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Intermittent high-dose treatment with erlotinib enhances 
therapeutic efficacy in EGFR-mutant lung cancer
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ABSTRACT
Treatment with EGFR kinase inhibitors improves progression-free survival of 

patients with EGFR-mutant lung cancer. However, all patients with initial response 
will eventually acquire resistance and die from tumor recurrence. We found that 
intermittent high-dose treatment with erlotinib induced apoptosis more potently 
and improved tumor shrinkage significantly than the established low doses. In mice 
carrying EGFR-mutant xenografts intermittent high-dose treatment (200 mg/kg every 
other day) was tolerable and prolonged progression-free survival and reduced the 
frequency of acquired resistance. Intermittent EGFR-targeted high-dose schedules 
induce more profound as well as sustained target inhibition and may afford enhanced 
therapeutic efficacy.

INTRODUCTION

EGFR kinase inhibitors have become routine 
treatment for patients with EGFR-mutant lung cancer [1-
4]. However, resistance will ultimately emerge, thereby 
limiting the overall efficacy of such treatment. Resistance 
may emerge due to EGFR second site mutations, mainly 
the T790M-gatekeeper mutation, which prevents binding 
of the typical quinazoline-based compounds [5-8], due 
to genome alterations such as amplification of MET [9-

15] that activate phosphatidyl-inositide-3 kinase (PI3K) 
signaling, or by processes changing cellular differentiation 
[16]. Both the T790M mutation and MET amplification 
may exist in a subclone present at the time of therapy; 
thus, a proportion of cases of resistance are likely to occur 
due to clonal selection of such resistant subclones under 
therapy [17, 18].

It was recently proposed that high-dose pulses of 
kinase inhibitors lead to enhanced target suppression and 
eradication of tumor cells more effectively by more potent 
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induction of apoptosis [19]. As a consequence, intermittent 
high-dose schedules were shown to enhance efficacy in 
ERBB2-amplified breast cancer [20] as well as in BRAF-
mutant melanomas [21]. In a cancer evolution modeling 
approach an intermittent scheduling of erlotinib could 
prevent the appearance of resistance despite the presence 
of EGFRT790M positive subclones ab initio [22, 23].

Since the duration of target suppression is likely 
to affect the efficacy of a given compound in addition 
to the magnitude of target inhibition [24, 25] we sought 
to determine, whether enhanced trough levels or peak 
plasma levels might be more relevant to offer enhanced 
therapeutic efficacy. 

RESULTS

High dose pulses of erlotinib potently inhibit 
tumorcell growth of EGFR-mutant NSCLC cell 
lines in vivo and in vitro

In line with a recent report [19] 20 minutes of 
treatment with 10µM of erlotinib potently suppressed 
tumor cell growth of the erlotinib sensitive cell lines 
HCC827 and PC9 (both carry EGFR exon 19 deletion 
mutations) as effectively as a continuous 72 hours 
exposure with 0.1µM. As expected, any such treatment 
had minor effect on the resistant cell lines H1975 (EGFR 
L858R and T790M) and HCC827GR (EGFR exon 19 
deletion, MET-amplified) (Figure S1), thus confirming that 
efficacy was due to on-target activity of the compound. 
A pulse of 10µM of erlotinib reduced pAkt and pErk1/2 
levels in the sensitive cell lines, despite re-establishment 
of pEGFR signaling (Figure 1A, upper panels). 
Continuous exposure to erlotinib inhibited pEGFR, pAkt 
and pErk1/2 levels at a concentration of 0.1µM. Again, 
downstream signaling was only slightly reduced in the 
two resistant control cell lines (Figure 1A, lower panels). 
Phosphorylated levels of MET were reduced in HCC827, 
PC9 and H1975 cells by high concentrations of erlotinib, 
but not in the MET-amplified cell line HCC827GR (Figure 
S2). Induction of apoptosis (Figure 1A, 1B) was also 
similar in the sensitive cells treated with a high-dose pulse 
of 10µM for 20 minutes and those treated with 0.1µM, but 
not in the resistant ones. 

Given the high efficacy of high-dose treatment of 
erlotinib in EGFR-mutant tumor cells in vitro, we tested 
whether pulsatile high doses of erlotinib enhanced tumor 
control in vivo. Tumor shrinkage occurred more rapidly 
and was of greater magnitude in tumor xenografts of PC9 
and HCC827 cells treated with intermittent high doses of 
erlotinib (200mg/kg every other day, “intermittent_2day”) 
than in those treated daily with 30mg/kg (Figure 1C). 
Treatment with either 15mg/kg daily or 200mg/kg every 
fourth day (“intermittent_4day”) were less effective, 

although this effect was more pronounced in PC9 
xenografts (Figure S3). Again, H1975 was unresponsive 
to therapy using any of these schedules (Figure 1C and 
Figure S3, right panels).

Toxicity as well as pharmacokinetic aspects of 
high-dose pulse treatment

Alignment of murine and human EGFR revealed 
only one different amino acid in the kinase domain 
(Y > F at 771), which is unlikely to affect binding of 
erlotinib (Figure S4A). Thus, erlotinib is expected to 
inhibit EGFR signaling in all murine tissues, in which 
EGFR is expressed. We found that mice treated with 
100mg/kg erlotinib daily lost about 20% of weight. The 
intermittent_2day schedule led to an initial weight loss of 
10%, too, but mice typically recovered within 20 days. 
Mice treated with 50mg/kg daily and the intermittent_4day 
schedule initially showed a slight reduction of weight of 
about 5%, but recovered within 10 days. Mice treated 
with 15mg/kg or 30mg/kg daily and the control group 
did not exhibit significant weight loss (Figure 2A). 
Both the 50mg/kg and 100mg/kg daily schedules were 
highly toxic: severe diarrhea occurred in 88% and 73% 
of mice, respectively. By contrast, diarrhea occurred in 
49% of the mice in the intermittend_2day and 20% of the 
intermittend_4day groups (Figure S4B). In the 100mg/kg 
daily group significantly more mice died during therapy 
than in the other groups (Figure S4C). Rash occurred 
in 38% of mice in the 100mg/kg daily cohort, whereas 
rash was rare in the mice treated with the other schedules 
(Figure S4D). There was no case of diarrhea or rash in 
the control group. Thus, intermittent high-dose treatment 
of EGFR-mutant tumors with erlotinib enhanced tumor 
control with limited toxicity.

Estimates for erlotinib peak plasma concentrations 
after a single dose of 30mg/kg or 200mg/kg of erlotinib 
were 6.5µmol/l and 11.7µmol/l, respectively. The area 
under the curve (AUC) showed linear increase with the 
dose (3.84µmol*h vs. 24.45µmol*h (p < 0.001)). Thus, 
erlotinib clearance was independent on the dose (2.72l/h 
vs. 3.05l/h (p = 0.45)); however, the apparent absorption 
rate constant was much higher for the low dose (0.36/h 
vs. 0.08/h (p < 0.001)), suggesting some saturation of 
absorbtion of erlotinib in the intestine (Figure 2B). The 
concentrations of erlotinib in tumor lysates of HCC827, 
PC9 and H1975 xenografts peaked after 6 hours. In mice 
treated with 30mg/kg of erlotinib the peak concentrations 
reached about 100ng of erlotinib/µg of protein and 
declined after 12 hours. Treatment with 200mg/kg led 
to peak tumor tissue concentrations of 200-250ng/µg. 
In muscle tissue concentrations were lower, suggesting 
enrichment in tumor tissue (Figure 2C). The peak 
tumor concentrations of the active metabolite OSI-420 
were about 10ng/µg for 30mg/kg erlotinib and declined 
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Figure 1: A. Western Blot analyses of HCC827, PC9, H1975 and HCC827GR cells treated with 0.1µM, 1µM or 10µM of erlotinib or DMSO 
for 20 minutes or continuously till preparation of lysates. Whole-cell lysates were analyzed for expression levels of the indicated proteins 
by western blotting.  B. AnnexinV flow cytometry of HCC827, PC9, H1975 and HCC827GR treated with 0.1µM, 1µM, 10µMerlotinib or 
DMSO for 20 minutes or continuously. FACS-analysis was done 24 hours after initial exposure to erlotinib and read-out was normalized to 
DMSO-control. Change of Annexin V/PI-double positive cells ±SD are shown. *p < 0.05, **p < 0.001. C. shows relative tumor volumes 
of xenografts ±SD (HCC827, PC9 and H1975). Xenograft harboring mice were treated with 30mg/kg erlotinib daily or 200mg/kg erlotinib 
every 2nd day p.o. and tumor volumes were measured every 2nd day.*p < 0.05, **p < 0.001. 
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Figure 2: A. Relative body weight of mice treated witherlotinib15mg/kg daily, 30mg/kg daily, 50mg/kg daily, 100mg/kg daily, 200mg/
kg every 4th day, 200mg/kg every 2nd day or vehicle detergent alone. Shown is the mean weight of mice, set relative to the weight at the 
beginning of the therapy. In B. mean plasma concentrations of erlotinib ±SD in mice are shown. Non-tumor harboring mice were treated 
orally with a single dose of either 30mg/kg or 200mg/kg and blood samples were taken from the tail-vein. Plasma-concentrations were 
determined by liquid chromatography tandem mass spectrometry. C. Mean erlotinib concentrations ±SD in tumor lysates (HCC827, PC9, 
H1975) or lysates of muscle tissue of mice treated with a single dose of either 30mg/kg or 200mg/kg erlotinib are shown. Lysates were 
prepared from untreated mice or 6, 12, 24 or 48 hours after administration of erlotinib. Erlotinib concentrations in the supernatant were 
assessed by mass spectrometry and set relative to the protein-amount of the lysate.*p < 0.05. D. Representative IHC-stainings for pEGFR 
of tumors (HCC827, PC9, H1975) of mice either untreated or treated with a single dose of 30mg/kg or 200mg/kg erlotinib. Tumors were 
resected 12 hours after treatment. 5x magnification, blue scale bar indicates 500µm.
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completely within 24 hours, and reached 30 to 50ng/
µg in tumor tissue and about 20ng/µg in muscle tissue 
for the 200mg/kg dose (Figure S5). We finally assessed 
the pharmacodynamic effects of high-dose treatment 
in tumors explanted from treated mice by pEGFR-
immunohistochemistry. In the sensitive HCC827- and 
PC9-xenografts both 30mg/kg and 200mg/kg of erlotinib 
reduced pEGFR compared to untreated controls and the 
resistant H1975-xenografts. However single dosing of 
200mg/kg of erlotinib reduced pEGFR much stronger than 
30mg/kg (Figure 2D).

In vivo pharmacodynamic assessments by 
18F-FLT-PET

We have recently shown in mice and in patients that 
erlotinib induces early cell cycle arrest in EGFR-mutant 
tumors that precedes induction of apoptosis and that can 
be monitored in vivo using 18F-FLT-PET [26, 27]. We 
therefore determined, whether the dynamics of induction 
of cell cycle arrest and tumor shrinkage might also be 
similar in the 30mg/kg daily and the intermittend_2day 
schedules. While in H1975 xenografts uptake of 18F-FLT 
was not reduced by erlotinib treatment (Figure 3A, lower 
panel, Figure 3B, right panel, Figure S6 and S7), the 
decrease in relative FLT-uptake was similar in both the 
continuous 30mg/kg and the intermittent_2day schedules 
in HCC827 and PC9 xenografts (Figure 3A, upper panel, 
Figure 3B left panel, Figure 3C and Figure S6 and S7). 
In PC9 tumors the intermittent_4day showed a similar 
decline in FLT-uptake at days 1, 6 and 8; however 18F-FLT-
uptake increased again at days 20 and 27, but not in the 
continuous_30mg/kg and intermittent_2day group (p 
< 0.05) (Figure 3C). This observation corroborates the 
notion that both high trough and peak levels of erlotinib 
are relevant for cell cycle arrest [28, 29] and tumor 
shrinkage.

Intermittent high-dose erlotinib treatment 
improves progression-free survival of mice 
bearing EGFR-mutant xenografts.

High doses of erlotinib improved tumor shrinkage 
by enhanced target signaling suppression. Efficacy of 
EGFR inhibitors is ultimately limited by the emergence 
of resistance. We therefore tested the hypothesis that 
intermittent high dose treatment of EGFR-mutant tumors 
might also enhance the duration of response. Mice 
engrafted with HCC827 or PC9 cells were therefore 
treated with the most effective, but still tolerable schedules 
for up to 400 days: 30mg/kg erlotinib daily or 200mg/
kg erlotinib every other day. Median follow-up time 
for HCC827 was 280 (continuous_30mg/kg) and 400 
(intermittent_2day) days and for PC9 102 and 160 days, 
respectively (Figure S9). All tumor volumes of these mice 

are individually shown in Figure 4A. After initial response 
several tumors restarted to grow. However, in the case of 
HCC827 xenografts treated with 200mg/kg every second 
day no resistance emerged, whereas 40% of the tumors 
treated with 30mg/kg daily became resistant (p < 0.05). 
PC9-xenografts showed acquired resistance in both 
therapy groups; however, recurrence occurred later (Figure 
4A, right) and progression-free survival was longer in the 
group receiving intermittent high-dose treatment (p < 
0.05) (Figure 4B).

Sequencing of tumors explanted at the time of 
resistance revealed the T790M resistance mutation in PC9 
xenografts (Figure S10). These results show that more 
pronounced target suppression not only leads to higher 
magnitude, but also greater duration of response.

DISCUSSION

Here we present a strategy for improving therapeutic 
efficacy in a xenograft model of EGFR-mutant lung cancer 
by intermittent high-dose scheduling of erlotinib. This 
schedule was tolerable, but enhanced both the magnitude 
and the duration of response. Despite the high dose, 
efficacy was due to on-target effects of erlotinib as the 
treatment effects were not observed in cells bearing the 
T790M resistance mutation. 

We could show that plasma peak levels of erlotinib 
after a dose of 200mg/kg were only two fold higher than 
after 30mg/kg indicating saturation of absorption. By 
contrast, the AUC was about 6-fold higher suggesting that 
the duration of target suppression was increased several-
fold. As a consequence we found for pulsatile high-dose 
treatment of erlotinib stronger and more durable target 
suppression by pEGFR-staining, and could show sufficient 
cell-cycle-arrest in-vivo by 18F-FLT-PET.

Consequently, intermittent high-dose treatment 
improved the progression-free survival in two EGFR-
mutant xenografts in a long-term treatment study. While 
emergence of resistance was completely abolished in 
HCC827 xenografts, resistance occurred less frequently 
and at a later time in PC9 xenografts. The latter are known 
to become resistant to erlotinib over time due to emergence 
of the T790M resistance mutation; thus, the efficacy of 
reversible quinazoline EGFR inhibitors will always be 
limited in these tumors. In line with these findings we 
could detect the T790M mutation in resistant PC9 tumors, 
but not in HCC827 tumors. However, the observation that 
PFS could still be improved in PC9 tumors may arguably 
be due to the possibility that high doses of erlotinib are 
still capable of inhibiting T790M-mutant EGFR to some 
extent (note that the biochemical IC50 of erlotinib for 
EGFRT790M is still in the nanomolar range).

In a first study in humans treated with an intermittent 
high-dose schedule of erlotinib, patient suffered only 
moderate side-effects [30]. The limited efficacy in this 
study is likely due to the lack of patient selection based on 
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Figure 3: In A. representative 18F-FLT-images of mice harboring HCC827 or H1975 xenografts treated with 30mg/kg erlotinib daily, 
200mg/kg erlotinib every 2nd day or vehicle are shown. 18F-FLT-PET measurements were performed the day before start of therapy and at 
day 6 of therapy. The cross hairs indicate tumor positions. B. Change in relative 18F-FLT-uptake of HCC827- and H1975-xenografts. Mice 
were treated with either 30mg/kg erlotinib daily or 200mg/kg erlotinib every 2nd day or vehicle. 18F-FLT-PET-imaging was performed the 
day before stat of therapy (day -1), day 1 and 6 after start of therapy. All values were set relative to day -1. Error bars indicate ±SD, *p < 
0.05, **p < 0.001. C. Change in relative 18FFLT-uptake of PC9 xenografts. Mice were treated with either 30mg/kg erlotinib daily,200mg/
kg erlotinib every 4th day, 200mg/kg erlotinib every 2nd day (up to day 27) or vehicle (up to day 8). 18F-FLT-PET- imaging was performed 
at day -1, day 1, 6, 8, 20, 22 and27 after start of therapy. Treatment days of the intermittent_4day schedule were: day 0, 4, 8, 12, 16, 20, 24, 
28. All values were set relative to day -1. Error bars indicate ±SD.*p < 0.05, **p < 0.001. 
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EGFR mutations. Thus, patients with EGFR-mutant lung 
cancer may benefit from high-dose treatment with EGFR 
inhibitors at reasonable toxicity. In line with this notion, 
Riely and colleagues showed in a recent phase II study, 

that OS of patients can be prolonged by a high-dose pulse 
of erlotinib before chemotherapy, without increasing toxic 
side effects [31]. Patients on this trial were not selected 
based on EGFR mutations either. Thus, patients with 

Figure 4: A. Tumor volumes of HCC827- (left panel) and PC9- (right panel) xenograft harboring mice treated long term with erlotinib 
either 30mg/kg daily (upper row) or 200mg/kg every 2nd day (lower row). Each colored line represents the relative volume of one single 
tumor. B. Kaplan Meier curves of resistance free survival of mice harboring HCC827- (left) and PC9- (right) xenografts treated long term 
with erlotinib. Shown are the treatment schedules with 30mg/kg erlotinib daily or 200mg/kg erlotinib every 2nd day. p indicates statistical 
significance by log-rank-test.
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EGFR-mutant lung cancer may derive further benefit from 
such intermittent high-dose schedule. However, in these 
studies no pharmacokinetic analyses in patients treated 
with high-dose erlotinib were performed. Further studies 
are required to determine peak and AUC levels during 
high dose erlotinib treatment and to evaluate whether these 
high dose erlotinib levels in mice are tolerable in humans. 
Finally, these high doses of erlotinib may penetrate the 
blood-brain barrier and induce tumor shrinkage in EGFR-
mutant brain metastases, which are usually not tractable 
by standard dosing of erlotinib [32].

In summary, we provide evidence that intermittent 
high-dose treatment of EGFR-mutant tumors with 
erlotinib enables enhanced tumor shrinkage and prolonged 
PFS, while limiting toxicity in a mouse xenograft 
study. This effect is associated with high trough and 
peak levels, which induced more durable shutdown of 
EGFR-associated oncogenic signaling. While treatment 
is increasingly tailored to each patient based on tumor 
genotyping, the established 150mg once daily dose of 
erlotinib may simply not be the ideal schedule for optimal 
target shutdown and tumor control. Thus, protocols testing 
such intermittent high dose pulses of erlotinib specifically 
in patients with EGFR-mutant lung cancer warrant clinical 
exploration. 

MATERIALS AND METHODS

Cell-culture and reagents

The human NSCLC celllines PC9, HCC827 
and H1975 were obtained from the American Type 
Culture Collection (ATCC), HCC827GR were kindly 
provided by the laboratory of Jeff Engelman. Cells were 
cultured in RPMI-1640 medium with 10% FCS and 1% 
Penicillin+Streptomycin.

Erlotinib was purchased from LC Labs, USA. For 
in-vitro studies erlotinib was prepared in stock solution of 
10mM in DMSO (Sigma Aldrich, Germany) and stored 
at -20°C. For in-vivo studies erlotinib was dissolved in 
6% Captisol® (CyDex Inc., USA) in concentrations of 
10mg/ml (continuous schedules) or 30mg/ml (intermittent 
schedules) and stored in a rotating device at 4°C.

Immunoblotting

Immunoblotting was performed using the following 
antibodies: pEGFR (Y1068), EGFR, pAkt (S473), AKT, 
pErk 44/42 (Thr202/Tyr204), ERK 44/42, Caspase-3 
(Cell Signaling Technologies, USA), ß-actin (clone C4) 
(MP Biomedicals LLC, USA), anti-rabbit-HRP- and anti-
mouse-HRP-antibody (Millipore, Germany).

Annexin V-flow-cytometry

Flow cytometryofHCC827, PC9, H1975 and 
HCC827GR cells treated with erlotinib (0.1µM, 1µM 
or 10µM) or DMSO for either 20 minutes or 24 hours, 
was performed using the AnnexinV-FITC Apoptosis 
Detection Kit I (BD Pharmingen, Germany) according 
to the manufactures protocol and measured by Gallios 
Flow Cytometer (Beckmann Coulter), detecting at least 
100,000 events per probe. Data was evaluated by setting 
appropriate gates in Kaluza analysis software (Beckman 
Coulter) and apoptosis was calculated as the difference 
between sample and DMSO control.

In vivo experiments

All animal procedures were approved by the local 
animal protection committee and the local authorities.

All experiments were performed in 10 to 15 week 
old male athymic NMRI-nude-mice (Janvier, Europe) as 
described recently [26, 33]. For creation of xenografts 
tumor cells (HCC827, PC9 and H1975) were implanted 
subcutaneously. Therapy was started when tumors reached 
a size of approx. 100mm³. Mice were treated by oral 
gavage of erlotinib in these schedules: 15mg/kg daily, 
30mg/kg daily, 200mg/kg every 2nd day or 200mg/kg 
every 4th day or 100µl vehicle detergent daily.

Tumor size was monitored every 2nd day by 
calimetric measurement. Tumor volumes were calculated 
by the modified ellipsoid formula [V = 0.5 x (long 
diameter) x (short diameter)²]. All absolute tumor volumes 
were set relative to day 0.

Toxicity of erlotinib in mice

Human and murine EGFR were aligned using the 
ClustalW-alignment (http://www.ebi.ac.uk/Tools/msa/
clustalw2) and performed an analysis of erlotinib binding 
to the ATP-binding pocket of the EGFR. To assess the 
tolerable therapy schedules of erlotinib we treated non-
tumor harboring mice with these schedules of erlotinib: 
15mg/kg, 30mg/kg, 50mg/kg or 100mg/kg daily, or with 
200mg/kg every 2nd or 4th day, as well as with vehicle 
detergent alone daily. Weight was measured every 2nd 
day and toxic side effects (diarrhea, rash and death) in all 
treated mice were monitored.

Pharmacokinetics of erlotinib

For pharmacokinetic analyses mice were treated 
with a single dose of either 30mg/kg or 200mg/kg 
erlotinib. Blood samples were taken from the tail-vein 
and erlotinib plasma concentrations were quantified using 
liquid chromatography tandem mass spectrometry with a 



Oncotarget38466www.impactjournals.com/oncotarget

lower limit of quantification of 18ng/ml.

Mass spectrometry of erlotinib from tumor lysates

For determination of erlotinib concentration in the 
tumor, HCC827, PC9 and H1975 xenografts were used. 
Mice were treated with a single dose of either 30mg/kg 
or 200mg/kg erlotinib and sacrificed 6, 12, 24 or 48 hours 
after treatment or without treatment. Then tumors were 
resected and lysed for determination of erlotinib and OSI-
420 concentrations within the tumor by mass spectrometry. 
Erlotinib and OSI-420 concentration in the lysates were 
set relative to the protein concentration of the lysate.

Immunohistochemistry

For pEGFR-immunohistochemistry tumors were 
resected 12 hours after treatment with either 30mg/kg or 
200mg/kg erlotinib or without treatment. Tumors were 
fixed in 4% formaldehyde for 24 hours and transferred 
to PBS. Tissues were embedded in paraffin, were cut and 
stained with pEGFR Tyr 1068 primary antibodies (1:100 
over night, pretreatment pH6 20min), Corresponding 
secondary antibody detection kits for reduced background 
on murine tissue were used (Histofine Simple Stain Mouse 
MAX PO and Histofinemousestain kit, medac) and stained 
on an automated stainer (LabVisionAutostainer 480S, 
Thermo Scientific). 

18F-FLT-PET imaging

Synthesis of 18F-fluoro-L-thymidine (18F-FLT) and 
PET measurement protocols were performed as described 
elsewhere [26, 34, 35].

Mice harboring HCC827, PC9 and H1975 
xenografts were measured one day before start of therapy 
(day -1), at the second day of therapy (d = 1) and at 
day 6 and 8 using a R4 microPET scanner (Concord 
Microsystems, Inc, Knoxville, TN). Quantitative analysis 
was done using the in-house software VINCI using a 
region of interest (ROI) analysis. All data were decay 
corrected. 

Statistical analysis

For statistical analyses we used Sigma Plot 
11.0 (Systat Software, USA). We used student’s t-test 
(unpaired, 2-sided), χ2-test and log-rank-test. p < 0.05 was 
considered statistical significant.

For further details we refer to Supplementary 
Methods.
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