
Oncotarget44191www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 42

Cancer stem cell targeted therapy: progress amid controversies

Tao Wang1,2, Sarah Shigdar2, Michael P. Gantier3,4 , Yingchun Hou5, Li Wang6, Yong 
Li7, Hadi Al Shamaileh2, Wang Yin2, Shu-Feng Zhou8, Xinhan Zhao9 and Wei Duan2

1 School of Nursing, Zhengzhou University, Zhengzhou, China
2 School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
3 Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
4 Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
5 Co-Innovation Center for Qinba Region’s Sustainable Development, Shaanxi Normal University, Xi’an, China
6 Department of Gynecologic Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, 
Zhengzhou, China
7 Cancer Care Centre, St George Hospital and St George Clinical School, University of New South Wales (UNSW), Kensington,  
Australia
8 Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
9 Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, China

Correspondence to: Xinhan Zhao, email: zhaoxinhanprof@163.com

Correspondence to: Wei Duan, email: wduan@deakin.edu.au
Keywords: cancer, cancer stem cell, anti-cancer treatment, cancer stem cell marker, cancer stem cell model
Received: August 12, 2015 Accepted: October 06, 2015 Published: October 19, 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 

AbstrAct
Although cancer stem cells have been well characterized in numerous 

malignancies, the fundamental characteristics of this group of cells, however, have 
been challenged by some recent observations: cancer stem cells may not necessary 
to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo 
reversible phenotypic changes; and the cancer stem cells phenotype can vary 
substantially between patients. Here the current status and progresses of cancer 
stem cells theory is illustrated and via providing a panoramic view of cancer therapy, 
we addressed the recent controversies regarding the feasibility of cancer stem cells 
targeted anti-cancer therapy.

A brIEF VIEW OF ANtIcANcEr 
tHErAPY

First initiated in 1946, nitrogen mustard was used 
as a chemotherapeutic agent for cancer therapy [1]. By 
the early 1990s, anti-cancer drug development had been 
transformed from a low-budget, Government-supported 
research effort to a high-stakes, multi-billion dollar 
industry [2]. This trend continued for the following 20 
years. In 2014, it was reported that anticancer drugs 
accounted for 10.8% of the total market share of the 
pharmaceutical industry with 100 billion US dollars [3]. 
In sharp contrast to the rapid development of anticancer 
drugs, it is reported that cancer has surpassed heart disease 
to become the number one cause of death worldwide [4]. 

Even in developed countries such as Australia, cancer 
mortality rates have not changed significantly during 
the near 30 years spanning from 1982 to 2011 [5]. The 
classical cancer theory may underpin this unchanged 
cancer mortality rates. 

stOcHAstIc cANcEr tHEOrY MAY bE 
OVErLY sIMPLIstIc

For decades, anti-cancer therapy has been directed 
by the clonal evolution (stochastic) theory (Figure 1) [6]. 
This theory proposes that cancer derives from normal 
somatic cells which undergo at least five genetic mutations 
[7] before they possess all of the ten cancer hallmarks such 
as enhanced proliferation, reduced capacity to undergo 
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apoptosis and inhibition of differentiation [8]. However, 
this classical theory is far from being satisfactory. First, it 
is difficult to explain the phenomenon of higher incidence 
of some cancers in the first few years of human life relative 
to adult years. And it has been suggested that cancer may 
not simply be driven by the accumulation of mutation 
with age [9]. Furthermore, since differentiated somatic 
cells have a limited life span, it would be theoretically 
impossible for any given cell to acquire all the necessary 
mutations [10]. A more reasonable explanation contends 
that it is likely that the initial mutational hit the cell 
confers the capacity of unrestrained proliferation, which 
provides cells with a sufficiently long lifespan to acquire 
the remaining mutations [11]. Following this logic, it 
would be reasonable to expect that the status of all cancer 
cells in a tumor would be similar and in principle, each 
viable tumor cell is equally capable of forming a new 
tumor (Figure 1). However, this hypothesis is paradoxical 
to a well-known phenomenon - usually more than 10,000 
cancer cells are required to reproducibly initiate tumors in 
immunocompromised mice [12, 13]. Recent developments 
in cancer stem cell (CSC) theory suggest that the classical 
theory of cancer initiation and progression may be overly 
simplistic [14]. 

A rEVOLUtIONArY ANtI-cANcEr 
strAtEGY PrOMIsED bY csc tHEOrY

The CSC theory is based on experimental evidence 
that the status of different cancer cells in a tumor is 
not equal, similar to that of normal tissues, with some 
rare undifferentiated CSCs at the top of the hierarchy 
responsible for maintaining the whole population of cells 

in a tumor [15]. As shown in Figure 2, these cells share 
several key properties with normal stem cells [16]. The 
first such property is self-renewal. CSCs are built to last 
a lifetime and possess the ability to renew themselves 
indefinitely with an undifferentiated state. The second 
property is asymmetric division, which, in addition to 
self-renewal, is responsible for giving rise to differentiated 
daughter cells which make up the bulk of the tumor 
and are characterized by rapid propagation and limited 
or no proliferative potential in the case of progenitor 
and bulk cancer cells, respectively. Understanding this 
phenomenon is important for cancer therapy, as it means 
that the contribution of these daughter cells to the long-
term sustenance of the tumor is negligible [17]. In a 
tumor, only CSCs are able to initiate tumors as they are 
solely capable of self-renewal and unlimited replication 
[18]. Third, CSCs are resistant to electromagnetic and 
chemical insults. This is mainly because of their infrequent 
replication [19], heightened activation of DNA repair 
mechanisms (resulting in a lower apoptotic rate) [20], 
active drug efflux system [21, 22] and increased defences 
against reactive oxygen species [23]. 

The CSC theory is not an entirely new concept, 
having previously been discussed and investigated for 
decades [24]. The major reason for it becoming one of 
the hottest topics in current cancer research [25] lies in 
the explanation it provides for the poorly understood 
phenomena observed in both in the clinic and laboratory. 
From the perspective of the CSC theory, CSCs are the 
prime sources of tumor recurrence and metastasis, as 
they confer resistance to traditional electromagnetic and 
chemical insults by various strategies. The cancer will 
re-occur months or years after treatment. Thus, most of 

Figure 1: schematic of clonal evolution model. Each cancer cell in tumors harbours similar tumorigenic capacity and the progression 
of tumour follows the Darwin’s theory of evolution. Of note, the red rim of every cancer cell in this diagram illustrates that they all originated 
from a single cancer cell (red cell in A). A., radiation/carcinogens/viruses-induced mutations in a single normal cell (red) transforms it into 
a neoplastic cell, conferring selective growth advantages over adjacent normal cells. b., the cancer cell proliferates to produce a cell clone 
(Clone 1) and at the same time, due to genetic instability, various new clones (Clone 2, 3, 4, 5) are generated. c., those clones that cannot 
survive selective pressures such as hypoxia, hypoalimentation and chemotherapy are eliminated. Occasionally a colony (Clone 5) acquires 
survival advantage proceeds and cells from this clone expand to become the predominant population until an even more competitive variant 
emerges. D., this stepwise evolution continues in response to survival pressures throughout the tumor progression, eventually additional 
mutations endow a group of new cancer cells (Clone 6) with aggressive phenotype, leading to metastasis.
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the metastatic cancers are hardly curable with current 
anti-cancer treatments (which mainly target the bulk 
cancer cells), even when the initial response to radiation 
or chemotherapy is encouragingly robust. And in the 
laboratory, the rarity of CSCs in a tumor dictates that a 
huge amount of cancer cells are needed to initiate tumors 
in animal models. Another reason why the CSC theory 
has generated such enthusiasm is because of the hope that 
a new anti-cancer strategy may emerge - aiming not at 
reducing tumor bulk, but rather at targeting the beating 
heart of the tumor, the CSCs [26]. 

cONtrOVErsIEs OVEr cUrrENt csc 
tHEOrY

The CSC theory is possibly the most controversial 
topic in current biomedical research - it is even hard to 
reach an absolute consensus on the most basic issue of 
how to name this group of cells. In recent 10 years various 
names such as CSC, stem cell-like cancer cell, tumor-
initiating cell and tumor-propagating cell have been 
suggested by different research groups. In fact, this is 
why in many occasions the CSC theory is also referred to 
the CSC hypothesis [28]. However, it is understandable 
considering our understanding of CSCs is still not 
complete and generally based on the understanding of 
normal stem cells. Currently, the controversy over the 
CSC theory focuses mainly on the origin and frequency of 
CSCs as well as their phenotypic and functional properties 
[29]. 

HOW cAN DOrMANt cscs MAINtAIN 
A cErtAIN POPULAtION sIZE IN 
tUMOrs?

A logically paradoxical concept regarding CSC 
theory is that CSCs have to be dormant to be resistant to 
therapy yet have to proliferate together with normal cancer 
cells to maintain a certain proportion size in tumors. This 
contradiction has long been explained by the introduction 
of the concept of “cancer stemloids”. According to this 
explanation, not all CSCs in tumors are proliferating self-
renewing cancer cells. While true CSC is shielded from 
selective pressure and unable to drive tumor progression, 
cancer stemloids undergo clonal selection, accumulate 
mutations and eventually drive tumor progression [27]. 
Actually, this explanation is theoretically important as 
it provides a basis to design therapies to selectively kill 
proliferating self-renewing CSCs without killing normal 
stem cells. This is because currently reported CSC markers 
are often expressed on normal stem cells as well. The 
proliferating yet self-renewal status of cancer stemloids 
distinguishes them from the quiescent normal stem cells. 
By targeting stem cell markers only in cycling cells 
through a combination of stem cell targeted antibodies 

and anticancer drugs that are toxic only to cycling cells, 
normal resting stem cells can be spared [30]. 

DOEs csc HAVE tO bE rArE?

According to the classical CSC theory, only 
exceedingly rare CSCs in tumors have the capacity to 
initiate tumors. For example, a frequency of less than 
0.0001% has been reported in acute myelocytic leukaemia 
(AML) [14, 31, 32]. Surprisingly, some recent research 
findings suggested that the proportion of stem cell-like 
cancer cells in a tumor could be as high as one in four 
[31, 33-35], which challenged one of the basic principles 
of CSC theory - the hierarchical relationship among cells 
in a tumor. 

Currently, three methods that originally developed 
for the analysis of adult stem cells including mammosphere 
assay, cell surface marker expression assay, in vivo tumor 
initiating assay (coupled with limited dilution assay) have 
been commonly employed for CSC related assessment 
(see Box 1). Among them, the in vivo tumor initiating 
assay, which involves xenotransplantation of sorted 
cancer cells (based on specific cell surface markers) 
into immunodeficient mice [36], has been regarded as 
the single “gold standard” to define human CSCs. The 
controversial results regarding the frequency of CSCs 
may have caused by the different research models and 
experimental setup employed by different research groups. 
For example, in the paper “Tumor growth need not be 
driven by rare cancer stem cells”, Kelly et al. reported that 
at least 10% of the bulk tumor cells in several transgenic 
mouse models of leukaemia and lymphoma were capable 
of initiating malignant growth upon transplantation into 
mice [33]. However, transplanting mouse tumor cells 
into histocompatible mice recipients obviously does not 
meet the “gold standard”(transplanting human cells to 
immunodeficient mice) and therefore could not speak 
for human CSCs. In Quintana’s experiment [31], human 
melanoma cells were transplanted into immunodeficient 
mice. However, instead of employing commonly used 
NOD/SCID mice, non-obese diabetic, experiments were 
conducted with severe combined immunodeficient (NOD/
SCID) Il2rg-/- mice. 

Undoubtedly, the current in vivo tumor initiating 
models used to assess CSCs is a suboptimal “gold 
standard” with intrinsic limitations [37]. For example, 
the mouse tissues to which human cancer cells are 
transplanted provide a different microenvironment to the 
original environment from where they arise. In recent 
years, although improvements to the xenotransplant 
models have dramatically increased their sensitivity and 
reliability (see Box 2), it is still accepted that the variations 
in animal models used for CSC assessment affect the CSC 
frequency measured quantitatively but not qualitatively 
[17]. Keeping this in mind, it is unsurprising to see 
differences in CSC frequency reported among studies in 
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which different animal or cancer cell models had been 
employed. Since it is ethically impossible to transplant 
cancer cells to human bodies, this debate will most likely 
remain unsolved in the near future. The different results 
in CSC frequency may also result from the heterogeneous 
feature of tumors. As has been reported, even strictly 
defined normal tissue stem cells showed different 
differentiation and self-renewal capacities in accordance 
with different sites or stages of development [38, 39]. 
Considering the even higher heterogeneity present among 
tumors, it is actually expected to see a certain degree of 
difference in the CSC frequency. 

Recently, based on observations that there may be 
a large proportion of CSCs in tumors, some researchers 
questioned the necessary of the CSC-targeted anticancer 
therapy [40]. Obviously, there are flaws with this 
argument. First, according to the analyses above, the 
data on CSC frequency itself is affected by different 
experimental setting and the heterogeneous status of tumor 
and therefore debatable. Second, it should be emphasized 
that the fundamental hypothesis underlying the CSC 
theory is based on the phenomenon of the existence of 
purified single cells with tumor-initiating capacity rather 
than the absolute frequency of them [41]. It follows that 
the frequency of CSCs within a tumor is irrelevant to the 
concept of whether a tumor adheres to the CSC theory. 
Even if it is true that therapeutic resistant CSCs make up 
a large proportion in some types of tumor, the therapeutic 
implications of CSCs would remain the same and from 
another perspective, it would only indicate that controling 
CSCs will be more urgent and more challenging than 
previously expected. 

tHE IMPLIcAtION OF cONVErsION 
bEtWEEN NON-cscs AND cscs?

Early understanding of CSC theory has suggested 
that CSCs arise from normal stem cells [42]. This is 
because the majority of cancers develop in epithelia that 
undergo substantial cell turnover. In epithelial tissues, 
only stem cells remain in the body and proliferate for long 
enough to accumulate the number of mutations required 
to develop into cancer. However, recent studies suggest 
that the state of CSCs is quite plastic, such that they can 
arise from a progenitor or even normal cancer cell that has 
acquired the capacity for sustained self-renewal through 
mutation, epigenetic change, or both [24, 37, 43, 44]. 
Indeed, this plasticity has been demonstrated in human 
colon cancer cells by simply retrovirally introducing a 
set of defined factors (OCT3/4, SOX2 and KLF4) [45]. 
This observed plasticity of CSCs challenged another basic 
hypothesis of CSC theory - unidirectional development, 
and raised the question of “how can a CSC truly be a stem 
cell if non-CSCs can become CSCs? [29]” 

In fact, this phenomenon is not exclusively observed 
in CSCs. As reported several times, under certain 

conditions, differentiated epithelia tissues including 
skin, mammary gland and intestine could display 
regenerative activities [46, 47] - a main property of stem 
cells. Notably, the 2012 Nobel Prize has been awarded to 
investiga tors who demonstrated that mature, specialized 
cells can be reprogrammed to become immature cells 
capable of developing into all tissues of the body [48, 
49]. Considering the great impacts of hypoxia [50], 
acidic stress [51] and nutrient deprivation [52] on tumor 
microenvironment, it should come as no surprise to see a 
certain extent of plasticity between CSCs and bulk cancer 
cells. 

Given the potential plasticity of CSCs, it has been 
contended that “only if the CSC phenotype is a stable 
trait, will it be advantageous to selectively target CSCs 
as a cancer treatment” [17]. Certainly, the plasticity of the 
CSC state adds complexity to both CSC regulation and 
cancer in general. However, from the perspective of cancer 
therapy, what’s more important is to verify if CSCs exist 
and if they are the root of tumor recurrence and metastasis. 
In contrast, it is not that important as to where CSCs come 
from. If there is anything to be learned, it is that both CSCs 
and the bulk cancer cells should be targeted to cure cancer 
(Figure 2) [53]. Actually, this is exactly why almost all of 
the current clinical trials aimed at CSCs are combined with 
traditional tumor treatment [19].

ArE csc MArKErs rELIAbLE?

CSC markers are cell surface proteins associated 
closely with specific phenotypic and transcriptional 
profiles of CSCs [54]. In recent years, with various CSC 
markers being reported in various types of cancers, CSC 
markers hold great potential in not only clinical diagnosis 
and basic cancer research but also in developing CSC 
targeted anti-tumor therapies[55, 56], as detailed in recent 
reviews [25, 57]. 

However, it should be noted that thus far there is no 
uni versal marker for CSCs identified. All of the currently 
described CSC markers can be detected not only on CSCs 
but also, more or less, on normal stem cells or normal 
cancer cells or even normal tissues [25, 57, 58], leading 
concerns of “The markers that have been used so far to 
define CSCs constitute unlikely candidates for antibody 
therapy given that they are usually broadly expressed in 
healthy tissue” [16] and “relying on markers will fool you 
[29]”. These comments imply that “CSC markers should 
be detected only on CSCs” and “there should be a CSC 
marker expressed on many types of CSCs”. In reality, 
since current understanding suggests CSCs probably 
originate from either normal stem cells or bulk cancer 
cells, it is conceivable that CSCs share certain degree of 
protein expression pattern with the cells they come from. 
Moreover, considering the extensive heterogeneity even 
in a single tumor, it is unrealistic to expect a marker to 
be observed on many kinds of CSCs. Different CSC may 
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have different CSC markers. However, once a marker 
can be confirmed to be overly expressed on CSCs, such a 
marker can be exploited for targeted cancer therapy, even 
if it is only expressed on one type of CSC, or it is also 
expressed at a low level in other tissues [57]. 

Compared with the specificity of CSC markers, 
the stability of CSC markers represent an even bigger 
obstacle for CSC diagnosis and treatment. Recently, it has 
been reported that the cell populations (defined by surface 
marker/marker combination) meeting the gold standard of 
CSC assessment (in vivo tumor initiating assay) has not 
proved to be singular or even stable [59]. For instance, in 
earlier studies it was recorded that the AML CSCs were 
confined in CD34+CD38− population as confirmed through 
in vivo tumor initiating assay. However, subsequent 
experiments observed that CD34+CD38+ AML cells also 
demonstrated similar CSC activity [60-62]. In other cases, 

similar phenomena of coexisting or unstable CSC markers 
have also been observed in several of human solid tumors 
[63-66] and human acute lymphoid leukaemia (ALL) [67]. 
The instability of CSC markers may have resulted from 
the well-established notion that the malignant tumor cells 
with aberrant gene expression regulation are capable of 
altering developmental control and/or the stability of the 
expression of cell surface markers. This is especially true 
when studies were conducted in vitro [68]. 

Taken together, while CSC markers are informative 
to understand the population being studied and promising 
for active targeting, they alone cannot define CSCs [29]. 
Given the current lack of specificity and instability in 
certain cases, the reliability of any CSC marker in specific 
application settings (CSC analysis or targeted treatment) 
has to be tested experimentally via the in vivo tumor-
initiating assay. 

Figure 2: schematic of current cancer stem cell theory. Cancer stem cells are solely capable of self-renewal and unlimited 
replication and responsible for maintaining the whole tumour. Cancer stem cells show plasticity so that under certain microenvironment, 
normal cancer cells can convert to cancer stem cells. During tumour progression, different cancer stem cell clones coexist, which are abide 
by the principle of evolution. A., a cancer stem cell forms due to mutations in normal stem cells, progenitor cells and/or differentiated 
cells; b., the created cancer stem cell divides asymmetrically and generates daughter cancer stem cells and differentiated bulk cancer cells 
that can acquire mutations subsequently. At the same time, a new cancer stem cell can be created from mutated cancer stem cell or bulk 
cancer cell; c., different types of cancer stem cells coexist and are responsible for the observed tumor heterogeneity. D., conventional 
chemotherapy kills bulk cancer cells but largely leaves chemo-resistant cancer stem cells untouched, leading to tumor relapse. E., killing 
the cancer stem cells leads to gradual tumour regression, during which new cancer stem cells may converted from mutated bulk cancer cells 
and cause tumour relapse; F, targeting both cancer stem cells and the bulk cancer cells may result in eventual tumor eradication. 
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strAtEGIEs FOr csc tArGEtING

As hoped, a win in the clinic will solve many of 
the controversies regarding the CSC theory [19]. In 
recent years, despite expensive failures in earlier clinical 
trials and fundamental discrepancies about CSC theory, 
a new round of “gambling” has been launched, with 
more than sixty CSC-targeted reagents currently being 
registered for clinical trials [19]. For CSC therapy, the 
enhanced drug-resistance and microenvironment (niche) 
of CSCs represent feasible targets and have been intensely 
exploited. Our knowledge of tumor genetic and signalling 
pathways collected in the past decades including the 
increased understanding of various oncogenic derivatives, 
adhesion molecules, antibody-accessible surface 
components, signalling intermediates, survival pathway 
elements, chromatin modifiers and metabolic targets 
provides valuable tools and targets in this area [69-75]. 
Generally, CSC targeted therapies can be classified 
according to the therapeutic strategies employed as 
detailed below. 

“DEstEMMING” cscs

Although the strategy of “destemming” CSCs [76] 
includes two aspects, either promoting CSC differentiation 
into non-CSCs or inhibiting their self-renewal property, 
the ultimate aim is the same - “exhausting dormant CSCs” 
(Figure 3). 

With mounting evidence suggesting that there 
are similarities between normal stem cells and CSCs in 
terms of their self-renewal and differentiation signaling 
pathways [77-79], several critical signaling pathways 
involved in self-renewal and differentiation of normal 

stem cells have been studied intensively.
By far the most exploited signaling pathways 

associated with the self-renewal of CSCs are the 
Hedgehog signalling, Notch signalling and Wnt/β-catenin 
signalling pathways, [77, 80]. Several agents targeting 
these pathways have shown promising preclinical results 
and are currently under investigation in phase I and II 
clinical trials [19, 81]. Actually, Vismodegib, a Hedgehog 
inhibitor approved for basal cell carcinoma treatment has 
made its way into clinic in 2012 [82]. Targeting Notch 
signaling pathway, a pathway best known for shaping 
embryonic development, also demonstrated potential in 
regulating CSC fate in various types of cancers, including 
both solid tumors and leukaemia [72]. Indeed, different 
Notch inhibitors such as γ-secretase inhibitors and 
monoclonal antibodies have been evaluated in the past 
few years [72, 83-85]. In 2014, OncoMed’s Tarextumab, 
a Notch pathway targeted monoclonal antibody attracted 
attention, in a safety study for pancreatic cancer - a disease 
in which traditional chemotherapy rarely helps, the 
combinatorial treatment of Tarextumab and conventional 
chemotherapeutic drugs resulted in the stabilization 
or shrinkage of the tumor over periods of as long as 12 
months in 83% of 29 patients [86]. At present, a phase II 
trials has been commenced for Tarextumab in pancreatic 
and lung cancers [19]. 

As for promoting the differentiation of CSCs, bone 
morphogenic protein (BMP) and oncostatin M (OSM) 
are among the mostly studied signalling pathways. 
Encouraging results have been reported recently. For 
example, through the stimulation of BMP signalling 
in colorectal CSCs by BMP4 (a natural ligand of MBP 
receptor), Lombardo et al. observed not only increased 
terminal differentiation but also enhanced chemo-

Figure 3: Destemming cancer stem cells. The inhibition of self-renewal and inducing differentiation may lead to similar outcome - 
fewer CSCs and more normal cancer cells are generated during asymmetry division.



Oncotarget44197www.impactjournals.com/oncotarget

sensitivity of CSCs [87]. The phenomenon of chemo-
sensitization was also detected following the activation of 
OSM signalling in breast [88-90] and liver CSCs [91]. All 
of these results indicate that the combinatorial treatment of 
signal transduction and conventional chemotherapy may 
aid in eradicating CSCs [90]. Recently, the importance of 
phosphatidylinositol 3-kinase/Akt/mammalian target of 
rapamycin (P13K/mTOR) signalling pathway in regulating 
the balance between proliferation and differentiation of 
CSCs was revealed [92]. Some inhibitors targeting this 
pathway have been showing promise in CSC targeted 
therapy, with some dual inhibitors undergoing clinical 
trials with advanced breast, ovarian and small-cell lung 
cancers [92]. 

What should be taken into account is that since these 
signaling pathways are shared by both CSCs and normal 
stem cells, and these pathways auto-regulate and interact 
with many other pathways, any global adjustment of these 
pathways will likely disturb the function of normal stem 
cells and cause potential toxicity. For example, in the late 
2000s, the U.S. National Cancer Institute together with 
commercial partners conducted small-scale safety trials 
of reagents aimed at CSC signaling pathways (including 
Hedgehog and Notch) and observed serious side effects 
on normal stem cells [19]. Therefore, considerable 
caution must be exercised when evaluate the full effects 
of intervention with any single pathway [93]. 

DIrEctLY tArGEtING DrUG 
rEsIstANcE MEcHANIsMs OF cscs

CSCs are best characterized by enhanced drug-
resistance, which could be derived either directly from 
their previous generations or through accumulation of the 
constant genomic and epigenetic mutations [94]. While 
both promoting differentiation and inhibiting self-renewal 
can destem CSCs and eventually increase the chemo-
sensitivity of CSCs, molecules or pathways directly 
related to drug resistance of CSCs such as multidrug 
resistance proteins and anti-apoptotic pathways have also 
been explored. 

Accumulating evidence suggests that some 
protecting mechanisms of normal SCs such as MDR 
transporters also operate in CSCs. These transporters, 
belonging to ATP-binding cassette (ABC) family, are well-
known to be able to pump exogenous small molecules 
out of cell membrane and therefore cause resistance to 
a wide range of conventional drugs. Furthermore, some 
transporters such as ABCB5 has been used as CSC marker 
for melanoma CSCs [95]. In fact, the overexpression of 
ABCB2, also known as breast cancer resistance protein 
(BRCP1), was recently shown to be responsible for 
chemo-resistance of glioblastoma CSCs to a variety of 
agents including Paclitaxel, Carboplatin, Etoposide, and 
Temozolomide [96]. However, the role of these drug efflux 
pumps in modulating drug resistance of CSCs has been 

challenged based on the fact that despite considerable 
efforts, rare clinical benefit of inhibitors to such proteins 
has been realized [97], implicating a mechanism of 
redundancy and/or complexity in this area. 

Although the active survival pathways have not 
been characterized in detail in CSCs, the deregulation of 
both extrinsic and intrinsic apoptotic signaling pathways 
have been reported in this population of cells [98]. For 
example, the overexpression of the Bcl-2 family, a group 
of anti-apoptotic proteins related to the critical step of 
intrinsic apoptotic cascade (mitochondrial outer membrane 
permeabilization) have been observed in most types of 
CSCs [99, 100]. Accordingly, Bcl-2 inhibitors such as 
ABT-199, ABT-737 and TW-37 have shown prominent 
CSC targeting capacity. According to a recent report, as 
a single agent, ABT-737 alone was able to inhibit the 
frequency of CSCs and reduce CSCs content in treated 
acute myeloid leukaemia (AML) as well as solid tumors 
such as lung and breast cancers [100-103]. On the other 
hand, targeting extrinsic apoptosis pathway, especially 
TNF-related apoptosis-inducing ligand (TRAIL), is also 
showing promising results [104]. In addition to directly 
using TRAIL as a drug, engineering of mesenchymal 
stem cells (MSCs) for TRAIL delivery represents a novel 
therapeutic option. After systemic injection, TRAIL-
expressing MSCs was observed to be able to localize to 
the site of the tumor and successfully eliminate metastatic 
CSCs [98, 105]. 

As another important aspect of apoptotic machinery, 
the inhibitor of apoptosis protein (IAP) family has been 
regarded as the last protective measure against apoptosis 
since it prevent both intrinsic and extrinsic apoptosis by 
inhibiting caspase activity [106]. Among the eight human 
homologues of IAP family, survivin and XIAP have 
received more attention in recent years, with more than 
30 survivin- and XIAP-based anti-cancer preparations 
undergoing clinical trials [107]. From the perspective 
of CSC targeted therapy, survivin is quite unique. First, 
different from other IAP family members and Bcl-2 family 
members, survivin specifically overexpresses in human 
cancers and dose not express in most adult tissues, which 
makes it an attractive target for anticancer therapy [106]; 
second, together with Hiwi, hTERT genes, survivin has 
been proposed to be an important stem cell-associated 
gene and the co-expression of all of these three genes has 
been shown to result in a significantly increased risk of 
tumor-related death in patients with soft-tissue sarcoma 
[108]; last, enrichment of survivin has been described 
in different types CSCs including AML, glioblastoma, 
liver, breast and astrocytoma. Via suppression of survivin, 
prominent induction of apoptosis of CSCs was observed in 
breast and liver cancer as well as in recurrent glioblastoma 
[109-113]. 
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tArGEtING tHE csc NIcHE

The concept of the CSC niche is derived from the 
understanding of the normal stem cell niche, in which 
normal stem cells have discrete locations in tissues and 
are regulated by its microenvironment [114]. Similarly, 
CSCs in tumors are in a complicated ecosystem consisting 
of bulk cancer cells, various endothelial, hematopoietic, 
stromal fibroblast and perivascular/vascular cells. As a 
component of this system, the CSCs are heavily influenced 
and supported by their surrounding environment [115]. 
In fact, the overall fitness of any cell (CSC/non-CSC) 
in a tumor is modulated by its microenvironment. This 
is because the interaction of the tumor components 
inevitably causes metabolic inconsistency within a tumor 
and results in topical nutrient deprivation, hypoxia or 
other survival pressure [50-52]. These survival stress in 
turn pushes all the surrounding cells towards a status best 
fitting its particular microenvironment and eventually 
creates the well-known heterogeneous property of tumors 
[115]. Specifically for CSCs, the frequently observed 
discrepancies in drug sensitivity between in vitro and in 
vivo treatments provide evidence that the niche in which 
a CSC is located pivotally determines its response to a 
given treatment [116]. And when the cell phenotype 
was studied, it was discovered that the epithelial to 
mesenchymal transition (EMT) of CSCs, which usually 
results in more aggressive and metastatic phenotype, was 
affected considerably by their niche [117]. The implication 
of all these is that the niche of CSCs directly affects the 
drug sensitivity and mobilization of CSCs and therefore 
represents a potential target for CSC-directed therapy. 

In recently years, the influences of adhesion 
receptors, cytokine receptors, membrane-bound cytokine 
ligands, and various chemotactic factors upon the status 
of CSCs have been studied [114]. These results, along 
with the previously described cellular components of 
CSC niche such as endosteum cells in the bone marrow, 
perivascular/vascular cells and tissue macrophages [118], 
provide us with precious opportunities to develop CSC 
niche-targeted therapies. Among them, focal adhesion 
kinase (FAK) is one of the mostly investigated targets in 
both academia and industry [119, 120]. Also known as 
protein tyrosine kinase 2 (PTK2), FAK is an enzyme that 
plays an important role in cell adhesion, spread, motility, 
invasion, metastasis, survival, angiogenesis, and EMT. 
Many believe that blocking FAK could not only directly 
eradicate CSCs but also prevent these rare cells within 
primary tumors to travel through the bloodstream and seed 
metastases [19]. Several orally available FAK inhibitors 
such as VS-6063 and VS-4718 have shown promise in 
counteracting CSCs in recent clinical trials [121]. Another 
promising targets is CXCR4, which is expressed on many 
types of cancer cells and works as a receptor for stromal 
cell-derived factor 1 (SDF1; also termed CXCL12). As a 
niche-derived chemo attractant for CXCR4+ cells, SDF1 

is able to enhance the entry of CXCR4+ cells into the 
bone marrow [122]. Recently, several effective CXCR4 
antagonists have been developed to immobilize CSCs and 
sensitize them to traditional chemotherapies [123, 124], 
with Plerixafor (AMD3100) and some T14003 analogs 
being tested in clinical trials for leukaemia [122]. 

Pioneered by Judah Folkman back in 1971 [125], 
targeting of angiogenesis has long been a hot point 
in cancer research. However, the benefit of targeting 
angiogenesis upon inhibiting CSCs was studied just 
recently. Encouraging results were collected from earlier 
studies designed to explore the CSC targeting capacity 
of clinically available antiangiogenic drugs such as 
Bevacizumab, Sunitinib, and Lenalidomide. For example, 
via treating U87 glioma bearing mice with bevacizumab, 
Calabrese et al. observed decreased microvasculature 
density and tumor growth, in addition, the authors 
observed a reduction in the number of CD133+/nestin+ 
CSCs [126]. At the same time, very similar results on 
glioblastoma were also observed by other investigators 
[127]. But the hope of employing ready-made 
antiangiogenic drugs to deal with CSCs was shattered 
when accumulating clinical and preclinical evidence 
indicated that the benefits of antiangiogenic agents to 
the long-term overall survival of patients was negligible 
[128, 129]. Furthermore, new research using preclinical 
models suggest that antiangiogenic agents actually 
increase invasive and metastatic properties of cancer 
cells and even worse, both Sunitinib and Bevacizumab, 
two of the most frequently used antiangiogenic agents, 
adversely increased the population of CSCs in malignant 
tumors [130]. In light of these limitations, the approval of 
Bevacizumab for treatment of advanced breast cancer has 
recently been revoked by U.S. FDA [131]. These adverse 
effects are understandable. By inhibiting the growth of 
new tumor vasculatures, the harsh environment (hypoxia 
and hypoalimentation) created by antiangiogenic agents 
pushes the relevant cancer cells/CSCs down towards an 
extreme path - death or evolve into a more malignant state. 
With the activation of critical molecules for CSC survival 
such as hypoxia-inducible factor 1α and Akt/β-catenin 
regulatory pathway [130], these antiangiogenic agents 
in fact create a microenvironment in which the survival 
advantage of CSCs was enhanced. Therefore, it is now 
suggested that angiogenesis-targeted treatment alone may 
not be sufficient to improve patient outcome. Rather, it 
is imperative to combine antiangiogenic agents with CSC 
targeted treatments [130]. 

However promising it may be, CSC niche associated 
studies do not come without concerns. First, it is still 
unclear how particular cells in the CSC niche contribute 
to the behaviour of CSCs and how their influence on 
CSCs are mediated at a molecular level [132]; second, 
further studies are needed to investigate whether, and to 
what extent, CSCs contribute to important features of 
their microenvironment through autocrine or paracrine 



Oncotarget44199www.impactjournals.com/oncotarget

mechanisms, or by creating clonal niche components 
[133]; last, similar to the strategy of targeting destemming 
signaling pathways, CSCs share similar niches with 
normal stem cells, and therefore potential side effects 
associated with targeting CSC niche have to be considered 
and circumvented [134].

cONcLUsION

It has never been easy to cure diseases such as 
cancer. Over the past 60 years, too many inspiring 
discoveries and techniques for cancer treatment have 
eventually been shown to be relatively less useful in the 
clinic [19]. Admittedly, the current CSC theory remains 
contentious and the controversies may remain in the next 
few years. However, CSC-targeted therapy does provide 
us with a new and promising opportunity to treat tumor 
cells that are resistant to current therapies and responsible 
for recurrence and treatment failure. Furthermore, the 
concept of CSC-targeted therapy is feasible as evidenced 
by many of the encouraging results obtained in recent 
CSC-related clinical trials. With better understanding of 
the fundamental biology of CSCs, improved functional 
assessment models and achievements in biotechnology 
such as gene expression profiling, next generation 
sequencing and high content screening, we are closer to 
achieving the goal of eradicating CSCs. 

bOx 1

current csc assessment models

Because of the similarities between CSCs and 
normal stem cells in their primary characteristics (self-
renewal and multipotent differentiation), methods 
developed originally for analysis and characterization 
of adult stem cells have been transferred to CSCs. The 
in vivo tumor initiating assay is by far the single gold 
standard for CSC analysis. This approach involves 
demonstrating the tumor initiating capacity of cells that 
are directly isolated from tumors to produce new tumors 
in immunocompromised mice. It was firstly conducted to 
enumerate CSCs in ALL [135], AML [136] and chronic 
myeloid leukaemia (CML) [137]. Later, its application was 
extended to solid human tumors including breast cancer 
[13], colon cancer [138, 139], ovarian cancer [66], lung 
cancer [140] and head and neck cancer [141]. However, 
the in vivo tumor initiating assay is not only expensive 
but also time consuming, with a standard assessment 
taking as long as 6 months or even longer. Therefore, 
a reliable in vitro assay model is required to efficiently 
and cost-effectively define CSCs. In 1992, Reynolds and 
colleagues developed an in vitro technique termed the 
neurosphere assay to quantify activity of neural stem cells 

[142], which provides the basis for the most popular in 
vitro CSC assay - mammosphere or tumorsphere forming 
assay [143]. Recently, this assay has been commonly 
employed in various CSC-associated studies and often 
serves as a surrogate for the in vivo tumor initiating assay. 
The tumorsphere forming assay involves the dissociation 
of cultured cells or tumours into a single cell suspension 
and subsequent culture on non-adherent substrata in the 
presence of serum-free media supporting the growth of 
CSCs until they form organized cellular spheres, each 
containing at least 50 cells. Of note, since progenitor 
cells are able to proliferate several times, the formation of 
primary tumorspheres is in fact the measure of a collective 
activity of CSCs and progenitor cells. Therefore, to 
accurately evaluate CSCs, primary tumorspheres should 
be harvested, dissociated into single cells, and passaged to 
create a ‘second’ generation or even tertiary tumorsphere 
to exhaust the self-renewal capacity of progenitor cells 
[144]. Another method for CSC assessment is based on the 
specific phenotypic and transcriptional marker profiles of 
CSCs [54]. In practice, this method is very straightforward 
and cost-effective and therefore more clinically applicable. 
In recent years, with the increasing number of CSC related 
cell surface markers reported in various types of cancers, 
this method holds great potential in not only clinical 
diagnosis and basic cancer research but also in developing 
CSC-targeted anti-cancer therapies. 

bOx 2

Limitations and progression of csc assessment 
models

Although cell surface marker analysis represents 
a convenient CSC assessment method, its reliability 
relies on a prerequisite that the employed CSC markers 
must show sufficient stability, generality and specificity. 
However, considering the phenotypic and genomic 
heterogeneity shown in tumors even with a similar 
histological appearance and grade, it is inevitable to see 
unstable cell surface marker expression patterns among 
CSCs [25, 57]. As a result, in the past decade, although 
various surface marker combinations (rather than a 
single marker) have been successfully used to detect or 
isolate CSCs in various types of tumors, to standardize 
this method in clinical application is still a considerable 
challenge [57]. 

Compared with surface marker analysis, 
tumorsphere formation assay is comparatively more 
reliable. However, concerns regarding this method has 
been raised given the fact that it is after all conducted 
in an artificial and less physiological in vitro setting. A 
typical test period for tumorsphere assay lasts one to 
several weeks, during which the tested cells are likely 
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to undergo abnormal differentiation and transform into a 
clinically irrelevant state [133]. In addition, the artificial 
cell culture conditions could unavoidably cause no 
growth of the tested cells [145]. Consequently, it is widely 
accepted that the tumorsphere forming assay, although 
shows comparative advantages in in vitro tests, itself is not 
sufficient for deducing clinically meaningful predictions 
[143]. For solid evidence of the presence of CSCs, the 
functional in vivo tumor-initiating assay is irreplaceable. 

As for the in vivo tumor-initiating assay, although 
immunocompromised mice have been commonly 
employed, to what extent the results collected from 
mice faithfully reflect the CSC properties of cancer cells 
in patients is unclear [94]. First, the relatively shorter 
lifespan of mice poses the question of how faithfully 
the results collected from mouse models reflect the 
clinical outcomes. Applying secondary recipients or 
long lifespan animal models represent potential solutions 
for this problem [94]. Second, the altered setting of 
transplanted tumor cells, including the species difference 
and the changed microenvironment weigh heavily 
against the reliability of this assay both phenotypically 
and genetically [114]. In this respect, the application 
of genetically modified humanized mouse models has 
provided a solution to at least partly solve this problem 
[146-150]. Apart from using modified animal models, 
orthotopic injection of cancer cells into the targeted 
organs and supplementing human stromal elements are 
also beneficial and these have become common practice 
in recent years [41, 151]. Third, the absence of immune-
surveillance in the immunocompromised mouse model 
compromises its reliability in mimicking the normal in 
vivo environment. Accordingly, the mimicry of natural 
immune surveillance mechanisms can be partly achieved 
through injection of specific immune effector cells 
[152]. Cells used for in vivo tumor initiating assay add 
another layer of complication. Of note, instead of using 
cells directly derived from patients, cell lines have been 
frequently used in CSC studies. Although these cell line-
based results are commonly translated to the types of 
cancers they dissociated, the extent to which the behaviour 
of such cell lines reflecting the clinical tumor cells is 
highly debatable. To solve this problem, patient-derived 
primary cells have been confirmed to be an ideal choice. 
However, it should be noticed that since the in vitro cell 
culture system provides cells with a dramatically different 
microenvironment from the original tumors from which 
they derived, the primary cells should not be continuously 
cultured in vitro and amplification of these cells via 
xenograft can improve the reliability of this gold standard 
assay [29]. 

A recent study led by Jacobsen and coworkers 
illustrated a genetic analysis-based novel CSC assessment 
method to directly analyse CSCs in the human body. 
Through backtracking of all identified somatic genetic 
lesions in the bulk bone marrow, the existence of rare and 

distinct human CSCs was confirmed in myelodysplastic 
syndrome patients [37]. This study, though elaborate, not 
only provided direct evidence of the existence of rare 
CSCs but also provided a genius strategy to bypass the 
ethical barrier of transplanting cancer cells into humans. 
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