14–16], Kolmogorov entropy 
[17], Lyapunov exponents [18–20], correlation dimension  
[21–22], approximate entropy [23–24], Dynamical 
Similarity Index [25–26], and permutation entropy [27–28].

Having some advantages and disadvantages 
common between these methods, in many of these 
methods EEG analysis is complicated by the fact that EEG 
manifestations of seizures differ widely between patients 
and even within the same patient. Also, methods employed 
in seizure prediction are mathematically complex and 
not easily accessible to those outside of the world of 
physicists, mathematicians, and engineers. So, these 
phenomena strongly suggest that the continued research 
is needed in this area.

In this research we consider the reduction in the 
degrees of freedom of the inherent brain dynamical system 
due to the internal stimuli which causes the epileptic 
seizure. In fact, for a patient with epilepsy who is seated 
without receiving any external stimulus, the presence of 
a strong internal stimulus is the main reason of seizure 
onset. So, by studying the EEG signal prior to onset and 
finding the dominant sign of stimulus we can predict the 
coming seizure.

In the following, first we focus on introducing two 
measures, the Hurst exponent and fractal dimension. Then 
by applying these measures to EEG signals of patients 
with epilepsy we try to find the sign of a coming seizure 
by studying the variations of these measures.

EEG TIME SERIES

During many years scientists have studied the 
human behaviour by recording and analysis of EEG 
signals from different areas of the brain. The EEG signal is 

the composition of different frequency bands (oscillatory 
activities-Alpha, Beta, …) which are structured 
coordinately (spatially-temporally). In fact, this signal 
has different characteristics that can be used in order to 
study the human brain response to external or internal 
stimuli. For instance Figure 1 shows the grand average of 
the recorded EEG signals from two subjects for 1 second 
post-stimulation in case of the visual stimulus. 

As it can be seen in Figure 1, the EEG signal  
for subject 1 (black solid line) and the EEG signal for 
subject 2 (red dashed line) shows the similar behaviours. 
For subject 1 and subject 2 the response to the stimulus 
starts with a positive peak (P) at 118 ms and 127 ms 
respectively after the application of the stimulus to 
the subjects. This response causes the signal’s voltage 
fluctuates in a bigger span. Following the positive peak 
a negative rebound (N) at t = 1.170 s and t = 1.174 s can 
be seen in the plot in cases of two signals respectively.  
In fact, the response to the stimulus damped at this point, 
after which the brain goes back to its normal status during 
rest, without any big deflection in the signal.

HURST EXPONENT AND 
PREDICTABILITY OF SIGNAL

The Hurst exponent is a measure of the predictability 
of signal. It is an indicator of the long term memory of 
the process generating the signal. The Hurst exponent can 
have any value between 0 and 1, where the value that it 
gains in each moment determines the behaviour of the next 
deflection in the signal. 

Firstly, if the Hurst exponent has a value between 0 
and 0.5, it means that the process is anti-persistent i.e. the 
trend of the process at the next instant will be opposite to 
the trend in the previous instant. Secondly, a value of H 
between 0.5 and 1 means that the process is persistent i.e., 
the trend of the process at the next instant will be the same 
as the trend in the previous instant. Finally, If H = 0.5, the 
process is considered to be truly random (e.g., Brownian 
motion). It means that there is absolutely no correlation 
between values of the process. Figure 2 shows the grand 
average of the Hurst exponent variations for the recorded 
EEG signals which was shown in Figure 1.

The high correlation between the values of the EEG 
signal for subject 1 and also EEG signal for subject 2  
can be realized by looking at the values of the Hurst 
exponents. The value of the Hurst exponent is distributed 
between 0.900 and 0.943 for subject 1 and between 0.900 
and 0.950 for subject 2. 

Also, as it can be seen in the Hurst exponent plot, 
the value of the Hurst exponent in case of subject 1 and 
subject 2 experiences a sudden upward deflection. In 
case of subject 1 and subject 2, the value of the Hurst 
exponent is decreasing in the time span of t = 1 s to  
t = 1.118 s and t = 1 s to t = 1.127 s respectively; After 
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that, a sudden upward deflection can be seen, which stands 
for experiencing the visual stimulus and increasing the 
memory, and again the trend shows the same behaviour. 
The overall decreasing behaviour stands for the 
phenomenon that when a longer time span is considered, 
the less the human brain “remembers” its initial state [29]. 

SPECTRA OF FRACTAL DIMENSION

In this section we explain the fractal dimension as 
the measure of complexity of the fractal time series, and 
in our case here the EEG signals [30].

The concept of fractal dimension is based on 
the concept of generalized entropy of a probability 
distribution, introduced by Alfred Renyi [31]. In case of a 
time series with Vmax and Vmin, where the total range of the 
value is divided into N bin:

N V V
V

max min=
−

δ
 (1)

The probability that the value falls into the i-th bin 
of size δV is computed as:

w i
i N

N
N

= ∞lim →

 
(2)

where Ni equals the number of items the value falls 
into the i-th bin. On the other hand, in case of a time series:
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Where ti is the time spent by the value in the i-th bin 
during the total time span of recording, T.

Starting with the moment of order q (not necessarily 
an integer) of the probability wi, the Renyi entropy is:
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Figure 1: The grand average of the recorded EEG signals from two subjects for 1 second post-stimulation in the case 
of the visual stimulus.

Figure 2: The grand average of the Hurst exponent variations for the recorded EEG signals from two subjects for  
1 second post-stimulation in the case of the visual stimulus.
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Where the parameter q ranges from − ∞ to + ∞. 
Note that for a self-similar (simple) fractal time series with 
equal probabilities wi = 1/N, equation (6) yields ℵ = ℵq 0  
for all values of q [33]. Also, note that for a constant value, 
all probabilities except one become equal to zero, whereas 
the remaining probability value equals unity. 

For a given time series (‘signal’), the function ℵq , 
corresponding to the probability distribution of the series, 
is called the fractal spectrum. Such a name is well-justified, 
because the fractal spectrum provides information about 
both frequencies and amplitudes of the series. Indeed, 
for two probability distributions, a larger value of fractal 
dimension of a given order corresponds to the presence 
of more pronounced spikes (sharper spikes, less expected 
values of the signal) than in the series for which the value of 
the fractal dimension of the same order is less. Furthermore, 
series with a wider range of fractal dimensions, ℵ ℵ−−∞ ∞ ,  
can be termed more fractal than series whose range of 
fractal dimensions is narrower, so that series with the zero 
range are self-similar (simple) fractals. In other words, 
the range of a fractal spectrum is a value associated with  
the range of frequencies in the series.

Now, if the unexpectedness of an event is defined 
as the inverse of the probability of this event, then steeper 
spectra correspond to the series in which unexpected 
values are more dominant, whereas flatter spectra represent 
those series in which less unexpectedness occurs [30].

RESULTS AND DISCUSSION

Here, in order to investigate about the onset of 
seizures, the EEG records and their Hurst exponent and 
fractal dimension plots are studied for subjects with epilepsy. 
A MATLAB based program was written in order to compute 
these parameters. The outcomes are discussed in details.

Data collection

In this research the EEG data were collected from 
120 patients with epilepsy, 60 male patients and 60 female 
patients with the age of 25 ± 5 years old. None of the 
patients had received medication before their recruitment. 
In the first week 5 trials were collected from each subject 
in one day. The data collections were repeated after a week 
for each subject in order to examine the reproducibility of 
the results from experiments. By repeating the experiments 
in the second week totally 10 trials were collected. After 
visual inspection of data collected from each subject and 
rejection of trials with artifacts, 8 trials free of artifacts were 
selected for future analysis. It is noteworthy to mention that 
physician monitored the subjects during all experiments.

Informed consent was obtained from each subject 
after the nature of the study was fully explained.

All procedures were approved by the Internal 
Review Board at Nanyang Technological University and 
the approval for the experimentation on human subjects 

with epilepsy was issued by this university and the 
hospital. It is noteworthy to mention that the identity of all 
subjects remains confidential.

The subjects were asked to sit in an electrically 
shielded, acoustically isolated, and dimly illuminated 
room. This ensures that the response measured in the 
EEG signals doesn’t have any external stimulus source. It 
should be mentioned that it is endeavoured to insulate the 
subjects from all other external stimuli. 

The EEG data used in this research were collected 
using Mindset 24 device, a 24-channel topographic neuro 
mapping instrument, which can measure 24 channels of 
data with the sampling frequency of 256 Hz. Mindmeld 24 
software was used for the collection of data using Mindset 
24 machine. The software gives data in the form of .bin 
files which can be processed to give text files (.txt) that are 
required for further processing.

Although the EEG data are recorded from  
24 electrodes, in this research the analysis is done on the 
data governed from the electrode with biggest fluctuations 
to have a clear view of the seizure. In fact this electrode 
shows the strongest response of brain.

In order to filter the artifacts, we did the band pass 
filtering of the EEG data at the frequency of 35 HZ, and  
3 minutes of data (6300 data) was saved. It means that 
there are 35 values of voltage every second.

Data analysis

As it was mentioned, in order to compute the 
Hurst exponent and fractal dimension, a MATLAB based 
program was written. Computation of fractal dimension 
is based on the equations discussed before. In case of the 
Hurst exponent computation, there are different methods 
which have been developed to estimate the value of H. 
Rescaled Range Analysis (R/S) and DFA are two mostly 
used methods of the Hurst exponent estimation. By the 
initial analysis of the computed the Hurst exponent of EEG 
time series we found out that even if R/S method shows 
higher values of the Hurst exponent than DFA, the standard 
deviations are lower for R/S so that the confidence intervals 
are narrower and thus in our case R/S method is more 
precise. Nevertheless, we found out that both methods 
show similar results which become closer as the EEG 
time series becomes longer. So in this research we employ 
R/S analysis method for computing the Hurst exponent. It 
is noteworthy that the initial value of H is computed for  
5 minutes of the recorded data. As it was mentioned, in this 
research we analyzed the EEG data for 120 subjects, but 
here we only discuss the result of analysis of two subjects 
in details. Other results are provided in Table 1.

Plots 3.1 and 3.2 in Figure 3 show the average of 
three minutes recorded EEG signals with pre-seizure, 
seizure and some post-seizure activity for two subjects 
with epilepsy, who is resting without receiving any 
external stimulus. By looking at plot 3.1, it is clear that 
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the brain has its normal activity from t = 0 s to about  
t = 80 s (pre-seizure) when the EEG voltage falls in the 
normal range of variation. The seizure is clear in the plot 
from about t = 80 s to about t = 160 s (seizure). In this 
time span, the EEG voltage fluctuates between −769 μV to  
1230 μV. Also, this plot shows some post-seizure activity 
after t = 160 s till t = 180 s when the brain goes back to its 
normal status. The mentioned behaviour also can be seen 
in plot 3.2. In this plot the pre-seizure is from t = 0 s to 
about t = 70 s. The seizure is clear in the plot from about  
t = 70 s to about t = 120 s. Also, this plot shows some post-
seizure activity after t = 120 s till t = 180 s when the brain 
goes back to its normal status.

As it was mentioned before, the effect of a stimulus 
(bigger than threshold value) on the brain is mapped 
as a sudden deflection in the Hurst exponent plot. This 
sudden deflection temporarily takes the values of the Hurst 
exponent far from 0.5 (H = 0.5 stands for a truly random 
process). Using this phenomenon and looking at the Hurst 
exponent plots (Figure 4) for the EEG signals (Figure 3), 
the onset of seizure can be discussed.

As it is clear in plot 4.1, a sudden downward 
deflection at about t = 50 s can be seen. Considering the 
subject is resting without receiving any external stimulus, 
the mentioned sudden deflection can only be related to 
an internal stimulus. In fact, this stimulus later, at about  
t = 80 s, causes the brain to have an abnormal activity 

(epileptic seizure). After this stimulus till the end of 
seizure (t = 50 s to t = 160 s), the value of the Hurst 
exponent decreases from 0.5. But, because these values 
are between 0 and 0.5, a good correlation between the 
values of the signal cannot be seen. When the brain 
goes back to its normal status (after t = 160 s), a sudden 
upward deflection can be seen in the plot, which increases 
the values of the Hurst exponent. Although this upward 
deflection sometimes is small, but it is the beginning 
of the process which increases the values of the Hurst 
exponent. As it was mentioned previously, this behaviour 
stands for the phenomenon that when a longer time span 
is considered, the less the human brain “remembers” its 
initial state. The mentioned behaviour also can be seen 
in plot 4.2. In this plot the seizure onset is clear by the 
downward deflection at t = 50 s. The seizure ends by the 
upward deflection at t = 120 s in this plot.

In order to show the strength of our analysis the 
fractal dimension variations for the EEG records are 
shown in Figure 5.

The analyses of the fractal dimension plots for the 
record of EEG signals give results which do not deviate 
from what has been observed in the Hurst exponent plots. 

As it is clear in plot 5.1, a sudden upward deflection 
at about t = 50 s can be seen in the fractal dimension plot 
which is related to an internal stimulus. In fact, the internal 
stimulus makes the EEG signal more complex as the 

Figure 3: Three minutes recorded EEG signals from two subjects.
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Figure 4: The Hurst exponent variations for three minutes recorded EEG signals from two subjects.

Figure 5: The fractal dimension variations for three minutes recorded EEG signals from two subjects.
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Figure 6: Confidence interval for the time difference between the sign of seizure and its onset (standard  
deviation = 4.30).

Table 1: The difference time between the sign of seizure in the Hurst exponent and fractal dimension 
plots, and its onset for 120 subjects

No Value No Value No Value No Value No Value No Value

1 30 21 29 41 27 61 20 81 24 101 20

2 20 22 29 42 29 62 28 82 27 102 19

3 26 23 32 43 24 63 22 83 20 103 27

4 25 24 22 44 30 64 26 84 32 104 26

5 19 25 28 45 31 65 29 85 21 105 20

6 22 26 27 46 26 66 20 86 22 106 31

7 32 27 32 47 25 67 30 87 29 107 32

8 27 28 19 48 20 68 19 88 27 108 30

9 23 29 22 49 23 69 23 89 27 109 27

10 29 30 27 50 27 70 27 90 26 110 24

11 19 31 29 51 20 71 34 91 34 111 30

12 26 32 21 52 31 72 24 92 19 112 33

13 28 33 35 53 32 73 20 93 24 113 19

14 20 34 32 54 25 74 22 94 29 114 19

15 21 35 29 55 25 75 26 95 25 115 25

16 23 36 23 56 29 76 30 96 24 116 29

17 28 37 26 57 19 77 31 97 22 117 20

18 34 38 30 58 20 78 26 98 20 118 31

19 27 39 27 59 32 79 24 99 19 119 25

20 28 40 22 60 27 80 27 100 29 120 27
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values of the fractal dimension start to increase. After this 
stimulus till the end of the seizure (t = 50 s to t = 160 s),  
the values of the fractal dimension increase. As it can be 
seen in the plot, when the brain goes back to its normal 
status (after t = 160 s), a sudden downward deflection 
can be seen in the plot, where the values of the fractal 
dimension start to decrease and so less complexity will be 
seen in the signal. 

The mentioned behaviour also can be seen in plot 
5.2. In this plot the seizure onset is clear by the upward 
deflection at t = 50 s. The seizure ends by the downward 
deflection at t = 120 s in this plot.

So, it can be said that analysing the fractal dimension 
plots can certify the strength of our claim discussed above.

The same analyses have been done on other subjects. 
The Hurst exponent and fractal dimension plots in all cases 
show the similar behaviour and could predict the seizure 
onset. Table 1 list the time difference between the sign of 
seizure in the Hurst exponent and fractal dimension plots, 
and its onset for all patients. As the difference between the 
sign of seizure and its onset is same in case of the Hurst 
exponent and Fractal dimension plots, here we only report 
one value for it. The value in each case is the average of 
values related to eight measurements for each subject. The 
results indicate that the sign of seizure was predicted at 
least 19 seconds before the onset (in case of subjects 5, 11, 
28, 57, 68, 92, 99, 102, 113 and 114). The average of all 
cases is 25.76 second.

Also, in order to compare the time difference between 
the sign of seizure in the Hurst exponent and fractal 
dimension plots and its onset in case of different subjects, we 
compute 95% confidence interval for samples population. 
Figure 6 shows the computed confidence interval.

As it is clear in this figure, confidence interval has 
the variation range of 24.98 ≤ X ≤ 26.53. This narrow 
range indicates that the governed value of 25.76 s stands 
for the average of all samples with high confidence.

So, by analysing the Hurst exponent and fractal 
dimension plots the sign of seizure onset was seen for all 
patients. Thus, our analysis showed that we can predict the 
seizure onset before the time of occurrence.

CONCLUDING REMARKS

In this research, we proposed a new methodology 
which predicts the onset of epileptic seizure by analysing 
the Hurst exponent and fractal dimension plots of the EEG 
records. The results of analyses for 120 patients showed 
that forecasting of the seizure is possible an overage 25.76 
seconds before its onset. This unique methodology can 
be helpful in analysis and prediction of other abnormal 
activities of the brain. Also this methodology can be used 
in developing a portable hand-held device which records 
the EEG signals from the patient’s brain using a scalp and 
further analyses the signal by the described methodology 
in this research. So, the device can give the alert to patients 

before the seizure onset, thus patient can take the required 
medication in order to prevent the seizure. 
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