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ABSTRACT
Somatically acquired genomic alterations that drive oncogenic cellular processes 

are of great scientific and clinical interest. Since the initiation of large-scale cancer 
genomic projects (e.g., the Cancer Genome Project, The Cancer Genome Atlas, and 
the International Cancer Genome Consortium cancer genome projects), a number 
of web-based portals have been created to facilitate access to multidimensional 
oncogenomic data and assist with the interpretation of the data. The portals provide 
the visualization of small-size mutations, copy number variations, methylation, and 
gene/protein expression data that can be correlated with the available clinical, 
epidemiological, and molecular features. Additionally, the portals enable to analyze 
the gathered data with the use of various user-friendly statistical tools. Herein, we 
present a highly illustrated review of seven portals, i.e., Tumorscape, UCSC Cancer 
Genomics Browser, ICGC Data Portal, COSMIC, cBioPortal, IntOGen, and BioProfiling.
de. All of the selected portals are user-friendly and can be exploited by scientists from 
different cancer-associated fields, including those without bioinformatics background. 
It is expected that the use of the portals will contribute to a better understanding of 
cancer molecular etiology and will ultimately accelerate the translation of genomic 
knowledge into clinical practice.

INTRODUCTION

Cancer encompasses a broad spectrum of diseases 
(>100) that arise from somatically acquired genetic, 
epigenetic, transcriptomic, and proteomic alterations that 
have accumulated in the genomes of cancer cells [1]. 
These alterations are implicated in hallmark oncogenic 
cellular processes that are characterized by, e.g., sustained 
proliferative signaling, resistance to apoptosis, induction 
of invasion and metastasis, and neoangiogenesis [2]. The 
somatic loss-of-function or gain-of-function alterations 
are overrepresented in specific genomic regions, which 

could indicate their potential suppressive or oncogenic 
roles, respectively. However, it must be noted that somatic 
mutations occur on different genetic backgrounds and can 
sometimes interact with germline mutations, which could 
modify predisposition to cancer when such mutations 
occur in cancer-associated genes.

Recent advances in technologies for high-
throughput genome analysis, such as microarray-based 
methods and next-generation sequencing (NGS), have 
enhanced progress in the field of oncogenomics [3]. These 
tools were fundamental for the initiation and development 
of multi-centered cancer genomic projects, such as (i) the 
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Wellcome Trust Sanger Institute’s Cancer Genome Project 
(CGP) [4, 5], (ii) The Cancer Genome Atlas (TCGA) [6-
8], and (iii) the International Cancer Genome Consortium 
(ICGC) cancer genome projects [9, 10]. These projects 
have been launched for genome-wide analyses of genetic, 
epigenetic, transcriptomic, and proteomic alterations in 
hundreds or even thousands of cancer samples. Their 
general aim is to provide publicly available oncogenomic 
datasets for the better understanding of the molecular 
mechanisms that underlie cancer and for the assessment of 
the influence of specific alterations on clinical phenotypes. 
Application of the appropriate pipeline for computational 
interpretation and thought-provoking visualization of the 
results of oncogenomic projects is crucial to exploring the 
multidimensional character of genome-wide cancer data 
[11]. In response to this need, a number of oncogenomic 
portals were created to assist with accessing the abundant 
cancer datasets. These portals gather and facilitate the 
analysis of data with regard to small-size mutation, copy 
number variation (CNV), methylation, and gene/protein 
expression. Moreover, they offer a wide range of analysis 
tools that include the testing of correlations of specific 
genomic alterations with available clinical information. 

Herein, we provide a highly illustrated guide 
through several web-based oncogenomic portals that 
were generated to facilitate scientists from different 
cancer-associated fields, including molecular and clinical 
oncologists, epidemiologists, and bioinformaticians, 
with the extraction of meaningful information from 
expanding oncogenomic sources. Browsing through 
the portals, prospective users will find a variety of data 
regarding cancer types and subtypes, oncogenic molecular 
pathways and cancer-associated genes of interest. All of 
the portals described below are user-friendly and provide 
intuitive integration as well as interactive oncogenomic 
dataset visualizations, and thus, bioinformatics skills and 
knowledge are not essential to exploring and using these 
tools. The individual paragraphs listed below present the 
characteristics and possible utilization of selected web 
portals. Descriptions and figures that present specific 
portals were prepared according to their versions from the 
first half of 2015, and they are summarized in Table 1.

Tumorscape

Tumorscape [12, 13] was developed at The Broad 
Institute of MIT and Harvard in Cambridge, MA USA. 
This website was one of the first oncogenomic portals 
to provide information about cancer copy number 
changes in a format that was easily accessible to non-
bioinformaticians. With this portal, the copy number 
profiles of over 3,700 cancers (both primary cancers and 
cell lines) are mapped to the human genome reference 
sequence and are visualized as heatmap tracks, with 
the use of the Integrative Genomics Viewer (The Broad 
Institute). Genomic regions with increased (>2) and 

decreased (<2) copy number are marked, respectively, 
in red and blue colors, the intensity of which indicates 
the amplitude of the copy number changes (Figure 1). 
The tracks that represent all of the analyzed samples are 
shown next to one another, forming a panel that allows 
direct comparison and visualization of all of the analyzed 
samples. In addition, Tumorscape provides tools that 
allow “cancer-centric” and “gene-centric” data analyses. 
The “cancer-centric” analysis (Figure 1A) provides a list 
of genomic regions that are either significantly amplified 
or deleted in a specific cancer along with information 
about the genes that are located in the altered regions. The 
“gene-centric” (Figure 1B) analysis provides summary 
statistics of the copy number alterations that affect a gene 
of interest in a specific cancer type and/or across all cancer 
types. This summary enables the interpretation of the role 
of an analyzed gene as a potential oncogene or tumor 
suppressor. 

UCSC cancer genomics browser

The University of California at Santa Cruz 
(UCSC) Cancer Genomics Browser [14-19] integrates 
oncogenomic CNV, small-size mutations, methylation, 
transcriptomic, and proteomic datasets that were 
obtained in a variety of experiments that were conducted 
with the use of samples from different cancer types 
and subtypes. With this portal, all of the oncogenomic 
information is mapped to the human genome reference 
sequence and presented as color-coded heatmap tracks. 
As in Tumorscape, the data from specific experiments 
are visualized as panels of heatmap tracks in which 
each track represents an individual sample. Using 
this portal, the required data can be browsed from the 
perspective of the whole genome, the exome, a specific 
chromosome, or a gene. Additionally, there is also the 
possibility of viewing PARADIGM datasets to gather a 
sample-specific “gene activity level.” This parameter 
(obtained using the PARADIGM method) [20] provides 
the incorporation of pathway interactions (which are 
deposited in the NCI Pathway Interaction Database) 
[21] and the integration of data with regard to different 
types of oncogenomic alterations, e.g., changes in the 
expression or copy number of a given gene [16]. In the 
UCSC Cancer Genomics Browser, multiple panels can be 
simultaneously displayed to visualize different categories 
of oncogenomic information for a specific cancer type and/
or the same category of oncogenomic data for different 
cancer types (Figure 2A-2D). With this browser, analyses 
can be concurrently conducted for thousands of samples 
(oncogenomic datasets) that are sorted by different 
clinical, epidemiological, and molecular features (Figure 
2). These features include survival, histological type, 
tumor nuclei percent, followup treatment success, new 
tumor event after initial treatment, neoplasm histologic 
grade, and tumor necrosis percent, as well as gender, age 
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Table 1: Main characteristics of the selected oncogenomic portals.
database data source sites of analysed cancer1 organisation 

of data2
oncogenomic data/
analyses link/literature

Tumorscape Broad Institute

Bd; Bld; Br; Bra; Clr; Eso; GIST; 
HN; Htp; Kd; Lng; Lvr; Lymph; 
Msh; Ov; Pnc; Prst; Sk; ST; Stc; 
Swn; Thr; Utr; also in: cancer cell 
lines

level i-iii copy number 
alterations

http://www.broadinstitute.
org/tumorscape/pages/
portalHome.jsf; [12]

UCSC Cancer 
Genomics 
Browser

TCGA, SU2C Breast 
Cell Line, Cancer Cell 
Line Encyclopedia, The 
Connectivity Map, TARGET, 
cancer data from literature

Bd; Bld; Br; Bra; Chl; Col; Clr; 
EG; Eso; HN; Kd; Lng; Lvr; 
Lymph; Msh; Ov; Pan; Pnc; Prc /
Prn; Prst; Rc; Sk; ST; Stc; Thm; 
Thr; Utr; also: cancer cell lines; 
cancer data from mouse models 

level i-iii 

DNA copy number, 
miRNA/exon/gene/
protein expression, 
DNA methylation, 
gene-level mutations, 
PARADIGM pathway 
activity; clinical, 
epidemiological, 
and molecular 
information

https://genome-cancer.ucsc.
edu; [14-18] 

ICGC Data 
Portal ICGC, TCGA ,TARGET 

Bd; Bld; Bo; Br; Bra; Clr; Col; 
Eso; HN; Kd; Lng; Lvr; Lymph; 
Nb; Ov; Pnc; Prst; Rc; Sk; ST; Stc; 
Thr; Utr; 

level i-iv

simple somatic 
mutations, copy 
number somatic 
alterations, structural 
somatic mutations, 
simple germline 
variants, DNA 
methylation, gene/
protein expression, 
miRNA expression, 
exon junction; 
epidemiological and 
clinical data

https://dcc.icgc.org; [32]

COSMIC TCGA, ICGC, cancer data 
from literature

Bo; Br; EA; Eso; GIST; Htp; Kd; 
Lvr; Lng; Ov; Pnc; Prst; Sk; Stc; 
Tst; Thm; Thr; Utr

level iii-iv
somatic mutations, 
copy number 
alterations, gene 
expression

http://www.sanger.ac.uk/
genetics/CGP/cosmic; [39-
43]

cBioPortal

AMC, BCCRC, BGI, British 
Columbia, Broad, Broad/
Cornell, CCLE, CLCGP, 
Genentech, ICGC, JHU, 
Michigan, MKSCC, MKSCC/
Broad, NCCS, NUS, PCGP, 
Pfizer UHK, Riken, Sanger, 
Singapore, TCGA, TSP, 
UTokyo, Yale

ACC; Bd; Bld; Br; Bra; Chl; Clr; 
Eso; HN; Kd; Lng; Lvr; Lymph; 
MM; Npx; Ov; Pnc; Prst; Sk; ST; 
Stc; Thr; Utr; also: cancer cell lines

level iii-iv

mutations, putative 
copy number 
alterations; mRNA 
expression, protein/
phosphoprotein level; 
survival analyses

http://www.cbioportal.org; 
[57, 58]

IntOGen 
(2014.12)

TCGA, ICGC, cancer data 
from literature

Bd; Bld; Br; Bra; Clr; Eso; HN; 
Kd; Lng; Lvr; Lymph; Ov; Pnc; 
Prst; Sk; Stc; Thr; Utr 

level iii-iv

results of the analyses 
indicating driver 
alterations and genes; 
therapies tailored to 
the mutation profiles 
of the analyzed 
patients

http://www.intogen.org/; 
[67-70]

BioProfiling.
de

PPISURV

for gene expression: Gene 
Expression Omnibus; for 
interactome: IntAct, HPRD, 
Reactome, HumanCyc, NCI_
NATURE, PhosphoSitePlus

Bd; Bld; Br; Bra; Col; Htp; Lng; 
Lvr; Lymph; Ov; Prst; ST; Utr level iv survival analyses

http://bioprofiling.de/GEO/
PPISURV/ppisurv.html; 
[81]

MIRUMIR Gene Expression Omnibus Br; Eso; Lvr; Lng; Npx; Ov; Prst; 
Sk level iv survival analyses

http://www.bioprofiling.de/
GEO/MIRUMIR/mirumir.
html; [83]

DRUGSURV
for gene expression: Gene 
Expression Omnibus; for drugs 
modulating a gene of interest: 
DrugBank, Pubchem Bioassay

Bld; Br; Bd; Col; Bra; Lng; Lvr; 
Lymph; Prst;; ST; Utr level iv

list of drugs targeting 
specific genes/
cancer types; survival 
analyses

http://www.bioprofiling.de/
GEO/DRUGSURV/index.
html; [85]

1List of abbrieviations of cancer sites. In the brackets there are exemplary cancer subtypes included in the portals.
ACC – adenoid cystic carcinoma; Bd – bladder; Bld – blood; Bo – bone; Br – breast; Bra – brain; Chl – cholangiocarcinoma; 
Clr – colorectal; Col – colon; EA – eye and adnexa; EG - endocrine glands; Eso – esophagus; GIST – gastrointestinal; HN 
– head and neck; Htp – hematopoietic; Kd – kidney; Lng – lung; Lvr – liver and biliary tract; Lymph – Lymphoma; Msh – 
mesothelioma; Mth – mouth; Nb – neuroblastoma; Npx – nasopharynx; Ov – ovary; Pan – pancancer; Pnc – pancreas; Pnx 
– pharynx; Prc/Prn - pheochromocytoma and paraganglioma; Prst – prostate; Rc – rectum; Sk – skin; ST – soft tissues; Stc 
– stomach; Swn – schwannoma; Thm – thymus; Thr – thyroid; Tst – testis; Utr – uterine (cerxix and corpus). 
2In oncogenomic portals cancer resources are arranged in different levels of organisation, including: (i) raw, (ii) 
computationally processed/normalized, (iii) interpreted and (iv) summarized data [3].
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Figure 1: Examples of Tumorscape data analysis and visualization. A. An example of the results that were obtained with the 
“cancer-centric” analysis. The table shows a list of genomic regions that were most frequently amplified in lung adenocarcinoma. The 
q-value represents the likelihood of a random occurrence of the specific amplification/deletion that is calculated based on the background 
copy number variation. The fourth most frequently amplified region that spans EGFR is highlighted. B. Results obtained with “gene-
centric” analysis; the table depicts a list of cancers in which the representative gene (EGFR) is located in or near the frequently amplified 
region (orange and yellow rows, respectively). C. Visualization of chromosomal regions that span the exemplary EGFR and CDKN2A 
genes, which are undergoing frequent amplifications and deletions, respectively. The heatmaps show copy number variations of glioma and 
lung adenocarcinoma samples. Each row represents an individual sample, and red and blue indicate amplification and deletion, respectively.
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at initial pathologic diagnosis, tobacco smoking history, 
cytogenetic abnormalities, and expression subtypes. Apart 
from the heatmap tracks (Figure 2B), the data presented in 
specific panels can be summarized and plotted as box-and-
whiskers or proportions (Figure 2C). 

The datasets can also be statistically processed and 
depicted with the use of a number of tools, such as the 
hgSignature, which enables the simultaneous analysis 
of the expression of several genes, to incorporate an 
algebraic expression signature as a clinical feature. The 
inclusion of such a feature to the statistical analysis of 
cancer data could allow the correlation of the molecular 
and clinical phenotypes or the subdivision of the clinical 
phenotypes based on the molecular data [15]. Additionally, 
a correlation of the available clinical, epidemiological, 
and molecular features with a patient’s survival can be 
depicted in a Kaplan-Meier plot (Figure 2E). Subgroups 
of samples (distinguished based on the associated features 
or genomic signatures) can be compared in terms of 
the obtained oncogenomic data with the use of various 
statistical tests [i.e., differences in mean, Wilcoxon, 
Fisher’s exact, Fisher’s linear discriminant, Jarque Bera 
normality, Levene homogeneity of variances (HOV), 
Brown - Forsythe HOV, and Student’s T-tests], which 
can be adjusted for multiple hypotheses p-values through 
the Bonferonni and Benjamini-Hochberg false discovery 
rate (FDR) corrections. Importantly, all of the genomic 
information that is stored in the UCSC database can be 
easily downloaded for external analyses. 

Successful applications of the UCSC Cancer 
Genomics Browser in cancer-associated research are 
described in many papers [22-30]. For example, Wu and 
colleagues [22] used the statistical tool for the generation 
of a Kaplan-Meier plot to support the significance of 
their experimental data. Their study revealed that the 
up-regulated expression level of HNF1A-AS1 in lung 
adenocarcinoma is significantly correlated with the TNM 
stage, tumor size, and lymph node metastasis. These 
results are in line with the Kaplan-Meier plot, which 
indicates that patients with high HNF1A-AS1 expression 
overall experienced worse survival compared to patients 
with low HNF1A-AS1 expression. The UCSC Cancer 
Genomics Browser is also broadly used for downloading 
genomic and clinical data for external analyses [24-26, 
30].

It is also noteworthy that the authors of the UCSC 
Cancer Genomics Browser are currently developing a new 
oncogenomic platform called UCSC Xena [31], which 
allows users to upload, visualize, and analyze a custom 
genomic dataset in the context of the large projects data 
stored in the web browser. Although the UCSC Cancer 
Genomics Browser and the UCSC Xena currently coexist, 
it is anticipated that after adding some vital functionalities, 
UCSC Xena will replace the UCSC Cancer Genomics 
Browser [18]. 

ICGC data portal

The ICGC Data Portal [32, 33] provides integration 
and visualization of the results of 55 cancer projects. 
This portal was created for the analysis of genomic 
sequence alterations in relation to clinical patient 
characteristics, such as ethnicity and epidemiological 
information. With this portal, the oncogenomic data can 
be analyzed using four interactive entry points: “Cancer 
Projects,” “Advanced Search,” “Data Analysis” and “Data 
Repository” (Figure 3A). The “Cancer Projects” (Figure 
3B) enables data browsing from distinct projects that 
focus on the oncogenomic analysis of specific cancer types 
and subtypes. For each dataset, the provided summary 
includes a list of available oncogenomic data types, 
most affected donors, genes most frequently affected by 
cancer alterations, and most common mutations. It is also 
possible to use the “keyword search” tool to browse all 
of the gathered oncogenomic data in terms of a specific 
gene, mutation, donor, or molecular pathway that is 
of interest. The integration of external databases, such 
as the Ensembl [34], OMIM [35], Reactome [36], and 
COSMIC [37], enables the user to look more broadly at 
a specific gene, molecular pathway, or mutation in terms 
of its role in carcinogenesis. The “Advanced Search” 
(Figure 3C) allows extending the analysis and correlating 
data with additional clinical (e.g., tumor stage, relapse 
type, disease status), epidemiological (e.g., gender, age 
at diagnosis, vital status), molecular (e.g., type of the 
mutation and its consequence), and technical (e.g., type 
of sequencing platform used for the analysis) information. 
The “Data Analysis” entry point allows launching three 
types of analyses: “Enrichment Analysis,” “Phenotype 
Comparison,” and “Set Operations.” The “Enrichment 
Analysis” permits the user to identify groups of gene sets 
from the selected “universe,” i.e., Reactome Pathways, 
Gene Ontology (GO) Molecular Function, GO Biological 
Process or GO Cellular Component, which appear to 
be statistically significantly over-represented when 
compared with a custom gene set that is uploaded by the 
user. The uploaded custom gene set can consist of up to 
10,000 genes. The “Enrichment Analysis” is based on a 
hypergeometric test and Benjamini-Hochberg adjustment 
for multiple test corrections with the FDR value threshold 
selected by the user. The “Phenotype Comparison” 
analysis allows the user to compare some clinical and 
epidemiological characteristics across patients with 
various cancer types, whereas the “Set Operations” can 
be used to distinguish the shared fraction of the analyzed 
sets, which are depicted in a Venn diagram (e.g., mutations 
that are causative across several cancer types). “Data 
Repository” allows all of the ICGC Cancer Project data 
to be downloaded and analyzed with the use of external 
programs and tools of interest. An example of ICGC Data 
Portal utilization for downloading oncogenomic data has 
already been published [38]. 
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Figure 2: The UCSC Cancer Genomics Browser. An example of analysis focused on the EGFR genomic region that is conducted 
concurrently on various oncogenomic data across different cancer types and subtypes. A. Small-scale images (icons) of selected datasets 
that are simultaneously visualized in the browser. Datasets represented by icons are displayed in a column, similar to the datasets from 
panels B-D. B. A heatmap panel that presents the results of the TCGA genome-wide copy number analysis of glioblastoma multiforme 
(GBM) samples. A screenshot of the GBM dataset was used for presentation, based on the presence of considerable amplification of the 
genomic region that spans the representative EGFR. Each horizontal line (track) represents a specific sample. The red or blue colors indicate, 
respectively, a gain or loss in the copy number. On the right side of panel B, there is a drop-down list with epidemiological, clinical, and 
molecular attributes that can be used to sort the presented data (as shown in panel D). C. The TCGA copy number data identified in patients 
with GBM visualized as a proportions plot. D. A heatmap panel showing the results of TCGA analysis of gene expression in lung cancer 
samples in the genes that are indicated above (e.g., EGFR). Red and green colors indicate, respectively, upregulation and downregulation 
of the relative gene expression. The samples are sorted by epidemiological, clinical, and molecular attributes (selected from a drop-down 
list of attributes), as in panels B and C, shown on the right side of the expression panel. The copy number and expression data presented in 
panels B-D correspond to the same genomic region indicated above panel B. E. Kaplan-Meier plots generated using the attributes of lung 
cancer samples (shown in the right side of panel D).
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Figure 3: The ICGC Data Portal. An example of possible data analyses and visualizations. A. Three interactive entry points to the 
ICGC Data Portal. B. The “Cancer Projects” entry point. Screenshot of summary results from all 55 cancer projects. The upper left-hand 
panel: pie chart that depicts the distribution of cancer types (internal circle) and cancer subtypes/projects (external circle) among the donors, 
e.g., different lung cancer types and subtypes/projects (indicated in the pie chart). The upper right-hand panel: bar plot that represents the 
top 20 most frequently mutated genes. Different colors indicate different projects. The middle panel: scatter plot that depicts the distribution 
of the number of somatic mutations in the donors’ exomes across cancer projects. Each dot represents the number of somatic mutations (per 
1 Mb) that are identified in the analyzed sample. Vertical lines indicate the median number of mutations. The bottom part of panel B shows 
a summary of each project. More information about the specific project (types of experimental analyses, available genomic data, most 
commonly mutated genes, most common mutations, and most affected donors) can be found by clicking at specific project code. C. The 
“Advanced Search” entry point, which enables extended analysis of the oncogenomic data. This screenshot shows the browsing of donor 
features. The upper left-hand panel depicts features that can be used for filtering the donor data. The middle panel (pie charts) provides a 
summary of the clinical, epidemiological, and molecular attributes of the donors. The bottom panel represents summary data about specific 
donors. More information (clinical and genetic) can be found by clicking at the donor ID.
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Figure 4: Three levels of data analysis in the COSMIC browser. A. Screenshot shows exemplary EGFR gene data. The upper 
left-hand panel demonstrates basic information about the gene, whereas the right-hand panel of “Mutation analysis” provides links to 
the detailed data of mutations that were detected in the EGFR. Within the panel, there is a “Histogram” link that allows detailed analysis 
of the gene alterations, whose features are shown in the framed panel. One of the histograms shows the distribution of EGFR tyrosine 
kinase domain mutations, with the most frequently occurring mutation being L858R. The distribution can also be visualized as a table (on 
the right). B. The screenshots present the results for the representative lung adenocarcinoma cancer type. The left framed panel shows a 
list of the 20 most frequently mutated genes, whereas the middle and right framed panels display a CNV plot and the Mutation Matrix, 
respectively. The CNV circular plot shows a summary of the copy number variations across the whole genome of the lung adenocarcinoma. 
The height of the corresponding bars shows the total number of samples with CNV in a specific region. The Mutation Matrix presents 
alterations in the most frequently mutated genes (y-axis) in the adenocarcinoma samples that have the highest number of alterations (x-axis). 
C. Circular plot of all of the alterations (coding mutations, gene expression and CNV) that are detected in an individual exemplary sample 
(TCGA-A6-5657-01) of adenocarcinoma. 
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Figure 5: Exemplary data analysis and visualization available in the cBioPortal. A. The table shows nonsynonymous 
mutations in the TCGA-50-5944-01 sample of lung adenocarcinoma. They are characterized by the mutation name, its type, its frequency 
and its effect on the expression of the mutated gene. Additional information on the frequency of specific mutations can be found under the 
“cBioPortal” and “Cosmic” columns. The table also provides the information about the predictable impact of a given mutation on the gene 
function (under the Mutation Assessor tool). B. Genes with copy number alterations (CNAs) in the TCGA-50-5944-01 sample are shown. 
The table also contains the information on the frequency of CNA in a specific gene and the effect of the alterations on the gene expression. 
C. Summary of the genomic alterations in four selected genes of lung adenocarcinoma samples. Each column shows an individual tumor 
sample in which homozygous deletions (blue), amplifications (red), missense mutations (green squares), truncating mutations (black 
squares) and no mutation changes (grey) were found. D. A plot of the correlation between copy number alterations and mRNA expression 
of the exemplary EGFR gene. E. Kaplan-Meier plot of overall survival shown for patients with (red) and without (blue) changes in EGFR. 
F. Summary graph of EGFR alterations (shown in different colors) in individual studies deposited in the portal. For a selected study, the 
distribution of the mutations is shown in the inset. For a selected mutation (here L858R), a 3D interactive protein structure can be displayed 
(the position of the mutation is indicated in red). 
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COSMIC

The Catalogue of Somatic Mutations in Cancer 
(COSMIC) was developed at the Wellcome Trust Sanger 
Institute in Hinxton, UK [37, 39-43]. It is the most 
comprehensive database of somatic mutations in cancer. 
The portal provides information about the CNV and 
the expression level of cancer-associated genes that is 
obtained via the analysis of all of the samples that were 
tested for specific mutations (both positive and negative 
results are reported). This tool enables the calculation 
of the objectivized frequency of mutations in different 
types of tumors. The records included in COSMIC are 
derived from two sources: (i) a literature review of over 
21,000 research papers and (ii) two projects: TCGA 
and ICGC. Together, these sources provide information 
that is obtained from more than a million samples. For 
almost 20,000 samples, whole-genome sequencing was 
conducted, which provided complete information about 
alterations in their genomes. In addition to the above, 
literature curation allowed the generation of the Cancer 
Gene Census, which is available under the COSMIC 
external links; thus far, it is the most reliable list of cancer-
associated genes. 

The data integrated in COSMIC can be searched 
by sample name, by gene name, and via cancer browser 
(Figure 4). Searching by the sample name allows the user 
to obtain a genome-wide overview of all of the cancer-
associated events (e.g., mutations, gene fusions, and CNV) 
associated with a sample of interest. The second approach 
enables the user to overview all of the data that is related 
to a specific gene, such as its sequence, mutations, fusions, 
copy number variations, and expression. The data that 
refer to a specific cancer type (mutations, fusion and 
copy number and expression alterations of genes) can be 
retrieved via the cancer browser. 

Due to its comprehensiveness, COSMIC is widely 
used and has been cited in hundreds of publications (e.g., 
[44-56]). For example, Chen et al. [46] used this database 
to confirm the presence of specific mutations in the KRAS, 
NRAS, and BRAF genes in myeloma cell lines. In another 
study, Ostrow and colleagues [48] took advantage of 
the Cancer Gene Census to select well-known cancer-
associated genes for further analyses of the dynamics of 
the evolutionary process within tumors, with a focus on 
breast cancer.

cBioPortal

The cBioPortal [57-59] was developed at the 
Memorial Sloan-Kettering Cancer Center in New 
York City, NY USA. This portal contains genomic 
data, including copy number alterations, mRNA and 
microRNA expression, DNA methylation and protein 
and phosphoprotein abundance, which were obtained for 

multiple types of cancer. Currently, the portal collects 
records that were derived from 91 individual cancer 
studies, in which 31 types of cancer were analyzed with 
the use of over 21,000 samples. Because the tools that 
were integrated in the portal perform different types of 
analyses, different statistical tests can be used to assess 
the significance in specific analysis (for example, Fisher’s 
exact test can be used to calculate the significance of 
mutual exclusivity of two genes or the log-rank test 
can be used to calculate survival analysis significance). 
All of the portal data can be retrieved in a format that is 
compatible with the R framework for statistical computing 
and graphics.

Cancer-associated alterations deposited in the 
cBioPortal can be browsed as (i) the overview of all of the 
genomic events that were detected in an individual cancer 
sample (Figure 5A, 5B), (ii) alterations in a specific gene 
across all of the samples that were included in one study 
(Figure 5C-5E), and (iii) a comparison of the frequency of 
the alterations in a given gene across all 91 studies (Figure 
5F). For each study, it is also possible to inquire which 
genes are most frequently altered in the analyzed set of 
samples. In the cBioPortal, the genomic data are integrated 
with clinical outcomes, which allows determining whether 
a specific gene plays a potentially oncogenic role in 
a given cancer type. Apart from the on-line analysis of 
data deposited in the portal, there is also the possibility 
to download the results that were obtained for a specific 
study. Additionally, the browser enables the visualization 
of data that is uploaded by the user. 

A wide range of tools that are available makes 
the portal useful in various types of analyses, which has 
resulted in its popularity and applicability (e.g., [51, 60-
65]). For example, the authors of this paper used this 
portal to determine the correlation between copy number 
changes and expression level of two miRNA biogenesis 
genes (DROSHA and DICER1) that were found to be 
frequently amplified in lung cancer [63]. Other authors 
used the cBioPortal for the analysis of the PARK2 deletion 
in low-grade glioma and glioblastoma and for the analysis 
of the correlation between PARK2 mRNA expression and 
prognosis in patients [60]. Lu and colleagues used the 
portal to retrieve copy number data for the design of the 
model that predicts genetic interactions in human cancer 
[61].

IntOGen

The Integrative Oncogenomics Cancer Browser 
(IntOGen) [66] was developed by the Biomedical 
Genomics Group integrated in the Research Unit on 
Biomedical Informatics of the University Pompeu Fabra, 
Biomedical Research Park in Barcelona. The browser 
contains the results of computational secondary analyses 
of oncogenomic data from several large genome-wide 
projects. The analyses were focused on the selection 
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Figure 6: Exemplary results generated in the PPISURV and MIRUMIR databases. A. Results generated with the PPISURV. 
Survival analysis shown for representative EGFR and its interactome. From the top: the first table depicts the summary of EGFR interactions 
that are annotated according to different interactomes across the available datasets. The last column of the table provides a link for more 
detailed characteristics of a selected interactome (shown in the second table). It includes the results of the analysis of the influence of the 
particular interactome on survival determined for all of the available datasets. The third table presents datasets on the direct correlation 
between EGFR expression and survival. The last column of the table is a link for the visualization of the data in the Kaplan-Meier graph. 
The exemplary graph shows the influence of EGFR expression on survival in lung adenocarcinoma patients. B. Results generated with 
MIRUMIR. The table shows a summary analysis for a representative microRNA-21 on the influence of its expression on survival in a 
specific cancer type. The inset represents the Kaplan-Meier graph of the effect of the microRNA expression on disease-free survival in 
breast cancer.
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of cancer-associated genes that are known as drivers. 
IntOGen is one of the most dynamically developing and 
updating oncogenomic browsers. 

In the initial release of the browser, catalogued 
cancer data were provided in a set of three integrated 
web-based sub-portals, namely, the IntOGen Arrays 
[67], IntOGen TCGA [68], and IntOGen Mutations [69], 
which allowed the browsing of visualized cancer data 
from different perspectives. The first sub-portal, i.e., 
the IntOGen Arrays, exploited cancer data on genome-
wide expression and copy number for analyses aimed 
at selecting genes and molecular pathways that are 
associated with specific cancer types and subtypes [67]. 
Analyses provided by the other two IntOGen sub-portals 
were performed on a partially different set of oncogenomic 
data but with the use of a similar rationale. In the IntOGen 
TCGA, the set of somatic sequence alterations identified 
by exome sequencing of over 3,000 tumors from 12 cancer 
types (TCGA pan cancer data) was used for analyses 
focused on the identification of cancer-associated genes, 
i.e., drivers [68]. The IntOGen Mutations was focused on 
the evaluation of the role of somatic sequence variants in 
carcinogenesis and the identification of cancer drivers. In 
addition to the TCGA data, this sub-portal took advantage 
of the results from other large projects, e.g., the ICGC. 
The portal provided results obtained via the analyses of 
over 4,500 cancer exomes/genomes from 13 cancer types 
[69]. The results previously gathered in the interactive 
web-based platforms are currently available in the form of 
downloadable databases at the IntOGen site [66].

The introduction of a new release of IntOGen 
(release 2014.12) was aimed at building a bridge between 
molecular oncogenomics and clinical practice (the 
personalization of medicine) [70]. Nuria Lopez-Bigas and 
other co-authors of the browser proposed a strategy of 
“in silico prescription” of tailored anticancer therapy. In 
the first stage of the strategy, a secondary computational 
analysis of oncogenomic data from 6,792 patients of 28 
different cancer types was performed. The analysis was 
focused on the evaluation of the role of somatic sequence 
alterations (including simple somatic variants, copy 
number alterations and fusion events) in carcinogenesis 
and the identification of cancer drivers. The drivers were 
selected when focusing on the following factors: mutation 
frequency in comparison to background (MutSigCV 
tool [47]), the presence of highly functional mutations 
(Oncodrive FM tool [71]), and regional clustering 
of mutations (Oncodrive CLUST tool [72]) [68, 70]. 
Although, all of the above tools take advantage of various 
algorithms and statistical methods, they all are based 
on similar principles and utilize similar oncogenic gene 
features. It is important to note that all of the implemented 
algorithms are supported by appropriate statistical 
tests. Information about the 459 identified driver genes, 
including their “mode of action” [loss-of-function (LoF), 
gain-of-function (GoF) or switch-of-function (SoF)] as 

assessed with the use of the OncodriveROLE tool [73], 
is deposited in the Cancer Drivers Database. It can be 
either interactively visualized in the IntOGen web site 
[66] or downloaded for external analysis. In further stages 
of the strategy, Rubio-Perez and colleagues created the 
Cancer Drivers Actionability Database, which catalogues 
the already available and candidate therapies (under 
preliminary research or clinical trials) that are tailored 
to the cancer genomes of patients who were analyzed in 
the first stage. The Cancer Drivers Actionability Database 
can also be downloaded from the IntOGen website [66]. 
Additionally, the IntOGen portal can be exploited for the 
analysis of external data in the context of a single tumor 
or a cohort of tumors.

 IntOGen is increasingly used by scientists from 
various cancer-associated fields for confirmation or 
identification of a potential driver role of genes of interest 
(e.g., selected based on experimental results) [74-78]. 
For example, Kovac and colleagues used IntOGen and 
MutSigCV programs for computational validation of 
20 candidate papillary renal cell carcinoma (pRCC)-
specific driver genes, which were selected based on the 
sequencing analysis of 31 exomes or genomes of pRCCs. 
The computational analysis of TCGA pRCC data for 
somatic single nucleotide variants (SNVs) in the candidate 
genes revealed significantly mutated genes and confirmed 
SETD2, BAP1, NFE2L2 and CUL3 as drivers, with a more 
modest degree of support for some other genes from a set 
of experimentally predefined candidates [74].

BioProfiling.de portal

The BioProfiling.de portal [79, 80] contains three 
distinct databases: PPISURV [81, 82], MIRUMIR [83, 
84], and DRUGSURV [85, 86]. The main purpose of 
PPISURV [81, 82] is the identification of important 
cancer-associated genes that do not have direct impact 
on the cancer survival outcome but nevertheless affect 
cancer by various interactions with other genes. Such a 
map of connections is called a “gene interactome”; it is 
created based on several external databases, which deposit 
information about the following: direct protein interactions 
(deposited in the IntAct Molecular Interaction Database 
[87]), regulatory and signaling pathways (Reactome, NCI 
Pathway Interaction Database, and HumanCyc databases) 
[21, 36, 88], and protein post-translational modifications 
(PhosphoSitePlus database) [89]. PPISURV allows users 
to analyze the influence of the gene interactome as well as 
a gene of interest on survival (Figure 6A). These analyses 
are performed with the use of over 40 whole transcriptome 
expression studies that were performed with the use of 
approximately 8,000 samples that represent 17 types of 
cancer. 

The MIRUMIR provides a similar type of analysis 
as the PPISURV; however, it is focused on the impact of 
specific microRNA gene expression on survival in specific 
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cancer types. Either MIRUMIR or PPISURV enable the 
visualization of survival data via Kaplan-Meier graphs, 
showing the influence of the expression of a gene of 
interest on survival in a specific cancer type (Figure 6B). 

The third database that is incorporated in the 
BioProfiling.de portal is DRUGSURV [85]. DRUGSURV 
provides the opportunity to explore the survival effect 
of expression alterations of genes that are known to be 
modulated by a selected drug. This database includes 
information about approximately 1,700 drugs that were 
approved by the Food and Drug Administration (FDA), 
along with approximately 5,000 experimental drugs. 
A specific drug, cancer type or gene can be queried and 
investigated in terms of its anticancer potential.

The advantage of the tools that are available in the 
BioProfiling.de portal is that all of them provide results 
that are supported by appropriate statistical analysis (the R 
statistical package), which is not always available for the 
tools in the other oncogenomic portals. A false discovery 
rate control procedure is implemented to adjust the 
p-values when there is multiple testing.

The usefulness of the above-mentioned databases 
has been confirmed in a number of publications (e.g., 
[63, 90-98]). For example, Schittek et al., [90] used the 
PPISURV to perform survival analysis on patients who 
were stratified based on the expression of CK1 gene 
isoforms (CSNK1A1, CSNK1D, and CSNK1E) in different 
cancers. In another study [99], MIRUMIR was used to 
evaluate the potential of miR-200c and miR-141 to serve 
as biomarkers in breast cancer.

CONCLUSIONS

Since the initiation of large-scale oncogenomic 
projects, a variety of databases and web-based portals 
have been created to enable the interactive visualization 
and interpretation of the abundant genome-wide cancer 
data. The range of available web-based portals is not 
limited to those described in our review. Among other 
noteworthy portals that provide sets of visualization 
tools that are helpful for oncogenomic data analysis are 
Oasis [100, 101], Oncomine [102, 103], Cancer Genetics 
Web [104], and CaSNP [105, 106]. In short, Oasis is a 
recently launched open-access web portal for explanatory 
analysis of cancer data. This portal was developed based 
on a custom version of the BioMart framework that 
was designed for oncogenomics data analysis, and it 
provides a unique set of visualization tools. Oncomine 
is another portal that provides useful visualization and 
analytical tools, which can browse and analyze over 
715 expression and sequence alteration datasets. The 
Cancer Genetics Web is a web-based tool that can be 
used to gather literature that is related to a specific cancer 
type/predisposing syndrome or a gene of interest that is 
potentially associated with cancer. This tool provides 
a short summary about a disease and gene of interest, 

as well as a list of the latest publications and useful 
external links. Another interesting feature of the Cancer 
Genetics Web portal is a colorful panel of summarizing 
keywords that are available for each gene. The fourth 
portal is CaSNP, which gathers the results of genome-
wide CNA profiling that was performed with the use of 
SNP arrays across 34 different cancer types. In most of 
the portals, the datasets and methods that are applied in 
their analyses and graphical presentations are continually 
updated. As a result, the portals deliver complex pictures 
of cancer genome alterations and their potential impact 
on cancer molecular pathogenesis. Importantly, the 
portals are very intuitive and address a wide community 
of researchers, who are not necessarily familiar with 
advanced computational methods. The users can take 
advantage of oncogenomic portals to further explore the 
cancer molecular basis and select new candidate cancer-
associated genes for experimental validation. Regardless 
of current interest in exploring data that is gathered in the 
portals, the usefulness of the tools that are available in the 
oncogenomic portals will be verified in time by the users. 
Ultimately, it is expected that the utilization of the portals 
for the analysis of expanding oncogenomic data will make 
a substantial contribution to our understanding of cancer 
molecular etiology and the translation of extended cancer 
genomic knowledge into clinical practice. 
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