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AbstrAct
OBJECTIVES: This review stated the possible application of the active components 

of licorice, glycyrrhizin (GL) and glycyrrhetinic acid (GA), in rheumatoid arthritis (RA) 
treatment based on the cyclooxygenase (COX)-2/thromboxane A2 (TxA2) pathway. 

METHODS: The extensive literature from inception to July 2015 was searched 
in PubMed central, and relevant reports were identified according to the purpose of 
this study.

RESULTS: The active components of licorice GL and GA exert the potential anti-
inflammatory effects through, at least in part, suppressing COX-2 and its downstream 
product TxA2. Additionally, the COX-2/TxA2 pathway, an auto-regulatory feedback 
loop, has been recently found to be a crucial mechanism underlying the pathogenesis 
of RA. However, TxA2 is neither the pharmacological target of non-steroidal anti-
inflammatory drugs (NSAIDs) nor the target of disease modifying anti-rheumatic 
drugs (DMARDs), and the limitations and side effects of those drugs may be, at least 
in part, attributable to lack of the effects on the COX-2/TxA2 pathway. Therefore, GL 
and GA capable of targeting this pathway hold the potential as a novel add-on therapy 
in therapeutic strategy, which is supported by several bench experiments. 

CONCLUSIONS: The active components of licorice, GL and GA, could not only 
potentiate the therapeutic effects but also decrease the adverse effects of NSAIDs 
or DMARDs through suppressing the COX-2/TxA2 pathway during treatment course 
of RA.

IntroductIon

Because of the unwanted side effects of current 
drugs used for rheumatoid arthritis (RA) treatment, 
botanical medicines have become popular as alternative 
remedies as they are believed to be efficacious, safe and 
have over a thousand years’ experience in treating patients 
[1]. In addition, analysis of patents on anti-RA therapies 
issued in China revealed that traditional Chinese Medicine 
may provide substantial new information for anti-RA 
drugs development [2]. Licorice (Glycyrrhiza glabra) 
is a well-known plant, which is utilized to add flavor to 
foods, beverages, and tobacco, and it is also used as a 

medicinal plant [3]. The principle component of licorice is 
Glycyrrhizic acid or glycyrrhizin (GL), which is a natural 
and major pentacyclic triterpenoid glycoside of licorice 
roots extracts [4] (Figure 1). GL is readily hydrolyzed to 
glycyrrhetinic acid (GA) in human body [5]. Following 
oral administration in humans as well as in rats, GL is 
metabolized in the gastrointestinal tract by glucuronidases 
into GA, which can be totally absorbed [6]. 

Licorice remains one of the most prescribed herbs 
in Chinese Medicine. There is much literature on the 
biological effects of the major bioactive components of 
licorice, particularly in terms of their anti-cancer, anti-
inflammatory and anti-arthritic effects [1, 5, 7]. For 
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example, licorice and the roasted licorice have benefits 
in protecting against both acute inflammation and chronic 
inflammatory conditions including RA [7]. 

It is well known that cyclooxygenase (COX)-2 
is an important target of licorice, as many constituents 
of licorice are able to suppress COX-2 [1, 8, 9], which 
is critically involved in the pathogenesis of tumor and 
inflammatory diseases like RA [10-13]. Five years ago, 
Prof. Paul M. Stewart and Stephen M. Prescott raised 
a question, that is, can licorice lick colon cancer?[14]. 
This question is raised from a discovery showing that GL 
reduced COX-2 activity, tumor growth, and metastasis, 
without the adverse effects associated with non-steroidal 
anti-inflammatory drugs (NSAIDs) and selective COX-

2 inhibitors (COXIBs) [15]. Today, using the same 
sentence pattern, we are asking the question “can active 
components of licorice GL and GA lick RA?” This is a 
data-based question, raised from several lines of evidence 
showing as followings. First, GL and GA provide an anti-
inflammatory effect by suppressing the expression and 
activity of COX-2 through the inhibition of nuclear factor 
(NF)-κB and phosphoinositide-3-kinase (PI3K) activity 
[16]. Second, there are some common targets and common 
therapies have been revealed between RA and cancers, 
such as cadherin-11 and COX-2 [11, 17]. Third, COX-2 
is crucially implicated in RA pathogenesis, and NSAIDs 
as well as COXIBs are frequently used in treating patients 
with RA [18]. Therefore, can active components of licorice 

Figure 1: Licorice and its major active components. A., the Figure of licorice herb is selected from The Compendium of Materia 
Medica (Bencao Gangmu). b., raw licorice and the roasted licorice are frequently employed as medications in traditional Chinese Medicine. 
c. and d., the chemical structures of glycyrrhizin (GL) and glycyrrhetinic acid (GA). 
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GL and GA lick RA? In this review, we will clarify this 
possibility based on the COX-2/thromboxane A2 (TxA2) 
pathway, which is a mechanism novelly delineated in the 
pathogenesis of RA [11, 19]. 

Methods

We searched the PubMed database from 
inception to July 2015 with the following search terms: 
“licorice”, “glycyrrhiza glabra”, “glycyrrhizic acid”, 
“glycyrrhizin”, “glycyrrhetinic acid”, “thromboxane”, 
“cyclooxygenase-2”, and/or “rheumatoid arthritis”. 
The references within the selected reports were also 
considered. No limitations on language and study types. 
Relevant literature focusing on the field of licorice and 
its active components, as well as RA was identified. 
Three independent investigators conducted the searching 
process, and the experts in the field of Rheumatology were 
involved in the procedure of literature analysis. 

the coX-2/tXA2 pAthwAy Is A 
phArMAcoLogIcAL tArget oF gL 
And gA

It is well known that COX-2 is an inducible 
enzyme becoming abundant in inflammatory diseases 
including RA [11, 20]. COX-2 catalyzes the conversion 
of arachidonic acid (AA) into prostaglandin H2 (PGH2). 
PGH2 is unstable and it is catalyzed by prostaglandin 
E synthase (PGES), prostacyclin synthase (PGIS) and 
thromboxane synthase (TxAS) into prostaglandin E2 
(PGE2), prostacyclin (PGI) and TXA2, respectively [21, 
22] (Figure 2). The role of PGES/PGE2 is to some extent 
controversial, as PGE2 has both pro-inflammatory and 
immunosuppression effects depending on cell context 
[22]. PGIS is generally considered to have cytoprotection 
effects, and the imbalance of PGI/TxA2 in favor of 
the latter is one of critical mechanisms underlying 
pathogenesis of cancer, inflammatory disease and vascular 
disorders [21, 22] (Figure 2). As a downstream product of 
COX-2 in inflammatory sites, TxA2 is a local hormone 
acting close to the site of its synthesis via autocrine or 

Figure 2: the coX/txA2 pathway is the pharmacological target of glycyrrhizin (gL) and glycyrrhetinic acid (gA). 
Among downstream products of COX-2 pathway, PGI is generally considered to have cytoprotection effects, and the imbalance of PGI/
TxA2 in favor of the latter is one of critical mechanisms underlying pathogenesis of cancer, inflammatory disease and vascular disorders. 
The role of PGES/PGE2 is to some extent controversial, as PGE2 has both pro-inflammatory and immunosuppression effects depending 
on cell context. TxA2 acts through binding with TxA2 receptor (TP), thereby exerting promoting effects for tumor growth, inflammation 
and angiogenesis. Licorice and its active components GL and GA are considered to hold anti-inflammatory and anti-cancer properties 
through targeting the COX-2/TxA2 pathway. For example, GA inhibits lung tumor growth through suppressing expression and activity 
of COX-2 and TxAS and the downstream ERK/CREB signaling (Ref.5). Abbreviations: COX-2, cyclooxygenase-2; PGH2, prostaglandin 
H2; PGE2, prostaglandin E2; PGI, prostacyclin; TxA2, thromboxane A2; PGES, prostaglandin E synthase; PGIS, prostacyclin synthase; 
TxAS, thromboxane A2 synthase. 
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paracrine manner [19, 21, 22]. TxA2 functions through 
binding with its signature receptor (Figure 2), TxA2 
receptor (TP), which is a member of the G-protein-coupled 
cell surface receptor family [11, 22, 23]. Importantly, it 
is now clear that the COX-2/TxA2 pathway is an auto-
regulatory feedback loop for biosynthesis and action of 
TxA2 and it plays a key role in the pathogenesis of RA 
[11, 19].

Early studies documented that as the active 
component of licorice, GL is an inhibitor of COXs, thereby 
having anti-inflammatory and anti-tumor effects [24, 25]. 
Subsequently, GL was shown to have protective effects on 
acute liver injury via downregulation of proinflammatory 
mediators including COX-2 [26]. Further study showed 
that GL potently protected against LPS-induced acute 
lung injury through, at least in part, the suppression of 
COX-2 [27]. These studies suggest that GL provides anti-
inflammatory effects with low toxicity or cytoprotective 
property. Several studies revealed that GL is an inhibitor 
of high mobility group protein B1 (HMGB1) [28], which 
is known to induce inflammation by enhancement of 
proinflammatory molecules signaling including COX-2 
pathway [29]. Intriguingly, HMGB1 is expected to be a 
new target for RA treatment [30]. In Wister rats model 
of 2-acetylaminofluorene (2-AAF)-induced liver toxicity, 
pretreatment with GA showed potential hepatoprotective 
effects, which are partly attributable to the attenuation 
of COX-2 and its transcriptional factor NF-κB [31]. In 
human endothelial cells, the effects of TP agonist I-BOP 
could be mimicked by 1μM of GA with a similar time 
course and efficacy [32], suggesting that GA may exert 
its biological effects through acting on TxA2 pathway. In 
our laboratory, it has been found that anti-tumor effect of 
GL is, at least in part, TxAS-dependent [4]. Additionally, 
we have elucidated that, through inhibiting TxAS and 
its initiated extracellular signal-regulated kinas (ERK) 
/ cAMP response element-binding protein (CREB) 
signaling, GA suppresses lung tumor cell proliferation 
[5]. It should be noted that the activities of several key 
molecules COX-2, TxAS and NF-κB were inhibited 
by GA, the whole effects of COX-2/TXA2 pathway is 
therefore suppressed by GA. Although GA may function 
as a TP agonist in some models, theoretically, its effects 
cannot be mediated through the downstream signalings, 
as ERK/CREB and NF-κB activities can be significantly 
inhibited by GA.

Altogether, these observations have revealed that 
the COX-2/TxA2 pathway is a pharmacological target of 
GL/GA, which provides new insights into the mechanisms 
of action of licorice. It also provides an explanation for 
the anti-inflammatory and anti-tumor effects of GL and 
GA, as the COX-2/TxA2 pathway is well-known to be the 
important molecular mechanisms underlying pathogenesis 
of tumor and RA [11, 19, 20, 33, 34].

roLe oF the coX-2/tXA2 pAthwAy 
In the pAthogenesIs oF rA

It is well known that TxA2 is one of the downstream 
products of COX-2, and COX-2 as well as TxA2 are 
overexpressed in inflammatory conditions like RA [11, 
19]. In early studies, the higher TxA2 levels were found 
in synovial lining obtained from RA patients, as compared 
to specimens from non-RA patients [35-37]. Moreover, 
TxA2 release was increased in peripheral blood leucocytes 
when cultured with RA synovial fluid exudates [38, 39]. 
Recently, a study recruited 54 RA patients as well as 20 
healthy subjects and found that the biosynthesis of TxA2 
in RA patients was significantly higher than healthy 
controls [40], which is in agreement with our recent 
report for the first time showing that serum level of TxA2 
is positively correlated with 28-joint disease activity 
(DAS28) score of patients with RA [19]. Additionally, we 
also found that in RA fibroblast-like synoviocytes (RA-
FLS), COX-2 effects can be mainly mediated by TxA2, 
and the mRNA expression of COX-2 is regulated by 
TxA2 action [11]. This study suggests a positive feedback 
for TxA2 synthesis and action in RA synovial tissue. 
Interestingly, it is now clear that in tumor cells, TxA2 
contributes to cell proliferation through an auto-regulatory 
feedback loop, in which NF-κB and its downstream COX-
2 are involved [20]. Therefore, enlightened by these 
findings, we recently determined this pathway in in-vitro 
model of RA. The results confirmed the existence of an 
auto-regulatory feedback loop for TxA2 in RA FLS [19]. 
Through this auto-regulatory feedback loop, transcription 
factor NF-κB is activated by TxA2 signaling, COX-2 
and other inflammatory factors like TNF-α and IL-1 are 
increased thereafter, thereby contributing to inflammation 
in RA [19] (Figure 3).

Collectively, these observations suggest that the 
pharmacological approaches targeting the COX-2/TxA2 
pathway hold the potential as a novel add-on therapy in 
the treatments of RA.

Adverse eFFects oF rA treAtMent 
drugs Are reLAted to the coX-2/
tXA2 pAthwAy

Conventional disease-modifying anti-rheumatic 
drugs (cDMARDs) are the first-line medications used 
for RA treatment [41], while cDMARDs are more or 
less ineffective in the late phase of RA and the unwanted 
side effects often limit their use [42]. For example, both 
methotrexate (MTX) and leflunomide (LEF) are most 
frequently prescribed cDMARDs, while use of these 
two drugs entails a risk of cytopenias and the toxicity of 
liver and renal [41, 43]. Biologic disease-modifying anti-
rheumatic drugs (bDMARDs) generally carry a definite 
increased infection and cancer risks [41, 44, 45]. 
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It is now clear that, in patients with RA, TxA2 is 
not the molecular target of DMARDs [19]. The limitations 
and side effects of these drugs are considered to be, at 
least in part, due to lack of the effects on the biosynthesis 
of COX-2-derived TxA2 [11]. In support of this view, it 
is found that treatment of RA patients with anti-TNF-α 
agents, belonging to bDMARDs, may blunt isoprostane 
generation in the absence of significant effects on TxA2 
biosynthesis, which could be associated with a higher 
frequency of non-melanoma skin cancer in patients long-
term treated with anti-TNF-α agents [11, 40]. In addition, 
MTX is found not to suppress TxA2 biosynthesis in whole 
blood from RA patients although MTX is a preferential 
COX-2 inhibitor [46]. Interesting, the combined usage 
of MTX and aspirin (selective TxA2 inhibitor) results 
in antagonism of the cytotoxic effects of MTX [47]. 
Therefore, these observations suggest that suppressing the 
biosynthesis of TxA2 that largely derived from COX-2 
in inflammatory sites may produce a strong antagonistic 

effect to reduce the adverse effects of DMARDs. 
Nonsteroidal anti-inflammatory drugs (NSAIDs) 

including COXIBs are routinely used for long-term 
therapy of RA in clinical practice [48, 49]. However, 
because of the action that inhibition of COX-2-derived 
endothelial PGI2 without concomitant inhibition of 
TxA2 [50-52], some adverse effects of COXIBs, such as 
cardiovascular effects and renal effects are to some extent 
unavoidable [53-59]. Hence, the inhibitors of targeting 
COX-2-derived TxA2 can theoretically mitigate those 
adverse effects, when administered in combination with 
COX-2 inhibitors. 

gL And gA MAy be used As the 
AddItIve to rA treAtMent As they 
suppress the coX-2/tXA2 pAthwAy

Coupled with the observations showing the positive 

Figure 3: The COX-2/TxA2 pathway is a crucial mechanism underlying the toxicity reducing and efficacy enhancing 
effects of glycyrrhizin (gL) and glycyrrhetinic acid (gA) to nsAIds/dMArds. We have previously elucidated a positive 
feedback loop for the biosynthesis and action of TxA2, i.e. the COX-2/TxA2 pathway (Ref.17). Briefly, in the inflammatory microenvironment 
of RA joints, lymphocytes and inflammatory cells like macrophages and neutrophils are recruited and produce many pro-inflammatory 
cytokines, such as TNF-α, IL-1β, IL-6, and IL-17 etc. By stimulation with these cytokines, the crucial molecules of COX-2 pathway, such 
as PGE2 and TxA2, were produced by those inflammatory cells and RA FLS. Through autocrine or paracrine signaling, TxA2 is able 
to specifically bind with its signature receptor TP, thereby activating several intracellular signals, MAPKs and PI3K/PKB pathways for 
instance. The transcription factor CREB and NF-κB can be subsequently activated, and thus inducing the expression of COX-2, TxAS, 
ACTN1, VEGF and other inflammatory cytokines. Therefore, a positive auto-regulatory feedback loop for the synthesis and action of TxA2 
in inflammatory sites is formed and contributes to synovitis, a key role in pathogenesis of RA. It is thus suggested that the pharmacological 
approaches targeting COX-2/TxA2 pathway hold the potential as a novel add-on therapy in the treatments of RA. Both NSAIDs (including 
COXIBs) and DMARDs are typically prescribed medications for treatments of patients with RA. TxA2 is believed to be the non-target of 
NSAIDs and DMARDs. Importantly, the limitations and adverse effects of those drugs may be, at least in part, due to lack of the effects 
on the COX-2/TxA2 pathway. GL and GA are the major active components of licorice. Following oral administration in humans, GL is 
metabolized into GA in the gastrointestinal tract and GA can be totally absorbed. Fortunately, GL and GA have been reported to target the 
COX-2/TxA2 pathway. Therefore, GL or GA could be used as an adjunctive agent in RA treatments not only to enhance the therapeutic 
effects of NSAIDs/DMARDs but also to reduce the adverse effects associated with NSAIDs/DMARDs. Abbreviations: TNF, tumor 
necrosis factor; IL, interleukin; RA FLS, rheumatoid arthritis fibroblast-like synoviocytes; COX, cyclooxygenase; TxA2, thromboxane 
A2; TP, thromboxane A2 receptor; PGH2, prostaglandin H2; PGE2, prostaglandin E2; NSAIDs, non-steroidal anti-inflammatory drugs; 
DMARDs, disease modifying anti-rheumatic drugs; NF-κB, nuclear factor κB; CREB, cAMP response element-binding protein; MAPKs, 
mitogen activated protein kinases; PI3K , phosphoinositide-3-kinase; VEGF, vascular endothelial growth factor; ACTN1, α-actinin-1; 
MMPs, matrix metalloproteinase.
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role of COX-2/TxA2 pathway in pathogenesis of RA, as 
stated above, the fact that TxA2 is not the molecular target 
of DMARDs and NSAIDs/COXIBs suggest that drugs 

targeting COX-2-derived TxA2 may reduce the negative 
side effects during the RA treatment course. In support of 
this conclusion, we have previously demonstrated that GL 

Figure 4: effects of gA in rA FLs. Cells of RA FLS was stimulated with 100 ng/μl TNF-α for 6h, followed by treatment of cells with 
graded levels of GA for 24h. Cells without treatment served as controls. A. and b., GA suppressed COX-2 and TxAS expression in a dose-
dependent manner. The protein levels of COX-2 (72 kDa) and TxAS (60 kDa) were measured by Western blot analysis, and GAPDH (36 
kDa) was used as a loading control. Figure is the representative result selected from three independent experiments. Densitometry for blots 
was shown in the right panels. **p < 0.01 and ***p < 0.001, as compared to control; # p < 0.05 and ## p < 0.01 as compared with TNF-α 
treatment. c., MTS assays were conducted to show the effects of GA on MTX cytotoxicity with regard to cell proliferation. There is a 
synergistic effect from the treatment with both GA and MTX on cell proliferation of RA FLS, suggesting GA could be used as an adjunctive 
agent not only to enhance the chemotherapeutic effects of MTX but also to reduce the negative side effects associated with MTX. Data 
are presented as percentages of the control and expressed as mean ± SD of three independent experiments done in triplicate. **p < 0.01 
when compared to control. Abbreviations: COX-2, cyclooxygenase-2; GA, glycyrrhetinic acid; MTX, methotrexate; RA FLS, rheumatoid 
arthritis fibroblast-like synoviocytes; TxAS, thromboxane synthase.
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and GA capable of inhibiting COX-2 expression and TxA2 
biosynthesis could be used as an adjunctive agent in lung 
tumor not only to enhance the chemotherapeutic effects of 
cisplatin but also to reduce the adverse effects associated 
with cisplatin [4, 5]. In a word, GL or GA can be used as 
an additive to treatments of RA, as they are able to target 
the COX-2/TxA2 pathway. 

As a matter of fact, many evidences have already 
documented that GL or GA can be used as an adjunctive 
agent in treatments of RA. Triptolide, a major active 
component of Tripterygium wilfordii, is used for treatment 
in animal models of RA, whereas this natural component 
possesses various pharmacological activities with narrow 
therapeutic window and severe toxicities. In animal 
model studies, toxicity of triptolide can be attenuated 
with concomitant use of GL, as pretreatment with GL 
significantly accelerates the metabolic elimination of 
triptolide from the animal body [60]. Moreover, combined 
triptolide and GL treatment (triptolide 13.40 μg, GL 26.78 
mg) can reduce the arthritic index of collagen induced 
arthritis (CIA) rats and decrease serum levels of TNF-α, 
and such effect was similar to the one measured upon 
application of triptolide 17.86 μg [61]. It is suggested that 
GL can enhance the chemotherapeutic effects of triptolide. 
Furthermore, it has been shown that GA, MTX, and 
combination of GA and MTX (GA+MTX) suppressed the 
expression of TNF-α and IL-1β in fibroblast-like synovial 
(FLS) cells from CIA rats in a time-dependent manner, 
and the suppressing effect is GA+MTX>MTX>GA [62].

Altogether, the possibility of that GL and GA 
are utilized as the useful additive to RA treatments has 
been well-studied in experiments and the underlying 
mechanisms is, at least in part, attributable to suppression 
of the COX-2/TxA2 pathway. The ongoing study in our 
laboratory has preliminarily supported this possibility 
(Figure 4), and the further studies in this field are expected. 

concLusIons

RA exerts profound influence on health-related 
quality of life, which imposed huge burdens on patients 
physically, mentally, and economically [63]. The general 
effectiveness of typically prescribed medications for 
patients with RA, including NSAIDs and DMARDs, 
has been far from satisfactory [1, 64]. Because COX-2-
derived TxA2 is not the molecular target of NSAIDs and 
DMARDs, the limitations and negative side effects of 
those drugs may be, at least in part, attributable to lack of 
the effects on the COX-2/TxA2 pathway, which coupled 
with the positive role of the COX-2/TxA2 pathway in 
pathogenesis of RA suggests that the pharmacological 
approaches targeting this pathway hold the potential as a 
novel add-on therapy in therapeutic strategy of RA (Figure 
3). 

Understanding the mechanisms of action of the 
herbs may provide new treatment opportunities for RA 

patients, and the herbs used in traditional medicines 
provide a rich reservoir for extracting biologically active 
compounds. Licorice or the roasted licorice is one of the 
oldest and most frequently used botanicals in traditional 
Chinese medicine. This herb has been incorporated into 
recipes not only to enhance taste, but also to treat various 
conditions including inflammation [65]. GL and GA, 
active components of licorice, have been reported to target 
the COX-2/TxA2 pathway (Figure 3). Therefore, GL or 
GA could be used as an adjunctive agent in RA treatment 
not only to enhance the therapeutic effects of NSAIDs and 
DMARDs but also to reduce the adverse effects associated 
with NSAIDs and DMARDs (Figure 3). In a word, the 
COX-2/TxA2 pathway could be a crucial mechanism 
underlying the toxicity reducing and efficacy enhancing 
effects of GL and GA on typically prescribed medications, 
NSAIDs and DMARDs in principle, for treatments 
of patients with RA (Figure 3). Many researches have 
confirmed the toxicity reducing and efficacy enhancing 
effects of GL and GA on RA treatment [60-62], while 
further studies leading to the final application of this 
finding in the clinical management of RA are urgently 
required in the future.
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