
Oncotarget42197www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 39

Sense-antisense gene-pairs in breast cancer and associated 
pathological pathways

Oleg V. Grinchuk1, Efthymios Motakis1,3, Surya Pavan Yenamandra1, Ghim Siong 
Ow1, Piroon Jenjaroenpun1, Zhiqun Tang1, Aliaksandr A. Yarmishyn1, Anna V. 
Ivshina1 and Vladimir A. Kuznetsov1,2

1 Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
2 School of Computing Engineering, Nanyang Technological University, Singapore
3 currently EM is working in RIKEN, Japan

Correspondence to: Vladimir A. Kuznetsov, email: vladimirk@bii.a-star.edu.sg
Keywords: sense-antisense, breast cancer, prognostic, meta-analysis, GABPA
Received: May 16, 2015 Accepted: September 30, 2015 Published: October 28, 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 

ABSTRACT
More than 30% of human protein-coding genes form hereditary complex genome 

architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their 
RNAs from both strands of a given locus. Such architectures represent important novel 
components of genome complexity contributing to gene expression deregulation in 
cancer cells. Therefore, the architectures might be involved in cancer pathways and, 
in turn, be used for novel drug targets discovery. However, the global roles of SAGPs 
in cancer pathways has not been studied. Here we investigated SAGPs associated with 
breast cancer (BC)-related pathways using systems biology, prognostic survival and 
experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that 
are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC 
patients allowed us to develop a novel patient prognostic grouping method selecting 
the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic 
signature reproducibly stratified BC patients into low- and high-risk prognostic 
subgroups. The 1381 SAGP-defined differentially expressed genes common across 
three studied cohorts were identified. The functional enrichment analysis of these 
genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene 
sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory 
function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, 
we demonstrated SAGPs as the synergistically functional genome architectures 
interconnected with cancer-related pathways and associated with BC patient clinical 
outcomes. Taken together, SAGPs represent an important component of genome 
complexity which can be used to identify novel aspects of coordinated pathological 
gene networks in cancers.

INTRODUCTION

RNA transcripts of sense-antisense (SA) gene 
pairs (SAGPs) represent a large subset of the human 
transcriptome varying from 30 to 50 % at all loci [1-3]. 
The gene partners of an SAGP (i) are located on different 
strands of a chromosome, (ii) share a common locus and 
(iii) are transcribed in opposite directions. Therefore, 
SAGPs represent the natural genomic architectures 

evolutionarily organized in specific structural (and 
often functional) hereditary units. In terms of genetic 
architecture they can be classified into divergent (“head-
to-head”), convergent (“tail-to-tail”) and embedded (“one 
inside another”) orientations [2, 4] comprising 29, 33 and 
38%, respectively [5].

The physical interconnections of such paired 
genes indicate their evolutionary and functional 
relationships between them and specific control co-
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regulatory mechanisms [2, 4, 6]. One antisense transcript 
can lead either to activation or suppression of its sense 
transcript counterpart [2, 4]. Many reports documented 
the association of individual SAGPs with disease and 
cancer[7-9] (for a more detailed review refer to [10]), 
suggesting that SAGPs might be directly involved in 
disease [11, 12]. Global deregulated patterns of SA 
transcripts and gene pairs in cancers have also been well 
documented [5, 13-16]. In this context, a comprehensive 
approach to localize “hotspots” of deregulated antisense 
transcription [17], clarification of their global regulatory 
mechanisms and their involvement in pathobiological 
pathways in cancer could be clinically relevant.

Two approaches predominate the field of SAGP 
studies. The first approach is based on the detailed 
characterization of a single SAGP, focusing on diverse 
molecular mechanisms of SA transcription and post-
transcription events and their involvement in cancer 
or other diseases. For example, a post-transcriptional 
mRNA stabilization mechanism has been found for p53 
expression due to double-stranding p53 mRNA with the 
Wrap53 gene mRNA [8], which might be relevant in many 
cancers. High expression of the MYCN cis-antisense gene 
NCYM is associated with poor prognosis in neuroblastoma 
via promotion of production of anti-apoptotic protein 
Myc-nick [18]. Sharing a bidirectional promoter leads 
to coordination of gene expression levels for BAL/BBAP 
SAGP, providing optimal interaction of their protein 
products in chemoresistant, diffuse, large-cell lymphomas 
[19]. An advantage of this approach is that it can 
potentially provide alternative pharmaceutical strategies 
to activate/ suppress the expression of well-known and 
important oncogenes/tumor suppressors. Specifically, 
disease-related individual SAGPs might represent a 
novel type of drug target for locus-specific, anti-sense 
modulation of abnormally activated genes of interest [20, 
21]. The disadvantages of such “single SAGP” studies are: 
i) the lack of a complete physiological view at the level 
of global cellular regulation and ii) the unclear relative 
functional impact of the given SAGP in the context of the 
entire functioning set of SA gene pairs.

The second approach implies systematic study 
of SAGPs and their transcripts starting from the whole 
transcriptome scale with consequent specification of 
the specific subsets of transcripts/genes with common 
characteristics. This approach is aimed to unravel the 
general characteristics and mechanisms of SA phenomena 
(e.g., their common relative impact on the complexity 
of the transcriptome in disease and normal states, global 
association with transcription, posttranscriptional and 
posttranslational modifications) [5, 13, 16, 22, 23].

Here we studied the novel characteristics and 
possible coregulatory mechanisms of SAGPs in breast 
cancer (BC) using the second approach starting with 
transcriptome analysis.

BC is a highly heterogeneous disease with distinct 

morphological appearance and varied molecular features. 
The development and progression of a breast tumor is a 
complex and dynamic biological process. This complexity 
is determined by multiple genetic and molecular factors 
and components, including multiple genomic DNA 
aberrations (which can dramatically affect expression of 
large numbers of physically co-localized genes), global 
epigenetic changes and the regulatory effects of non-
coding RNAs. Our understanding of tumorigenesis and 
related future therapeutic implications might substantially 
benefit from the integration of different components 
of genomic complexity and diverse omics data [24]. 
SAGPs and their products represent another component 
of genomic organization and molecular complexity and 
common molecular factors impacting BC tumorigenesis 
and tumors development [15, 16, 25]. The SAGPs are 
highly-populated complex architectures in the human 
genome and they may be patho-biologically important and 
clinically useful.

The main goal of this study is the consequent 
identification and characterization of the prognostically 
significant SAGPs in BCs, which importance in 
pathogenesis of cancers and in clinical oncology practice 
is currently under-estimated. We assumed that because 
SAGPs are evolutionary predetermined natural gene 
architectures, coordinated expression of their gene 
partners should be important for certain cellular functions 
and, therefore, might be involved in specific regulatory 
pathways in cells. In this context, studying SAGPs with 
deregulated expression profiles of their gene partners 
in specific pathologic BC subgroups/subtypes will 
help to clarify in which abnormally activated cancer 
pathways they could be predominantly involved. Here, 
we considered only SAGPs for which each gene partner 
encodes a protein (protein coding-coding SAGPs) 
because these SAGPs are much better annotated and more 
evolutionarily conserved than the other SAGP subclasses 
[5]. The expression patterns of both genes in an SAGP 
could be mutually or directionally co-regulated [21, 
26], affecting the levels of both their RNA and protein 
products, which could significantly impact cell fate.

Additionally, we introduced a concept of the 
prognostic SAGPs-based signature as an important 
component of our entire meta-analysis workflow to 
identify and characterize SAGPs-associated deregulated 
molecular pathways and the potential regulatory factors 
of SAGPs in BC cells. We developed a computational 
approach for automatic identification of prognostic 
SAGPs using our original survival prediction model and 
feature selection algorithm. The algorithm implementation 
identified the refined SAGPs-associated BC patients 
survival subgroups, which in turn led to the discovery of 
the 1381 SAGP-defined differentially expressed genes 
(DEGs) and GABPA transcriptionally co-activated gene 
network comprising many BC-relevant SAGPs, as well 
as certain specific gene sets involved in the cell cycle, 
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proteasome and spliceosome pathways. We demonstrated 
SAGPs as the synergistically functional genome 
architectures interconnecting cancer-related pathways and 
clinical outcomes.

The knowledge obtained in this study could be 
useful for a better understanding of BC tumorigenesis 
and tumor progression as well as for novel, optimized 
pharmaceutical strategy development.

RESULTS

Workflow of our study

The workflow shown in Figure 1 specifies our 
genomic architecture-centered approach to the genome-
wide analysis of the expression patterns of physically 
associated genes composing SAGPs. Firstly, we focused 
on the analysis of the well-annotated protein coding-
coding SAGPs [5]. Secondly, we analyzed the gene pairs 
based on their expression levels and correlations of the 

expressed genes for individual SAGPs. The functional 
characteristics of such gene pairs were studied here 
for the identification of possible regulatory molecular 
mechanisms of BC development, associated with the 
expression patterns of SAGPs.

Thirdly, we selected the 73 BC-relevant SAGPs set 
(73-SAGPs), for which: i) the expression values of gene 
partners in a given SAGP were significantly correlated 
in the histologic grade 3 breast tumor datasets and ii) the 
differences of the distributions of correlation coefficients 
between gene partners of the SAGPs were significantly 
associated with the differences in the pathobiological 
status of breast tissue samples (e.g., normal vs. tumor) and 
clinical outcomes of BC patients.

Among the 73-SAGPs, we identified the most 
significant prognostic paired gene sub-set, termed SA 
gene signature (SAGS), which reliably dichotomized the 
patients into low-risk (LR) and high-risk (HR) cancer 
development subgroups. SAGS-based stratification 
was followed by differentially expressed genes (DEGs) 
and functional annotation and gene ontology (FA/GO) 

Figure 1: Workflow of the study.
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enrichment analyses, providing the finding of specific 
biological processes, pathways and genes associated with 
BC patient clinical outcome stratification.

Potential transcriptional drivers of the BC-relevant 
73-SAGPs and the DEGs of the specified pathways were 
selected after Transcription Factor (TF) Binding Motifs 
and ChIP-seq data analyses.

Identification of BC-relevant SAGPs and their 
characteristics within G3 breast tumors

To reduce the candidate list of clinically relevant 
SAGPs, we aimed to identify a subset of SAGPs with 
concordant expression of their gene partners. Using 
the criteria of identification of BC-relevant SAGPs 
(Supplementary file 2: Methods and Analyses), we 
retrieved 728 non-redundant protein coding-coding 
SAGPs, represented by 1383 gene symbol IDs from the 
USAGP database [5] (the USAGP database supports 
hg18 NCBI assembly). Among these SAGPs, 334 non-
redundant SAGPs whose gene partners mRNA expression 
was supported by at least one high-quality Affymetrix 
U133A&B probe set presented in the USAGP database 
(Supplementary file 1: Table S1A). Next, we focused 
on the identification of the expression patterns of SAGP 
gene partners within histological Grade 3 (G3) tumors. 
G3 tumors represent a genetically distinct tumor class, 
characterized by highly aggressive behavior, frequent 
metastases, drug resistance and poor disease outcome [27]. 
We proposed that a selection of significantly correlated 
SAGPs in this tumor class could help us to elucidate the 
associations of co-expressed SAGPs with disease outcome 
and pathobiological features in BC.

According to the current molecular classification, 
breast cancers are classified into five intrinsic subtypes: 
normal-like, luminal A, luminal B, ERBB2/HER2 
“positive” and basal-like. G3 tumors are heterogeneous 
and comprise mostly the luminal B, ERBB2/HER2 
“positive” and basal-like subtypes. The basal-like subtype 
is a highly aggressive carcinoma that is often resistant 
to chemo- and hormonal therapy and has an increased 
occurrence in patients with germline BRCA1 mutations 
or in patients of African ancestry [28]. The basal-like BC 
subtype, also known as predominantly “triple negative” 
BC, often lacks the expression of estrogen, progesterone 
and HER2 receptors. Because G3 basal-like tumors 
represent the most challenging BC subgroup with respect 
to chemo- and hormonal post-surgery therapy and clinical 
outcome prediction, we also investigated the SAGPs as 
discriminative biomarkers of basal-like tumors.

 In this context, we considered the G3 basal-
like breast tumors and the rest of the G3 tumors as 
two G3 subgroups. The subgroup of the G3 “non-
basal-like” tumor samples was represented by ERBB2/
HER2”positive”, luminal B, luminal A and “normal-

like” subtypes [29] (Supplementary file 2: Methods and 
Analyses, Supplementary file 3: Figure S1A). The intrinsic 
tumor subtypes classification annotation has been used 
according to the information available in the original 
data sets (Supplementary file 2: Table S11). Screening of 
significantly correlated SAGPs (Kendall’s Tau correlation, 
p < 0.05) within G3 basal-like tumors in three independent 
patient cohorts revealed that 40 correlated SAGPs were 
common across these 3 cohorts (Supplementary file 
3: Figure S1B and Supplementary file 1: Table S1B). 
The gene partners in each of the 40 pairs had positive 
correlation coefficient values (Supplementary file 1: Table 
S1B). We also identified 52 significantly and positively 
correlated SAGPs in the non-basal-like tumor subgroup. A 
total of 21 of the 40 SAGPs were significantly correlated 
in the G3 basal-like tumor samples, but not in the G3 non-
basal like tumor samples (Supplementary file 1: Table 
S1C). Among the 42 genes of the 21 SAGPs, the DEG 
analysis identified 14 significant genes, discriminating the 
G3 basal-like from the G3 non-basal-like tumor samples 
(t-test; Q-value < 0.05, Supplementary file 3: Figure 
S1C). Among the genes significantly co-activated in G3 
basal-like tumor samples, we identified 3 reproducible 
and concordantly up-regulated SAGPs (ABI1/PDSS1, 
DIS3/BORA and WDR77/ATP5F1). These pairs could 
be considered as promising tumor subtype-specific, up-
regulated biomarkers of G3 basal-like breast tumors. 
These pairs could have an advantage over the “down-
regulated” biomarkers used in clinical studies for the 
identification of basal-like BC subtype [30].

In total, using three independent BC cohorts, we 
identified 73 SAGPs (73-SAGPs set) where the expression 
levels of both genes in a given SAGP were significantly 
correlated within the G3 basal-like and/or G3 non-basal-
like breast tumors. Hypergeometric test revealed a high 
frequency of co-occurrence of significantly correlated 
SAGPs, co-expressed in two studied data sets of G3 
patients (Supplementary file 3: Figure S1B). This indicates 
that the 73 selected, positively correlated SAGPs could be 
involved in the same or interconnected gene regulatory 
pathways and/or networks in the cells of G3 BC tumors.

Discriminative characteristics of 73-SAGPs 
between breast tumors and normal tissues and 
between BC histologic grades

We further investigated whether the gene expression 
correlation pattern of 73-SAGPs could reflect certain 
essential BC genetically/clinically distinctive features, 
such as differences between normal and tumor breast 
tissues or between breast tumor grades.

We compared the cumulative frequency distribution 
functions of the Kendall’s Tau correlation coefficient 
values estimated between the gene partners of the 
73-SAGPs in breast tumors and normal tissues (Figure 
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2A and 2B and Supplementary file 3: Figure S1D). There 
were no significant differences between G3 basal-like 
and G3 non-basal-like breast tumors or between the two 
normal breast tissues used as negative controls (p>0.05, 
KS test) (Figure 2A and Supplementary file 2: Table 
S2). However, a highly significant systematic shift of the 
correlation value distributions was evident for almost all 
BC tissues compared to normal tissues (Figure 2A and 2B, 
Supplementary file 2: Table S2).

The Kolmogorov-Smirnov (KS) tests demonstrated 
significant differences between the Kendall’s Tau 
correlation coefficient values in high grade (G3) compared 

to low grade (G1) breast tumors (Figure 2C and 2D) in 
the 73-SAGPs. Taken together, the correlation coefficient 
values between the in-cis gene partners of the 73-SAGPs 
are significantly associated with different pathobiological 
states of breast tissue (for instance normal vs. BC, G3 
vs. G1 tumors). Therefore, as a co-activated functional 
gene subset, they might be involved in deregulated 
pathobiological gene networks and pathways in BC. 
Next, we addressed the question of which molecular 
mechanisms could be considered as potential regulators 
of the 73-SAGPs in BC.

Figure 2: Comparison of cumulative curves of Kendall’s Tau correlation coefficients in various gene sets. For each 
SAGP, one corresponding representative pair of Affymetrix probe sets with the strongest Kendall’s Tau correlation coefficient (positive or 
negative) was selected. X axis: Kendall’s Tau correlation coefficient, Y axis: cumulative relative frequency. A. Cumulative curves for 53 
SAGPs in grade 3 “basal-like” (BlG3, white circles), grade 3 “non-basal-like” (nBlG3, light gray triangles) from the Uppsala BC cohort and 
histologically normal breast epithelium samples (HN, black circles). B. Cumulative curves for 73-SAGPs (Tsa) in 30 breast tumors (black 
circles) and 62 histologically normal epithelium samples located adjacent to tumors (Ansa, white circles). Cumulative curves for G3 and 
G1 BC patients obtained from the Uppsala C. and Stockholm D. cohorts. Black circles represent the clinical subgroup with G3 tumors (n = 
55 for Uppsala cohort; n = 61 for Stockholm cohort), and white circles correspond to the clinical group with G1 tumors (n = 68 for Uppsala 
cohort, n = 28 for Stockholm cohort). Cumulative curves for all BC patients in the Uppsala BC cohort E. (n = 249) and the set of 38 BC cell 
lines F. [32]. Black circles represent the group of 73-SAGPs, and white circles represent the group of 73 NGNs.
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DNA CNVs is not a major factor of positive 
correlations between the gene partners of the 
73-SAGPs

Many pathological disturbances and abnormal 
correlations between genes in cancers are due to their co-
localization within the same DNA amplicons [31]. We 
hypothesized that the significant and positive correlations 
between the gene partners of the 73-SAGPs are specific 
and are not due to DNA amplifications in the SAGPs loci. 
To test this hypothesis, we selected 73 pairs of the nearest 
gene-neighbors (NGNs) of the 73-SAGPs. The criteria for 
selection of the NGNs are stated in Supplementary file 2: 
Methods and Analyses and Supplementary file 1: Table 
S3A.

CNVs often cover mega-base regions in the 
human genome. Therefore, we expected that an SAGP 
and its corresponding NGN pair could be located in 
the same CNV region. Indeed, CNVs for NGNs were 
very similar to those of corresponding co-localized 
73-SAGPs (Supplementary file 3: Figure S2). Wilcoxon 
matched pairs test revealed no significant differences in 
the CNVs between gene sets of the co-localised NGNs 
and 73-SAGPs studied in two independent data sets 
(Supplementary file 1: Tables S4A-S4C, Methods).

In contrast, the Kendall’s Tau correlation coefficients 
for “in-cis” pairs of co-localized NGNs were significantly 
lower than the correlation coefficients for the “in-cis” gene 
partners of the 73-SAGPs analyzed in the set of 38 BC cell 
lines[32] as well as in another primary breast tumor cohort 
(Figure 2E and 2F, Supplementary file 1, Table S3B). 
These results suggest that CNV are not a major factor in 
the positive correlation between the gene partners of the 
73-SAGPs.

Identification of survival significant SAGPs

Because the 73-SAGPs demonstrated significant 
associations with distinct BC pathological states and 
subgroups, we hypothesized that they could be involved 

in specific deregulated pathobiological pathways. Survival 
prediction analysis can be used to investigate whether a 
gene set contains genes and/or gene pairs significantly 
associated with distinct survival/pathological outcomes 
[33, 34]. Pathologically relevant gene signatures in turn 
can be utilized for in-depth characterization of deregulated 
oncogenic pathways and the discovery of potential drug 
targets in cancer [33, 35-37].

Because gene pairs in 73-SAGPs are significantly 
correlated, we assumed that a survival-significant SAGP 
with a synergistic effect on a patient survival compared 
to individual genes could be preferentially utilized as 
a distinct stratification feature for survival prediction 
analysis [25]. In this study we use the survival prediction 
method called data driven grouping (DDg) method 
(Materials and Methods; [25], [29, 34]) based on Cox 
proportional hazards model and the selection procedure 
using the optimal patient statistical partition models 
(Supplementary file 2: Definitions) applied for every 
SAGP. The most significant patient statistical partition 
model is defined based on the cutoff values for both gene 
expression values, each of which maximizes a separation 
the relatively LR and HR prognostic groups.

We assessed the survival significance of the 
73-SAGPs using our previously developed, 1-D DDg, 2-D 
DDg and a novel 2-D RDDg procedures (Supplementary 
file 3: Figure S5) [34].

The 2-D RDDg procedure was developed to obtain 
less biased and more accurate patients stratification in 
SAGPs compared to 2-D DDg (see Materials and Methods, 
Supplementary file 2: Methods and Analyses). The 2-D 
RDDg is a prognostic method of patient risk of disease 
development stratification and the feature selection based 
on generalization of the 2-D DDg method [34] (Figures 3 
and 4). This method further refines patient partitioning by 
adjusting the rotation of the horizontal and vertical axes 
to yield a more optimal separation of the patient survival 
curves (Supplementary file 2: Methods and Analyses and 
Figure 3) than 2-D DDg. Similar to the 2-D DDg, the 
improved 2-D RDDg allows for the stepwise selection of 
synergistic survival-significant SAGPs.

Screening of the 73-SAGPs using the 2-D RDDg 

Table 1: Groups and cohorts of BC patients used to verify cross-cohort reproducibility of the SAGS 
using the 2-D RDDg coupled with the WVG procedure.
Training 
cohorts(num. of 
patients )

Ref. in the 
current report

Cross-validation cohorts (num. 
of patients )

Ref. in the 
current report Literature ref.

1.Uppsala (249)* Figure 5A
1.Metadata cohort (645): 
combined Oxford& Guys 
Hospital, Harvard 2, Marseille 
and BII-OriGene cohorts.

Figure 5C [27, 71, 73, 88]

2.Stockholm
(159)* Figure 5B 2.Singapore (88) Figure 5D [27]

*: training was performed in both cohorts independently; the best training parameters common for both cohorts 
(gene expression cut-offs, partition designs and rotation angles) for each gene pair have been fixed and applied 
in the testing cohorts.
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in the Uppsala and Stockholm cohorts identified twelve 
synergistic SAGPs (Table 2) that passed our criteria for 
significance (Wald p-value < 0.05; common design of 
2-D partition, the same gene expression cutoff values and 
the same rotation angles) in both cohorts (Supplementary 
file 1: Table S8) and were collectively termed the sense-
antisense gene signature (SAGS). Survival prediction 
analysis (Supplementary file 1: Table S5) and literature 
analysis (Supplementary file 2: Tables S6 and S7) of 
the genes composing the 73-SAGPs and SAGS provide 
evidence of the association of the studied genes with 
cancer and suggest a possibility for their therapeutic 
targeting.

Identification of LR and HR BC patient 
subgroups associated with SAGPs

SAGS was further used to stratify the Uppsala and 
Stockholm BC cohorts using the gene pairs weighted 
voting grouping procedure (WVG, see Methods, Figure 
5A and 5B) [38]. The WVG procedure (Supplementary 
file 2: Methods and Analyses) combines the information 
from statistical partition models for each individual SAGP 

obtained using either the 2-D DDg or the 2-D RDDg into 
more integrated and significant patient partitions. 

We also compared the performance of the 2-D 
RDDg with that of the 2-D DDg in the Stockholm 
cohort. The 2-D RDDg (Supplementary file 3: Figure 
S7) provided more accurate (lower Wald p-value) patient 
stratification for many of the analyzed SAGPs. Therefore, 
the 2-D RDDg has an advantage over the 2-D DDg for 
more accurate prediction of patient subgroups based on 
clinical outcomes.

To ensure the robustness for identification of 
pathological pathways associated with SAGPs, we 
performed SAGS-based stratification in 2 additional BC 
datasets (Metadata and Singapore) (Table 1). To ensure 
the cross-cohort reproducibility of the SAGS stratification, 
optimal stratification parameters of SAGS identified in the 
Uppsala and Stockholm cohorts (design, rotation angle 
and two gene expression cutoffs) were fixed and applied 
in the Metadata and Singapore datasets. Applying the 
WVG procedure after the 2-D RDDg using the SAGS 
allowed us to significantly stratify (WVG Wald p < 0.01) 
patients from the studied cohorts into low-risk (LR) and 
high-risk (HR) subgroups (Figure 5A - 5D: Uppsala 
(p = 2.5E-10), Stockholm (p = 5.2E-11), Metadata (p = 

Figure 3: 2-D RDDg: important components of the survival prediction method. A. Grouping of gene pairs (genes 1 and 2 
with respective cut-offs c1 and c2) and all possible two-group designs (Designs 1-7) used in both the 2-D DDg and 2-D RDDg[29, 34]. Red 
circles mark the sector of high risk of recurrence and black circles mark the sector of low risk of recurrence. B. The advanced model of 
gene-pair grouping using an additional step specific for the 2-D RDDg that involves the iterative rotation of axes X and Y without losing 
their orthogonality. C. Patients partition sub-designs.



Oncotarget42204www.impactjournals.com/oncotarget

3.0E-04) and Singapore (p = 2.6E-05). The AUCs from 
the ROC analysis were significant in all of the studied 
cohorts: Uppsala (p < 0.0001), Stockholm (p < 0.0001), 
Metadata (p < 0.001) and Singapore (p < 0.0001). The 
prognostic accuracy varied from 67.9% (Metadata) to 
86.0% (Stockholm) (Supplementary file 3: Figure S8).

The cross-platform reproducibility of the 
microarray-driven SAGS was assessed using qRT-
PCR (see Methods) in the BII-Origene cohort. We used 
the microfluidic high-throughput Fluidigm technology 
(Fluidigm, San Francisco, CA) for rapid, accurate and 
simultaneous detection of the expression of multiple 

Table 2: Host genes, Affymetrix probe sets and representative RNA transcripts for SAGS. 
#SAGP 
in the 
SAGS

Host gene 
symbol

Affymetrix 
probe set ID Best RNA ID1 DNA 

strand
Host gene description (UCSC genome 
browser)

Chromo-
some band

1
C18orf8 B.232348_at CA395475* - Colon cancer-associated protein Mic1

18q11.2NPC1 A.202679_at NM_000271 - Niemann-Pick disease, type C1 
precursor

2
BORA A.219544_at NM_024808 + Bora, aurora kinase A activator

13q22.1DIS3 A.218362_s_at NM_001128226 - DIS3 mitotic control homolog (S. 
cerevisiae)

3
AIMP2 A.209971_x_at NM_006303 + Aminoacyl tRNA synthetase complex-

interacting multifunctional protein 2 7p22
EIF2AK1 A.217736_s_at NM_014413 - Eukaryotic translation initiation factor 

2-alpha kinase 1

4
SHMT1 A.217304_at Y14488** - Serine hydroxymethyltransferase 1 

(soluble) 17p11.2
SMCR8 B.227304_at NM_144775 + Smith-Magenis syndrome chromosome 

region

5
DOK4 A.209690_s_at NM_018110 - Docking protein 4

16q21POLR2C A.208996_s_at NM_032940 + DNA directed RNA polymerase II 
polypeptide C

6 MRPS18C B.228019_s_at NM_016067 + Mitochondrial ribosomal protein S18C 4q21.23FAM175A B.226521_s_at NM_139076 - Family with sequence similarity 175

7
CTNS A.204925_at NM_001031681 + Cystinosin, lysosomal cystine 

transporter 17p13
TAX1BP3 A.209154_at NM_014604 - Tax1 (human T-cell leukaemia virus type 

I) binding protein 3

8 EME1 B.234464_s_at NM_001166131 + Essential meiotic endonuclease 1 
homolog 1 17q21.33

LRRC59 B.234812_at HY246925*** - Leucine rich repeat containing 59

9 VPRBP B.226481_at BC022792**** - Vpr (HIV-1) binding protein (VPRBP) 3p21.2RBM15B A.202689_at NM_013286 + RNA binding motif protein 15B

10 RNF139 A.209510_at NM_007218 + Ring finger protein 139 8q24.13TATDN1 B.223231_at NM_001146160 - TatD DNase domain containing 1

11 SSB A.201139_s_at NM_003142 + Sjogren syndrome antigen B 2q31.1METTL5 A.221570_s_at NM_014168 - Methyltransferase like 5

12 BIVM B.222761_at NM_001159596 + Basic, immunoglobulin-like variable 
motif 13q33.1

KDELC1 A.219479_at NM_024089 - KDEL (Lys-Asp-Glu-Leu) containing 1

The best RNA IDs for the corresponding Affymetrix probe sets were chosen. The priority selection criteria were defined 
as follows: a) best ID by chromosome coordinates, b) well-characterised RefSeq NM IDs, c) RefSeq mRNA IDs, and d) 
EST (expressed sequence tags) IDs.
 *: paired transcript located on the same strand as the NPC1 gene within the territory of the C18orf8 gene; **: mRNA 
sequence located within the territory of the SHMT1 host gene isolated from the clone, pUS1215 (BC cell line ZR-75-
1, UCSC Genome Browser); ***: EST sequence isolated from the clone, H05D007L23(LIBEST_027875 RIKEN full-
length enriched human thymus cDNA library, UCSC Genome Browser), transcript presumably belongs to the LRRC59 
host gene; ****: mRNA from the cDNA clone, MGC:23092IMAGE:4853730 (NIH_MGC_48 library, UCSC Genome 
Browser). Pairs of Affymetrix probe sets #1, #4 and #8 were included in the SAGS because their best representative pairs 
of transcripts belong to the pairs of host genes with sense-antisense overlaps, and they satisfy the criteria of survival 
significance and synergism in two independent cohorts (Supplementary file 1: Table S8).
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genes. The SAGS stratification in the same 42 BC patients 
using either microarray or qRT-PCR gene expression data 
showed strong concordance with the patient partitioning 
into LR and HR subgroups (Cohen’s Kappa = 0.56, p 
= 0.001) (Figure 5F and 5G). Images of frozen tumor 
tissue sections (OriGene Technologies, predominantly G3 
tumors) were independently verified by a pathologist from 
Singapore (Supplementary file 1: Table S12). Using our 
method, tumors were reclassified into 2 distinct clinical 
subgroups (Figures 5F - 5K).

Taken together, the SAGS patients stratification, 
as an important intermediate step in our study workflow 
(Figure 1), resulted in the identification of reproducible, 
clinically distinct BC patient subgroups associated with 
SAGPs.

Proteasome and precatalytic spliceosome genes 
are significantly over-expressed and over-
represented in HR patient subgroups identified 
by the SAGS

We assumed that SAGS-based patients survival 
stratification reflects some fundamental patho-biological 
properties and pathways of the BC types of the 
relatively poor (HR) and good (LR) disease outcome 
patient subgroups. To test this hypothesis, we identified 
differentially expressed genes (DEGs) between the 
subgroups.

DEGs between HR and LR subgroups, defined 
above by the SAGS, were derived using the EDGE 
software [39] providing the selection of high confidence 
FDR-corrected DEGs. We analyzed data of Uppsala, 

Figure 4: Survival prediction analysis using the 2-D RDDg for two SAGPs from the SAGS. A1., B1., C1. and D1. Uppsala 
cohort (training). A2., B2., C2. and D2. Metadata cohort (testing). A1., A2. and C1., C2. Optimal partitions of expression domains in BC 
patients using expression values for two pairs of Affymetrix probe sets (each pair corresponds to two host genes in a SAGP) (see Materials 
and Methods section). Black solid rotated lines correspond to the horizontal (X) and vertical (Y) lines (blue dashed lines) for optimal 
gene expression cut-offs. Partition parameters (design, gene expression cut-offs and rotation angle) were fixed in the training groups and 
reproduced in the testing groups. B1., B2. and D1., D2. Differences between Kaplan-Meier survival curves for the LR and HR subgroups 
obtained after the patients partitioning within each studied cohort. X axis: disease-free survival (DFS), years; Y axis: survival probability. 
Black circles and survival curves indicate the LR prognosis group, and red circles indicate the HR prognosis group. Parts of the panel with 
the same letter correspond to the same SAGP. B3. and D3. The same two SAGPs visualised in the UCSC Genome Browser[87]. Red arrows 
represent the sense gene partners, green arrows represent the antisense gene partners and red circles represent the regions of SA overlap in 
the SAGPs. The enriched ChIP-seq regions for Pol2 of high read density in the ChIP-seq experiment relative to total input chromatin control 
reads (according to ENCODE project, blue arrows) indicate that the gene promoters in the SAGPs are active in MCF-7 breast cancer cells.
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Stockholm and Metadata cohorts and selected several 
thousand DEGs in each cohort. 1381 genes were common 
for these three data sets (t-test FDR corrected Q-value 
< 0.01, Supplementary file 1: Table S9A), suggesting a 
reproducibility of these DEGs across the patient cohorts.

Noteworthy, this DEG set was highly-enriched with 
201 breast tumor aggressiveness grading (TAG) signature 
genes(Suppl. data in [27]) (118 out of the 201 TAG genes; 
hypergeometric test, p = 44.3E-82, Table S9A), which 
are mostly involved in the cell cycle, mitosis and cell 
proliferation [27]. TAG is the microarray-based molecular 

analogue of the histologic grading classifier of BC, 
separating the histologic grade 2 (G2) BCs in the histologic 
grade 1-like (G1-like) and histologic grade 3-like (G3-
like) tumor genetic sub-classes. This classifier proposes 
two major genetically-defined classes of BC defined as 
low-aggressive (G1+G1-like) and high-aggressive (G3-
like+G3) tumor classes with significant difference in 
clinical outcomes. We also found that the SAGS-stratified 
LR and HR BC subgroups are significantly correlated with 
the patient subgroups obtained by the TAG signature [27].

The 71% (978/1381) of DEGs were up-regulated in 

Figure 5: Kaplan-Meier survival prediction analysis in BC patients using SAGS. Survival differences between LR and HR 
subgroups of BC patients after applying the full SAGS in each BC patient group. X axis: DFS, years; Y axis: survival probability. A. and B. 
The Uppsala and Stockholm cohorts, respectively; C. and D. Cross-cohort validation in the Metadata and Singapore cohorts, respectively; 
E. and F. qRT-PCR reproducibility of the expression microarray-derived SAGS. Forty-two BC patients from the OriGene cohort were 
stratified using only nine SAGPs from the SAGS and the U133-Plus microarray platform for gene expression detection E.; the same 42 BC 
patients from the OriGene cohort were stratified using the same nine SAGPs (eighteen genes) and utilising the strand-specific qRT-PCR F.. 
The red circles and the black circles indicate the survival curve locations of patients whose tumor tissue sections (hematoxylin-eosin, 20x) 
are shown in (G - J); tissue sections shown in G. and I. (HR subgroups) belong to patients with G3 tumors; tumor tissue sections shown in 
H. and J. (LR subgroups) also belong to patients with G3 tumors (Supplementary Table S12).
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the HR patient subgroup. Using DAVID bioinformatics 
software[40], we identified many biologically distinct gene 
subsets, associated with cancer and its aggressiveness. 
These gene subsets included the genes enriched under 
the terms “Proteasome” (p = 5.5Ee-17), “Cell cycle” (p 
= 3.3e-14), “DNA replication” (p = 2.1e-10) (KEGG_
PATHWAY), “DNA repair” (p = 1.09E-08) (GOTERM_
BP_FAT), “Spliceosome” (8.5e-05), “Pyrimidine 
metabolism” (p = 1.8E-03), “t-RNA biosynthesis” 
(p = 7.7E-03) (KEGG_PATHWAY). 188 genes out 
of the analyzed 978 genes may encode the proteins 
containing experimentally defined mutagenesis sites (p 
= 2.4E-13, “mutagenesis site”, UP_SEQ _FEATURE) 
(Supplementary file 1: Table S9B). Importantly, among 
the 403 DEGs significantly down-regulated in the HR 
subgroups, the gene terms associated with cell locomotion, 
cell adhesion and cell migration were highly enriched 
(Supplementary file 1: Table S9B).

Further analyses of 27 proteasome genes identified 
under the DAVID term ”hsa03050: Proteasome” 
revealed that they are evenly representing both the 
20S core particle and the 19S regulatory particle of the 
proteasome (Figure 6B). The 26 genes, listed under the 
term “hsa03040: Spliceosome” (KEGG_ PATHWAY, 

Table S9B), predominantly belong to the U2-, U4/U6-
snRNPs, including one gene of the PRP19 complex 
(Figure 6B). The U1-, U2-snRNPs, the PRP19 complex 
and the U4/U5/U6 tri-snRNPs predominantly participate 
in the same specific stage of the spliceosome cycle, termed 
the precatalytic spliceosome, or complex B. This stage 
of the spliceosome cycle is followed by the assembly of 
the catalytic spliceosome, or active complex C, in which 
the chemical steps of splicing occur. The U4/U6 snRNP 
is absent in complex C [41]. Interestingly, a literature 
analysis of the spliceosomal DEGs suggests their potential 
as highly promising anti-spliceosome drug targets 
(Supplementary file 2: Methods and Analyses).

Thus, our meta-analysis using the 73-SAGPs 
and the SAGS identified specific, HR prognostic BC 
patient subgroups, whose tumors displayed distinct GO 
characteristics. The profile of DEGs down-regulated in the 
HR subgroups displayed enrichment in FA/GO terms for 
cell locomotion, cell adhesion and cell migration.

The profile of DEGs over-expressed in the relatively 
HR subgroups was significantly enriched for genes 
involved in the cell cycle, DNA damage, DNA repair 
and certain deregulated genes of the proteasome and 
spliceosome.

Figure 6: A. Biological pathways (KEGG) characterising genes over-expressed in the HR subgroups identified by the SAGS. X-axis: 
-log10 Bonferroni corrected p-value (DAVID software). B. Compositions of proteasomal and spliceosomal genes identified by Gene 
Ontology analysis. *: snRNP type was determined according to[41]. ND - not determined.
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GABPA provides a mechanistic link between the 
73-SAGPs and certain cell cycle, proteasomal and 
spliceosomal genes

Next, we studied whether the 73-SAGPs, the 
proteasomal and spliceosomal genes could be driven by 
any of the regulatory factors in BC cells. We analyzed 
the proximal promoters (-450/+50 bp) for the enrichment 
of transcription factor binding motifs (TFBMs) using 
the Jaspar database from PSCAN software [42] in the 
gene sets listed below. As negative controls, we used 
3 gene sets: i) the set of 102 genes involved in PNGs 
(Supplementary file 3: Figures S3 and S4, Supplementary 
file 1:Table S3C), i.e., the pairs of co-localized and 
robustly correlated genes in the same BC subgroups as 
the 73-SAGPs but without SA overlaps; ii) the set of 
146 NGNs (Table S3A) and iii) 150 top differentially 
expressed, down-regulated genes in HR subgroups after 
the SAGS stratification (DEDR genes set) (Supplementary 
file 1: Table S9C, Methods and Analyses). The “KEGG 
genes” set (148 genes) included differentially expressed, 
significantly upregulated genes (Q-value < 0.01) in HR 
subgroups classified by the SAGS in the three studied 
cohorts and enriched under the DAVID category, “KEGG_
PATHWAY” (Supplementary file 1: Table S9C).

The gene enrichment analysis revealed the strongest 
significant enrichments of TFBMs for ETS-domain TFs 
(GABPA, ELK1 and ELK4: Bonferroni corrected p = 
1.4E-14, p = 9.2E-13 and 6.4E-11, respectively) in the 
promoters of the 73-SAGPs. Less prominent enrichment 
of TFBMs for GABPA and ELK4 was observed in 
the NGNs set (p = 9.5E-06 and p = 2.4E-04), and no 
enrichment was observed in the PNG set. The motifs for 
GABPA were also overrepresented in the KEGG genes set 
(p < 0.001), but not in the DEDR gene set. In contrast, 
ERα, which is involved in BC cells proliferation and the 
cell cycle in MCF-7 cells via the cyclin D1-CDK4/Rb/
E2F1 pathway [43], showed no TFBMs enrichment in the 
proximal promoters of the studied gene sets.

Because the TFBM for GABPA (Figure 8A) showed 
the strongest enrichment in the 73-SAGPs, we further 
tested whether GABPA can preferentially bind to the 
proximal promoters (-450/+50 bp) in the 73-SAGPs and 
other gene sets. We observed the enrichment of GABPA 
ChIP-seq binding regions (CBRs) in the MCF-7 BC 
cell line for promoters of the same gene sets (compared 
to PNGs and NGNs, Fisher’s exact test, Figure 8B). 
Significant enrichment of GABPA CBRs in 73-SAGPs 
was observed regardless of potential sharing bidirectional 
promoters in divergent SAGPs (“73-SAGPs_unique” vs. 
“73-SAGPs_all”). This fact suggested certain regulatory 

Figure 7: Possible mechanistic models for co-regulation of gene partners in 73-SAGPs. A. bidirectional transcription via the 
same TF can lead to positive correlations between gene partners in divergent SAGPs; B. transcriptional coordination of gene partners in 
convergent SAGPs via the same TF.
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advantages of GABPA binding to proximal promoters of 
73-SAGPs compared with the co-localised and correlated 
pairs of genes without SA overlaps.

Similarly, significant enrichment of GABPA CBRs 
in the promoters of the KEGG genes (including certain 
cell cycle, spliceosomal and proteasomal genes) was 
detected; however, this was not true for ERα CBRs 
(Figure 8C). Additionally, dramatically lower frequencies 
of GABPA CBRs in the DEDR genes supported a 
regulatory role of this TF in the 73-SAGPs and in the 

KEGG genes set (Figure 8B). Fourteen individual genes 
and five distinct SAGPs from the SAGS have overlaps of 
GABPA CBRs with their proximal promoters in MCF-7 
cells (Supplementary file 1: Table S13).

Knockdown experiments of GABPA in MCF-7 BC 
cells in eleven randomly selected convergent 73-SAGPs 
(twenty two genes) with GABPA CBRs in their proximal 
promoters (Supplementary file 1: Table S13) revealed 
down-regulation of both gene partners in 9 cases. We 
also observed downregulation in 5 out of 6 spliceosomal 

Figure 8: GABPA CBRs in the vicinity of proximal promoters of 73-SAGPs and other gene sets. A. TFBM for GABPA 
identified using PSCAN software[42]. B. and C. Frequencies of CBRs for GABPA and ERα in MCF-7 cells overlapping with proximal 
promoters in various gene sets; X-axis: various gene sets, Y-axis: the frequency of the number of CBRs. Differences in the frequencies of 
the occurrence of CBRs overlapping the proximal promoters were assessed using Fisher’s exact test. “73-SAGPs_unique”: the frequency 
of only unique overlaps of proximal promoters with CBRs; “73-SAGPs_all”: for divergent 73-SAGPs within the set, the occurrence of 
the same unique overlapping CBRs in bidirectional promoters was multiplied by 2 because the TF GABPA can regulate gene expression 
in the opposite directions[53]; “73-SAGPs_conv”: the subset of convergent 73-SAGPs. “DEG_KEGG_upreg.”: differentially expressed, 
significantly up-regulated genes (Q-value < 0.01) in the HR subgroups of the three studied cohorts classified by the SAGS; only the 
genes enriched under the category “KEGG_PATHWAY”(DAVID, Bonferroni p-value < 0.05) were analysed; “DEG_top_downreg.”: the 
top differentially expressed and significantly down-regulated genes (DEDR gene set) (Q-value < 0.01) in the HR subgroups of the three 
studied cohorts classified by the SAGS. D. CBRs for Pol2 and GABPA are co-localised in the proximal promoters of both gene partners 
in the convergent SAGP DIS3/BORA (MCF-7 cells). We used metadata tracks for Pol2 and GABPA from the UCSC Genomic Browser 
(hg19 assembly)[87]. GABPA TFBMs located within GABPA CBRs were identified using the TF ChIP-seq track from ENCODE with 
Factorbook motifs (Release 4, February 2014). All peaks highlighted in red indicate the enriched regions of high read density in the ChIP-
seq experiment relative to total input chromatin control reads according to the ENCODE project.
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and in 3 out of 6 proteasomal genes with GABPA CBR/
proximal promoter overlaps (Supplementary file 3: Figure 
S10). This result confirmed that GABPA can be a direct 
transcriptional co-regulator of its predicted gene-effectors.

DISCUSSION

This study represents one of a few studies [11-14, 
25] aimed at the systematic investigation of the expression 
patterns of SAGPs in the context of cancer heterogeneity 
and pathological pathways for better understanding their 
impact in tumorigenesis and tumor progression, and for 
optimized pharmaceutical strategies development.

We started with the correlation analysis of SAGPs 
within the class of histologic G3 breast tumors, because 
these tumors are highly aggressive and commonly develop 
drug resistance and a spread of distant metastases. Within 
the G3 tumor class, the basal-like tumors comprise 
the most challenging subgroup with respect to post-
surgery therapy. To test whether SAGPs can be used as 
discriminative biomarkers of G3 basal-like tumors, we 
combined correlation and DEG analyses and identified 
SAGPs discriminating the G3 basal-like tumors from the 
rest of G3 tumors, which we termed “non-basal-like”. 
From 21 subtype-specific SAGPs positively correlated in 
the G3 basal-like BC subgroup, we selected 3 concordantly 

upregulated SAGPs. The gene pairs ABI1/PDSS1, DIS3/
BORA and WDR77/ATP5F1 and their products could 
be considered as promising up-regulated discriminative 
biomarkers of G3 basal-like tumors, although further 
experimental and clinical validation will be needed.

Next, we investigated whether the SAGPs with 
positively correlated gene partners within G3 breast 
tumors (73-SAGPs) are associated with tumor initiation 
and/or aggressiveness. Further analyses revealed that the 
73-SAGPs displayed significantly different correlation 
profiles in BC samples compared to normal breast tissue 
samples (Figure 2), indicating that they are relevant to 
tumor initiation and malignancy. An overall systematic 
positive shift of the correlation coefficient values 
calculated between the gene partners in the 73-SAGPs 
was observed in more aggressive tumors (G3) compared 
to less aggressive tumors (G1). These findings suggest 
the relevance of 73-SAGPs to tumor aggressiveness 
and the disease clinical outcome. Several previous 
studies suggested that the expression patterns of SAGPs 
demonstrate cancer type- and subtype-specific expression 
patterns and might be important for further clinical and 
pharmaceutical implementations [5, 11-14, 20, 21].

Survival analysis and pathologically relevant gene 
signatures are useful for the characterization of deregulated 
oncogenic pathways and identification of potential drug 

Figure 9: Pathological “core” gene set of GABPA gene network in BC. Stacked pairs of genes indicate 73-SAGP gene partners 
which either share common GABPA CBR in their bidirectional promoter (divergent pairs) or have overlapping GABPA CBRs with proximal 
promoters of both gene partners (convergent pairs) .
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targets. Because the identified 73 BC-relevant SAGPs 
could be involved in tumor initiation and aggressiveness, 
we studied their association with BC patient survival and 
applied feature selection methods based on the data-driven 
grouping prognosis strategy [29, 34, 37].

We also developed a novel 2-D RDDg prognostic 
method adapted for the refined survival analysis of 
correlated gene pairs (including the 73-SAGPs). Our 
screening workflow combining the 1-D DDg, 2-D 
DDg, 2-D RDDg and WVG procedures [29] (see 
Methods, Supplementary file 3:Figure S5) resulted in 
the identification of the pathologically relevant SAGS. 
Twelve of the twenty-four genes comprising the SAGS 
(and used for construction of our SAGS) are reportedly 
associated with various cancers. Seven genes (BORA, 
DIS3, POLR2C, FAM175A, EME1, RNF139 and SHMT1) 
are considered potential biomarkers and/or potential 
targets for radiotherapy and chemotherapy, as well as 
cancer susceptibility, cancer progression and metastasis-
related genes (Supplementary file 2:Table S7). SAGS was 
applied and tested using large cancer microarray datasets 
that encompassed eight independent BC cohorts (1161 
tumors in total). SAGS significantly and reproducibly 
stratified all breast tumors into LR and HR subgroups.

Next, our DEG and FA/GO comparative 
analyses between LR and HR subgroups derived by 
SAGS, revealed several crucial tumorigenic processes 
and molecular functions associated with 73-SAGPs 

expression that might be useful for future discovery of 
novel prognostic biomarkers and therapeutic targets. In 
particular, proteasome- and precatalytic spliceosome-
specific genes were enriched in the HR subgroups of 
the studied BC cohorts. Several reports indicate that 
antisense transcription and alternative splicing are 
tightly and mechanistically coordinated processes [2, 
22]. Alternatively, PRP19 complex, a key element 
of precatalytic spliceosome [41], is also known as 
an important regulator of proteasome degradation 
[44]. Therefore, here we found functional links of SA 
transcription with splicing and proteasome degradation 
which might reflect the important inter-pathway 
connections regulating the BC progression.

Although predominantly positive correlation profiles 
of SA transcripts/gene pairs in cancers were previously 
reported [5, 22], the exact molecular mechanisms 
underlying this phenomenon remain unclear. Abnormal 
positive correlations among many genes in cancers 
could be due to their co-localization within the same 
DNA amplicons and equivalent DNA CNV changes 
[31]. Additionally, the specific molecular mechanisms 
coordinating the expression of SA transcripts described 
in the literature include i) the use of shared regulatory 
regions for common TFs [45]; ii) chromatin activation in 
SA overlapping regions, such as antisense-RNA-mediated 
DNA demethylation [46]; iii) stabilization of a sense 
transcript by its antisense transcript [7, 8]; iv) selective 

Figure 10: Meta-analysis of BC-relevant SAGPs and potential applications.
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alternative pre-mRNA maturation [22, 47]. In this report 
we investigated two first mechanisms in more detail.

Because DNA CNV might be not a substantial 
coregulatory factor of the 73-SAGPs (see Results), we 
further investigated whether certain TFs are the potential 
regulators of the 73-SAGPs. The proximal promoters of 
the 73-SAGPs were significantly enriched in TFBMs and 
CBRs for GABPA (Figure 8) compared to the negative 
control sets of paired genes without sense-antisense 
overlaps (NGNs and PNGs). Knockdown of GABPA in 
MCF-7 cells confirmed its direct regulatory role of the 
73-SAGPs in BC cells (Supplementary file 3: Figure S10).

GABP is necessary and sufficient for quiescent cells 
to re-enter the S phase of the cell cycle, independent of 
D-type cyclins, CDKs and E2Fs [48]. Several pieces of 
evidence support the idea that GABPA is an important gene 
in the regulation of lineage-restricted genes [49] and stem 
cell renewal and differentiation [50, 51].

Here we identified the specific GABPA-dependent 
gene network, which includes not only divergent (head-
to-head configuration) but also convergent 73-SAGPs 
(tail-to-tail configuration) [5] (Figure 8B). Although we 
focused on GABPA, several other ETS-domain factors 
(e.g., PEA3, ERM, ETS-1, ETS-2 and ESE-1[52]) are not 
excluded as alternative regulators for many genes of the 
network during BC progression.

In context of the GABPA gene network, we can 
suggest two models of transcriptional coordination of 
gene partners in the BC-relevant SAGPs. The first model 
incorporates the known mechanism of sharing common 
TF in bidirectional promoters of divergent SAGPs 
[19] because it was shown that GABPA can regulate 
bidirectional transcription [53] (Figure 7A). The second 
model implies parallel coordination of the expression 
of SA transcripts in a convergent SAGP via the same 
TF (Figure 7B). The latter model is supported by: i) 
significant enrichment of the GABPA CBRs in proximal 
promoters of convergent SAGPs from the 73-SAGPs set 
(Figure 8) and ii) the gene expression suppression effect 
in both gene partners of convergent SAGPs after siRNA 
GABPA knockdown in MCF-7 BC cells (Supplementary 
file 3: Figure S10).

Stratification of BC patients using the SAGS 
followed by DEG and FA/GO analyses allowed us to 
extend the GABPA-dependent gene transcriptional 
network. Similarly, the proximal promoters of DEGs 
up-regulated in HR patient subgroups (identified by the 
SAGS, the “KEGG genes”) were strongly enriched by 
TFBMs and CBRs for GABPA. However, the full GABPA 
gene network might be much wider, as indicated by the 
higher frequencies of co-localized CBRs for GABPA in 
NGNs/PNGs than in the total genome gene set (Figure 
8B). Therefore, the 73-SAGPs combined with the KEGG 
genes could be the representative “core” gene set of the 
GABPA gene network (Figure 9). The identified GABPA 
CBRs overlaps with the proximal promoters of SKP2 and 

AURKA are in concordance with literature [54, 55].
We speculate that the 73-SAGPs within the GABPA 

gene network have a specific functional impact in BC 
progression and clinical outcome. Firstly, GABPA-
dependent genes are involved in the regulation of cell 
entrance into the S phase of the cell cycle, independent of 
E2F1 [48]. Secondly, tight coordination and rewiring of 
the expression between their gene partners via the other 
SA related mechanisms [4]) could provide additional 
advantages for BC cells.

The discovery of specific breast tumor subgroups 
using SAGS and the GABPA gene network was possible 
due to our original, biological knowledge-driven, genomic 
architecture-centered meta-analysis approach (Figure 
1). We highlight the importance of the preliminary pre-
selection of SAGPs using correlation analysis, followed 
by the application of the 2-D RDDg developed for optimal 
survival analysis of SAGPs (Supplementary file 3: Figure 
S7). In the framework of this study, we assumed that genes 
that are evolutionary organised into SAGPs could acquire 
additional structural features and functions, providing 
certain advantages not only for the development of normal 
tissues but also in the tumorigenic process for certain 
subsets of BC tumors and can be regulated via distinct 
molecular factors/mechanisms.

Despite the extreme complexity of the human 
genome, the selection of appropriate negative controls 
(NGNs and PNGs, Supplementary file 2: Methods and 
Analyses) for the studied object (BC-relevant SAGPs) 
made it possible to identify and partially characterize the 
phenomena of the BC-relevant SAGPs as well as their 
potential mechanistic regulators.

For the first time, we found that cell cycle, 
proteasomal and spliceosomal gene sub-networks can be 
co-activated via GABPA in the same high risk BC patients 
(Figure 9), which might be useful for future clinical studies 
and practice in BC. Bortezomib, as an anti-proteasome 
agent (targeting the 20S-proteasome subunit) is an FDA-
approved drug for multiple myeloma and is actively 
involved in several phase I/II BC clinical trials, including 
in combination with standard chemo- and endocrine 
therapies [56-58]. Anti-spliceosome drugs, as a novel 
treatment for cancer have been actively discussed in the 
literature (Supplementary file 2: Methods and Analyses), 
although they are currently just in the pre-clinical stage 
[59]. Recently, a novel drug targeting the 19S-proteasome 
subunit, b-AP15, was identified and successfully tested in 
a pre-clinical study against several cancers, including BC 
[60]. b-AP15-dependent targeting of proteasome [61] or 
siRNA-mediated targeting of spliceosome components 
[62] resulted in the same specific cellular phenotype: 
autophagy and reduction of viability in highly malignant 
BC cells. Hence, in the context of future clinical trials 
and the GABPA gene network (Figure 9), it is possible to 
suggest some alternative options for clinical treatments to 
improve BC patient outcomes: i) traditional chemotherapy 
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combined with anti-spliceosome treatment and ii) anti-
proteasome therapy combined with anti-spliceosome 
treatment.

The identified set of concordantly co-regulated 
73-SAGPs represents a potential gene pool for further 
studies of the regulatory mechanisms of known or 
promising novel gene candidates involved in BC 
tumorigenesis and tumor progression.

Figure 8D shows an example of the convergent pair 
DIS3/BORA as one of the proposed 73-SAGP candidates 
for a future study of G3 basal-like breast cancers and 
cell cycle regulation in BC. DIS3, encoding the exosome 
endoribonuclease and 3’-5’ exoribonuclease, is a highly 
conserved gene required for mitotic progression and is 
involved in several cancers [63]. Silencing of DIS3 alone 
affects the viability, migration and invasion of cancer cells 
[63]. AURKA and PLK1 are direct interactors of BORA 
at the G2/M transition in the cell cycle. The search of anti-
cancer drugs targeting these genes to modulate mitosis 
is actively ongoing [64], but the results are controversial 
[65]. Firstly, the DIS3/BORA SAGP is significant and 
synergistic in terms of patients survival in two independent 
BC patients cohorts (Figure 4 and Supplementary file 1: 
Table S8); both gene partners are significantly correlated 
and activated in basal-like breast tumors (Supplementary 
file 3: Figure S1C and Supplementary file 3: Figure S1C). 
Secondly, GABPA is their common regulator in BC 
cells (Figure 8D and Supplementary file 3: Figure S10). 
Thirdly, in highly malignant HeLa cells, the cell cycle 
time-course expression of both genes is significantly 
associated with cell cycle periodicity (p(per) = 0.009 and 
p(per) = 5.1E-15 for DIS3 and BORA, respectively) and is 
mutually coordinated in cell cycle phases (Supplementary 
file 3:Figure S9) [66].

Another candidate to study translation and 
oncogenesis is the convergent AIMP2/EIF2AK1 SAGP 
(Table 2). AIMP2(p38) is a crucial component of the 
macromolecular aminoacyl-tRNA synthetase. The full size 
AIMP2 isoform has tumor suppressive properties based 
on the protective interaction with p53. In contrast, the 
alternatively spliced isoform AIMP2-DX2 is oncogenic 
and compromises the pro-apoptotic activity of normal 
AIMP2 through competitive binding to p53 [67]. Fusion 
gene EIF2AK1-ATR is oncogenic and overexpressed in 
androgen-independent prostate cancer cells[68]. EIF2AK1, 
encoding the translation elongation factor kinase, and 
AIMP2 are involved in regulation of translation. Both 
genes were positively correlated in basal-like G3 tumors 
in 3 independent BC cohorts (Supplementary file 1: Table 
S1B) and are involved in the pathological GABPA gene 
network. Several other deregulated components of the 
same aminoacyl-tRNA synthetase complex were identified 
in the GABPA gene network (Figure 9).

The 73-SAGPs might also be investigated in 
context of locus-specific antisense modulation of known 
or novel oncogenes [20, 21]. In this scenario, complete 

direct blocking of a targeted abnormally activated sense 
gene (e.g. oncogene) can lead to undesirable side effects; 
however, experimental perturbation of its concordantly co-
activated antisense partner could optimize the expression 
level of its deregulated oncogenic sense partner. This 
“soft modulation” model was [20] based on the previous 
detailed experimental studies of individual SAGPs, such 
as TP53/WRAP53 [8] in various cancers and BACE1/
BACE1-AS in Alzheimer disease [7].

The meta-analysis approach and the proposed data-
driven model of the abnormally activated GABPA gene 
network in BC could be used in potential applications 
(Figure 10). Our model proposes: i) potential drug targets 
for anti-proteasome and anti-spliceosome therapy within 
the same GABPA gene network, in addition to traditional 
adjuvant chemo- and hormonal treatment and ii) the 
73-SAGPs representing a pool of co-expressed paired 
genes could be used for in-depth studies of fine regulatory 
mechanisms of tumorigenesis and tumor progression in 
BC (Supplementary file 1:Table S13 and Figure 9). The 
latter option also looks promising in case of a progress of 
RNA-based drugs development and delivery in the nearest 
future [69, 70].

Thus, we used our integrative approach to identify 
novel aspects of the coordinated pathological gene 
networks in cancers. This study provides novel promising 
hereditary linked gene pairs associated with BC pathology 
as well as new facts and knowledge for further in-depth 
mechanistic studies. Our results suggest that SAGPs as  
highly-specific and important components of genomic 
organization in normal cells and pathological conditions 
can be useful for the search for alternative therapeutic 
targets.

MATERIALS AND METHODS

Breast tumors, normal breast tissue samples and 
microarray datasets

The collection of published datasets and our 
BC dataset used in this study are summarised in 
Supplementary file 2: Table S11.

The first dataset consisted of samples from the 
Uppsala cohort, which represented BC patients resected 
in Uppsala County, and the Stockholm cohort, which was 
derived from BC patients operated on at the Karolinska 
Hospital [27]. The second dataset consisted of samples 
from 251 BC patients from France collected at the Institute 
Paoli-Calmettes and Hospital Nord (Marseille)[71]. The 
Harvard cohorts 1 and 2 datasets included primary breast 
tumors obtained as anonymous samples from the NCI-
Harvard Breast SPORE blood and tissue repository [72], 
[73]. The dataset of BC patients sample from the John 
Radcliffe Hospital, Oxford, UK and Guy’s Hospital, UK, 
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were selected from a multicentre study [74].
To obtain the additional training and testing groups 

used to verify the SAGS, we combined the microarray 
expression datasets from 5 independent BC cohorts 
(Metadata: combined the Oxford, the Guys hospital 
(GSE6532, GSE9195), the Harvard 2 (GSE19615), the 
Marseille (GSE21653) and the BII-OriGene cohorts 
(GSE61304), (Table 1 and Supplementary file1:Table 
S12) with a consequent batch effect correction using 
the ComBat software [75]. The quality of the combined 
datasets was monitored using the arrayQualityMetrics 
software [76].

The normal breast tissue microarray data included 
normal epithelium tissue samples resected from benign 
non-malignant lesions of women with a non-elevated risk 
of BC undergoing reduction mammoplasty (fist dataset  
[77], RM, n = 18). The second [77] (HN, n = 18) and third 
[78] (AH, n = 62) datasets consisted of histologically 
normal “tumor-adjacent” (i.e., located from 1cm to 2 
cm from the tumor) epithelium samples obtained from 
groups of women undergoing BC surgery who had not 
undergone chemotherapy or radiation treatment before 
tissue acquisition. The first and second datasets were age-
matched. For these datasets, the 53 SAGPs out of the total 
set of 73-SAGPs, in which both members of a gene pair 
were supported by at least 1 Affymetrix U133A probe 
sets, were used for correlation analysis; all breast tissue 
samples were obtained by laser-capture micro-dissection 
[77]. In the third dataset, data on both U133A and U133B 
microarrays were available, so all 73-SAGPs and 73 pairs 
of NGNs were used for the correlation analysis.

Survival prediction analysis

The Cox hazards model was used to parameterize 
and compute the differences between the Kaplan-Meier 
survival curves. P-values of the Wald test statistics were 
used to evaluate the statistical differences between the 
survival curves.

The 1-D DDg approach was used for the selection 
of individual genes where expression threshold (cut-off) 
value could be used to group the patients into distinct 
disease development risks according to the survival time-
to-event data [29]. Briefly, the patients were sorted-out 
according to the expression values of a tested gene and 
the gene expression values were fitted to survival times 
and corresponding events (e.g., disease free survival, DFS) 
using the Cox proportional hazards model; the optimal 
gene expression cut-off value for each gene was estimated 
by goodness-of-fit analysis on a one-dimensional linear 
scale, maximising the separation between the sorted-out 
patients into low- and high-risk subgroups, represented by 
Kaplan-Meier survival curves [29].

Such survival prognostic methods utilise expression 
data for individual genes as the features for survival 
prognosis [34, 79]. In the cases of gene pairs, the method 

may be improved and/or specified by analysing gene pairs. 
Specialised statistical and computational methods are 
required to reliably identify gene pairs (e.g., the predictive 
interaction analysis (PIA) [79, 80] or the 2-dimensional 
data-driven grouping procedure (2-D DDg) [29, 34] ). Due 
to the sample size, cohort variation and the computerized 
implementation of a mathematical model, the selection of 
unbiased and high-confidence gene pairs was not a trivial 
task. The 2-D DDg method [29, 34], which is based on a 
non-linear, unsupervised prognostic and feature selection 
model, can accurately classify the most common patterns 
(designs) of gene relationships in pairs and explicitly 
include interaction (synergy) effects in its statistical 
procedure.

In the current study, gene pairs-based survival 
prediction analysis was performed using either the 
previously developed 2-D DDg [29, 34] and/or its 
substantially improved extension, the 2-D RDDg 
(Figure 3). In the 2-D DDg, in contrast to the 1-D DDg, 
dichotomization of patients into distinct risk subgroups 
was performed for each gene pair on a 2- dimensional 
plane with horizontal and vertical axes corresponding to 
the fixed gene expression value cut-offs. Our 2-D DDg 
method is also distinct from the known PIA approach [79] 
because i) it is described by a 2- dimensional (for two 
interacting genes), not a linear, statistical model (when just 
one value for a two-gene ratio or a two-gene product is 
used); ii) the 2-D statistical model is more informative than 
the gene ratio-based model for patients survival partition 
because it uses the same 2 genes, 5 designs and 10 sub-
designs (i.e., 10 prognostic scenarios, Supplementary file 
3:Figure S6) in contrast to only 2 possible scenarios for 
the same gene pair in the ratio-based model.

Because both genes of an SAGP are often 
significantly correlated between each other (Figures 2 
and 4), the bi-variate distributions of their gene-partner 
expression values could deviate from a random “shotgun” 
shape (Figure 4A1 and 4A2). In such cases, the 2-D DDg 
model coordinates might be not optimal to reveal the 
best survival patient partition in the 2-D gene expression 
space. In the 2-D RDDg analysis (Figure 1), in contrast 
to the 2-D DDg (Supplementary file 3: Figure S6), the 
horizontal and vertical axes can be rotated at a varied 
angle without losing their orthogonality. The 2D-RDDg 
utilizes 7 designs, 14 sub-designs and 16 rotation angles. 
The rotation property allows the 2D-RDDg to be more 
flexible and to refine more accurate patient partitions than 
can be achieved using the 2-D DDg.

The WVG procedure was used to combine the 
survival information for multiple gene pairs into an 
essentially improved integrated grouping (Supplementary 
file 2: Methods and Analyses). Individual classification 
patterns for selected survival significant genes or gene 
pairs are organised in a matrix in a fixed order. Voting 
procedure in the matrix is performed step-by-step for 
each gene pair in descending order; for each individual 
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patient, the predominant number of votes for each class 
(”0” or ”1”) from all the genes/gene pairs in a given list is 
used for the final integrated assignment of the patient to a 
corresponding class (the low-risk “0” or the high-risk “1” 
classes).

To stratify patients in diverse BC cohorts, we used 
the refined 2-D RDDg procedure due to its higher accuracy 
(Supplementary file 3: Figure S7, Supplementary file 2: 
Methods and Analyses). However, the 2-D DDg procedure 
is much faster to execute and, therefore, it could be useful 
for massive screening purposes.

Cross-cohort and cross-platform reproducibility 
of SAGS

For cross-cohort validation of the SAGS (Table 
2), patient stratification was considered significant if 
two identified novel patients subgroups (high-risk, HR 
and low-risk, LR) showed differences in the WVG Wald 
test with p-value < 0.01. Patient stratification in the 
training data set was considered valid if the significantly 
different novel survival subgroups were identified 
in a corresponding independent testing data set. The 
BC cohorts used in the training and testing modes are 
summarised in Table 1.

For qRT-PCR validation of the SAGS, we designed 
a strand-specific qRT-PCR protocol for 9 of the 12 
SAGPs from SAGS (eighteen genes, Supplementary 
file 2: Table S10A) to exclude a potentially undesirable 
gene-expression signal from an opposite DNA strand 
within the SA overlap region. Forty-two breast tumors 
(RNA samples; OriGene Technologies, Rockville, MD) 
were stratified in parallel using either the U133Plus 2.0 
microarray (Figure 5E) or qRT-PCR expression data 
(Figure 5F) for the same genes and patients. The 2-D 
RDDg and WVG procedures from the training mode were 
independently applied to both data sets.

Microarray analysis of the BII-OriGene cohort

Total RNA, histopathological data, tumor sample 
images and clinical data from 58 BC patients were 
obtained from OriGene Technologies (Rockville, MD). 
Microarray analysis was performed according to the 
standard Affymetrix chip protocol (Supplementary file 2: 
Methods and Analyses).

Strand-specific quantitative RT-PCR

cDNA was synthesised from the total RNA (250 
ng) of 42 BC patient samples purchased from OriGene 
Technologies (Rockville, MD) using a gene-specific 
pool of reverse primers specific for the sense/anti-sense 
transcript regions. Oligoprimers were designed to fall 

within specific regions of the corresponding Affymetrix 
probe sets. The SA cDNAs of 42 patient samples were 
pre-amplified (Life Technologies, Taqman PreAmp 
Master Mix kit) using a gene-specific pool of SA 
forward and reverse primers. TATA box binding protein 
(TBP) was used as endogenous control. Taqman probes 
were designed for all the sense and anti-sense genes, as 
well as the endogenous controls. The 96 x 96 Dynamic 
Array IFC was prepared according to the manufacturer’s 
instructions (Fluidigm, San Francisco, CA), as described 
previously[81]. Quantitative PCR was performed using 
a gene assay (1st BASE, Singapore), according to the 
protocol of the Biomark System (Fluidigm, San Francisco, 
CA). Reaction conditions were as follows: 50°C for 2 min, 
70°C for 30 min, 25°C for 10 min, 50°C for 2 min and 
95°C for 10 min, followed by 40 cycles of 95°C for 15 
sec and 60°C for 60 sec. Ct values were extracted, and the 
data were processed using detector thresholds individually 
set for each gene and a linear baseline correction using 
the Biomark Real-time PCR Analysis software (v.3.0.4) 
(Fluidigm, San Francisco, CA). The genes were relatively 
quantified using the dCt method [82]. A list of forward and 
reverse primers for both sense- and anti-sense genes and 
the respective fluorescent Taqman probes labelled with a 
FAM-TAMRA quencher is provided in Supplementary file 
2: Table S10A.

siRNA knockdown assay

MCF-7 cells were cultured in EMEM supplemented 
with 10% FBS in a humidified incubator at 370C with 5% 
CO2. For GABPA knockdown experiment MCF-7 cells 
were transfected with ON-TARGETplus siRNA duplexes 
targeting GABPA mRNA (Dharmacon) and negative non-
targeting control RNA (siGenome non-targeting RNA, 
Dharmacon) using Dharmafect1 reagent according to 
manufacturer’s instructions. Cells were harvested 72 
hours after transfection and total RNA was extracted using 
RNeasy Mini Kit (Qiagen) according to manufacturer’s 
instructions. We assessed gene expression after GABPA 
knockdown in 22 genes from 11 convergent SAGPs and 
in 12 spliceosomal and proteasomal genes. To minimize 
chance of cross-contamination from opposite DNA strand 
in the SAGPs, we designed primers pairs for conventional 
qRT-PCR outside of the regions of SA overlaps, 
predominantly within the first half of a gene (5’-end) 
(Supplementary file 2: Table S10B). Total RNA was used 
as a template for reverse transcription using QuantiTect 
Reverse Transcription Kit (Qiagen) using random hexamer 
primers. The transcripts were analyzed by qRT-PCR run on 
a Quant Studio 6 Flex System (Applied Biosystems). The 
genes were relatively quantified using the dCt method[82].
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DNA copy number variation analysis

We estimated CNV for each gene from total 
sets of 146 genes of 73-SAGPs and 146 NGNs in two 
independent BC datasets. The first BC dataset included 
38 BC cell lines for which both CNV and gene expression 
microarray data were available [32]; the second dataset 
comprised CNV data for 93 primary breast tumors [83].

Assignment SNPs to genes was performed using the 
Galaxy platform [84] by first joining SNPs to the gene 
intervals followed by fetching additional closest SNPs 
located upstream and downstream to the gene. DNA 
copy number value for each gene was estimated as an 
average of CNV values for all SNPs assigned for the gene 
(Supplementary file 1: Tables S4A and S4B). The analysis 
revealed that 21 SAGPs in the first dataset and 5 SAGPs 
in the second dataset were located in moderately or highly 
amplified regions of the genome.

Transcription factor binding motifs and CBR 
analyses in the proximal promoters of 73-SAGPs 
and other gene sets

We analysed the proximal promoters (-450/+50 
bp) for the enrichment of transcription factor binding 
motifs using PSCAN software [42] in the following 
sets of genes: i) 146 genes of 73-SAGPs; ii) 147 genes 
identified by SAGS as significantly over-expressed in HR 
BC subgroups, significantly over-represented under the 
category “KEGG pathway” and related to the proteasome, 
cell cycle, DNA replication, spliceosome, aminoacyl-
tRNA biosynthesis and purine/ pyrimidine metabolism 
(Supplementary file1: Tables S9B, S9C and S13, the 
“KEGG genes” set). The following 3 independent negative 
control sets were used: i) the set of 102 genes of PNGs 
(Supplementary file 3: Figure S4, Supplementary file 2: 
Methods and Analyses), ii) the set of 146 NGNs and iii) 
the set of 150 DEDR genes (Supplementary file 1: Table 
S9C).

To verify our in-silico predictions, we utilised the 
publicly available ChIP-seq data for GABPA (MCF-7 
breast cancer cells, GEO ID: GSM1010864) generated 
by ENCODE (www.genome.ucsc.edu/ENCODE/). The 
ERα ChIP-seq data for MCF-7 cells were downloaded 
from GEO ID: GSE48930[85]. For each studied gene set, 
we first identified higher confidence CBRs (reproducible 
group) via the identification of common overlapping 
significant peaks (see descriptions in GSE31477 for 
GABPA) between all available ChIP-seq replicates (2 
replicates for GABPA and 3 - for ERα). Then, for each set 
of higher confidence CBRs taken from the first replicate 
for each transcription factor, we identified the overlapping 
regions of the CBRs with the proximal promoters (+50/-
450 bp) in each studied gene set. Genomic interval 
manipulations were performed using the Galaxy 

platform[84].
Cytoscape (version 3.2.1) was used for visualization 

of GABPA gene network [86].

Accession Numbers

The microarray data for BII-OriGene BC cohort are 
deposited at the GEO database (http://www.ncbi.nlm.nih.
gov/projects/geo /) under the accession ID (GSE61304).
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