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ABSTRACT

Targeted proteomics has flourished as the method of choice for prospecting 
for and validating potential candidate biomarkers in many diseases. However, 
challenges still remain due to the lack of standardized routines that can prioritize 
a limited number of proteins to be further validated in human samples. To help 
researchers identify candidate biomarkers that best characterize their samples 
under study, a well-designed integrative analysis pipeline, comprising MS-based 
discovery, feature selection methods, clustering techniques, bioinformatic analyses 
and targeted approaches was performed using discovery-based proteomic data 
from the secretomes of three classes of human cell lines (carcinoma, melanoma 
and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, 
Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features 
Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma 
and 271 for melanoma, which were differentially abundant between the tumor classes. 
We further tested the strength of the pipeline in selecting candidate biomarkers by 
immunoblotting, human tissue microarrays, label-free targeted MS and functional 
experiments. In conclusion, the proposed integrative analysis was able to pre-qualify 
and prioritize candidate biomarkers from discovery-based proteomics to targeted MS.

INTRODUCTION

Discovery-based proteomics has been known as the 
most powerful tool for globally profiling proteomes and 
has been employed to mine biomarkers and therapeutic 

targets in many clinical conditions [1–5]. However, the 
contribution of novel molecules in clinical practice has 
been disappointing, and several reasons for failure have 
arisen in the long processes of biomarker and therapeutic 
target validation [6–8].
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Recently, targeted proteomics has succeeded 
as the method of choice to overcome the drawbacks 
in validating and verifying potential biomarkers and 
therapeutic targets [7, 9–11]. Nevertheless, discovery-
based proteomics can provide a large contribution in 
generating hypothesis-driven targets based on shotgun 
proteomics data [2, 12–15]. In addition to the bottleneck 
of discovery strategies such as the technical limitations of 
peptide quantification, undersampling, stochastic sampling 
process, and dynamic range [6, 8], there is a limited ability 
to use unbiased and robust methods to treat large-scale 
data as a whole when aiming to determine novel candidate 
biomarkers and therapeutic targets.

Ideally, for candidate biomarker outcomes in 
proteomics, the list of thousands of proteins identified 
by the discovery methods must be reduced into a 
smaller subset of features that will provide the maximal 
discriminating power between the conditions of optimal 
sensitivity and specificity. Many methods have already 
been proposed to compare the protein abundance in label-
free shotgun proteomics with the aim of finding evidence 
for candidate biomarkers in proteomics datasets. Most of 
these methods are based on p-values that were derived 
from t-test [16, 17], analysis of variance (ANOVA) 
[18], Fisher’s exact test [19, 20], etc. However, although 
these methods point to differences in protein abundance 
individually across conditions, they are limited in 
analyzing sets of data that contain multiple classes as 
well as providing an optimal feature set that capture the 
maximal variance in the data. In this work, we aimed to 
retrieve ranked lists of candidate biomarkers, which are 
considered here to be proteins that change in abundance on 
average between the different biological sample classes. 
A combination of three different methods was tested: a 
univariate method, Beta-binomial, a semi-multivariate 
method, Nearest Shrunken Centroids (NSC), and a 
multivariate method, Support Vector Machine-Recursive 
Features Elimination (SVM-RFE).

The mentioned methods were selected based 
on the following main reasons: (1) Beta-binomial is a 
univariate statistical method that was described by Pham 
et al. [21] to test the significance of differential protein 
abundances that were expressed in spectral counts in mass 
spectrometry-based proteomics. Moreover, experimental 
results from the same work showed that the Beta-binomial 
test performs favorably in comparison with other methods 
(e.g., Fisher’s exact test, G-test, t-test and local-pooled-
error technique) on several datasets in terms of both the 
true detection rate and the false positive rate and can also 
be applied in experiments with one or more replicates and 
in multiple condition comparisons; (2) NSC has already 
been shown to have the best performance compared 
to different univariate and multivariate methods in the 
previous work by Christin et al. [22]; (3) SVM-RFE 
is based on a machine-learning technique that has a 
completely different approach compared to NSC and 

was chosen as a complementary method to test both 
the results and the performances. NSC and SVM-RFE 
were combined to a double cross-validation step to 
define a final optimal set of discriminating proteins for 
distinguishing the three secretome classes with strictly low 
errors. Therefore, all of the three methods have already 
been separately tested and benchmarked for proteomics 
datasets, but they have not been used together in the same 
pipeline in which both the initial and final datasets were 
compared by different clustering techniques (heat map/
hierarchical clustering and neighbor joining clustering) 
and silhouette coefficients. Furthermore, the final ranked 
lists of proteins were compared in a Venn diagram to be 
finally evaluated/validated by targeted proteomics in our 
proposed discovery-to-targeted pipeline.

In summary, the pipeline described in this work 
was tested on well-controlled data obtained from the 
secretomes of human melanoma (A2058 and SK-MEL-28), 
skin- and tongue-derived carcinoma (A431 and SCC-9, 
respectively) and non-cancerous (HaCaT and HEK293) 
cell lines. The MS-based discovery step was based on 
a routine shotgun analysis, which was followed by data 
analysis using the three mentioned approaches (Beta-
binomial, NSC and SVM-RFE). These feature selection 
methods indicated that there was a panel of 137 proteins 
for carcinoma and 271 proteins for melanoma that were 
differentially abundant in these cell types. These selected 
proteins were then investigated by bioinformatics 
analyses, such as protein-protein interaction networks 
construction, enrichment analysis and literature curation. 
A protein network anticipated a potentially important 
role for the set of candidate biomarkers in the carcinoma, 
which was especially related to the complement and 
coagulation cascades, whereas in melanoma, the pathways 
associated with the cell cycle, cell adhesion and ubiquitin-
mediated proteolysis were highlighted as being among 
the most altered in this pathologic condition. We further 
tested the strength of the pipeline in selecting candidate 
biomarkers by immunoblotting, human tissue microarrays, 
label-free targeted MS and functional experiments. It is 
noteworthy that the proteins Complement Factor B (CFB) 
and Complement C3 (C3) were found in significantly 
increased levels in oral squamous cell carcinoma 
(OSCC), compared to the adjacent normal tissue, and in 
human saliva from oral squamous cell carcinoma (OSCC) 
patients, using the pseudoSRM approach. Moreover, 
CFB knockdown decreased both the migration in the 
skin-derived epidermoid carcinoma (A431) cell line and 
chemotaxis in human macrophages. Furthermore, the 
pipeline was also applied to a published proteomics dataset 
of prostate cancer [23], and the results were compared 
with the approaches that were previously used.

In conclusion, we suggest that our proposed 
integrative analysis based on a discovery-to-targeted 
pipeline is especially valuable to better characterize 
candidate biomarkers for targeted MS verification.
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RESULTS

A novel experimental pipeline has been proposed in 
this study to provide the bridge between discovery MS and 
targeted MS. This pipeline comprises four steps: MS-based 
discovery, feature selection analyses, bioinformatic tools to 
boost the extraction of biological information and targeted 
validation (Fig. 1). As a proof of concept, melanoma 
(A2058 and SK-MEL-28), skin and tongue-derived 
carcinoma (A431 and SCC-9, respectively) and non-
cancerous cell lines (HaCaT and HEK293) had the protein 
content of their secretome collected, concentrated, trypsin 
digested and analyzed by LC-MS/MS. State-of-the-art 

univariate and multivariate methods were then employed 
to identify the most differentially abundant proteins 
among the three classes. A bioinformatics platform 
compiled these data into integrative networks that revealed 
cancer-specific biological information. These networks 
were able to characterize both carcinoma and melanoma 
cell archetypes and to point out pathways that could be 
potentially altered in each condition. Protein expression by 
tissue array in carcinoma and melanoma patients’ samples 
and by saliva samples, as well as gene silencing and 
functional experiments in cell lines provided validation for 
the proposed pipeline. Along with these findings, we also 
described the results that were obtained when the same 

Figure 1: Experimental workflow and overview of the proteomics and bioinformatics analyses, validations and 
functional assays. 
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pipeline was applied to an external dataset, which was a 
published study on prostate cancer [23]; these findings 
reinforced the effectiveness of our approach.

Data analyses

Label-free quantitation in data dependent analysis

A list of 2,574 proteins with less than 1% FDR 
was generated by the Scaffold Q+ software from 
three biological replicates (Supplementary Table S1 
and Table S2). Correlation analysis was performed to 
compare the output protein identification and quantitation 
(spectral counts) list of all possible pair-samples. High 
reproducibility was observed among the biological 
replicates, in which the R squared ranged from 0.64 to 0.96 
(Supplementary Table S3).

From the 2,574 proteins, 877 proteins presented 
spectral counts ≤2 and were discarded from the following 
steps, leaving 1,697 remaining proteins for the subsequent 
analyses. The number of proteins that were identified in 
each experiment is shown in Table 1, whereas the number 
of proteins that were exclusive or shared by the cell lines 
is available in Supplementary Fig. S1.

Clustering and feature selection analyses of 
proteomics data

An unsupervised hierarchical clustering performed 
with the 1,697 proteins mentioned above segregated the 
samples into two main classes, one that was composed 
exclusively by melanoma cell lines and the other that 
was composed by carcinoma and non-cancerous cells 
(Fig. 2A). Interestingly, the basal cluster segregated 
the cells according to their tissue of origin: from the 
epithelium-derived cell lines (SCC-9, A431 and HaCaT), 
from the skin-derived melanoma cells (SK-MEL-28 and 
A2058) and from the human kidney non-cancerous cells 
(HEK293), although a perfect group segregation for either 

non-cancerous or cancer cell lines was not observed. The 
result of this exploratory, unsupervised analysis indicated 
that melanoma’s secretome is radically different from that 
produced by carcinoma and non-cancerous cells. That 
finding is probably due to the considerable similarities 
that are found between carcinoma and non-cancerous cell 
secretome, despite their obvious differences.

Aiming to evoke the most prominent dissimilarities 
among the groups, univariate, semi-multivariate and 
multivariate analyses were conducted, including the Beta-
binomial, NSC and SVM-RFE methods, respectively. 
The models retrieved 601, 130 and 13 proteins, 
respectively, that were differentially abundant among 
the three secretome classes. These proteins were further 
associated with each class after a decision boundary step 
(Supplementary Table S4).

Both the SVM-RFE and NSC methods had their 
performance assessed in terms of double cross-validation 
errors, accuracy, sensitivity and specificity. These models 
presented 5.5% and 0% errors in double cross-validation, 
and 94.4% and 100% accuracy, respectively. Regarding 
the sensitivity and specificity, SVM-RFE showed 83.3% 
sensitivity for carcinoma and 100% for the other classes 
and 91.7% specificity for non-cancerous and 100% for the 
other classes, whereas NSC exhibited 100% sensitivity 
and specificity for all of the three classes (Supplementary 
Table S5).

The candidate biomarkers retrieved from the 
feature selection analyses were also used to perform the 
hierarchical clustering and heat maps again using the 
MetaboAnalyst platform (Fig. 2B). By this later analysis 
considering only the selected features, the same-class cell 
lines were clustered together, which confirms the set of 
retrieved candidate biomarkers as good discriminating 
proteins for distinguishing the three secretome classes 
(Fig. 2B). From this set, the Beta-binomial, NSC and 
SVM-RFE models retrieved 135, 32 and 4 characteristic 
proteins for carcinoma and 269, 78 and 6 proteins for 
melanoma, respectively (Supplementary Table S6).

Table 1: Number of proteins identified per experiment in each cell line

Cell Line
Number of identified Proteins by Mass Spectrometry

Exp.1 Exp.2 Exp.3

HaCaT 2015 2197 2201

HEK293 1690 1904 1861

A431 1879 1781 1884

SCC-9 2036 2213 2180

A2058 1950 1926 1974

SK-MEL-28 1660 1554 1770

Total 2574

Total Spectra 151,221
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Furthermore, the final ranked lists of 601, 130 and 
13 candidate biomarkers for all three classes, which 
resulted from the Beta-binomial, NSC and SVM-
RFE models, respectively, were compared by a Venn 
diagram and by the Jaccard similarity coefficient. This 
comparison showed that the SVM-RFE optimal feature 
subset is almost completely shared by the NSC and Beta-
binomial models (12 out of 13 proteins) and that the 
NSC optimal feature subset is almost completely shared 
by the Beta-binomial model (128 out of 130 proteins) 
(Fig. 2C). Moreover, based on the Jaccard similarity 
coefficient, the comparison of protein rankings resulting 
from the three models (Beta-binomial, NSC and SVM-
RFE) is almost linear, not showing large variances in the 
similarity coefficient from the 10th to the 130th position 
in the ranking (green line, inset of Fig. 2D). This means 

that the three models have almost a constant similarity 
coefficient (~0.3) from the 10th to the 130th position 
in the ranking. From the 130th to the ~200th position 
there is an increase in the slope of the curve reflecting 
an increase in the similarity coefficient (Fig. 2D, main 
graphic). Notably, the SVM-RFE model was able to 
discriminate the three classes based on the smallest set 
of only 13 proteins (gene names: C3, CLU, MEGF10, 
MMP8, BANF1, VIM, APEX1, CA2, TACSTD2, KRT8, 
TNC, C1R and IGFBP7), of which only BANF1 was 
not retrieved by the other two methods. In contrast, as 
expected for a univariate method, the Beta-binomial model 
yielded the largest set of differentially abundant proteins, 
covering all of the proteins that were retrieved by the 
two multivariate methods (except for two proteins from 
NSC). Notably, using only the 12 candidate biomarkers 

Figure 2: Comparison of the three feature selection methods (Beta-binomial, SVM-RFE and NSC) used to identify 
differentially abundant proteins among carcinoma, melanoma and non-cancerous cells. A. Clustering of the whole 
secretome dataset before applying feature selection methods. From the 2,574 proteins identified and quantified by spectral counts, 1,697 
(65.9%) compose the heat map. The 877 remaining proteins exhibited ≤2 spectral counts and were excluded from the analysis. B. Clustering 
after applying feature selection methods. 603 significant differentially abundant proteins among melanoma, carcinoma and non-cancerous 
classes selected by Beta-binomial, NSC and SVM-RFE analyses compose the heat map. C. Venn diagram showing the intersections among 
the optimal feature subsets (N) retrieved by the three methods. D. Jaccard similarity coefficient vs. the optimal feature subset (N) retrieved 
by each method. E. Clustering of the 12 significant differentially abundant proteins among melanoma, carcinoma and non-cancerous 
classes identified in the intersection of Beta-binomial, NSC and SVM-RFE analyses. The secretome dataset is composed by non-cancerous 
cells (HaCaT and HEK293), carcinoma (A-431 and SCC-9) and melanoma (A2038 and SK-MEL-28) cell lines.
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retrieved by the three feature selection methods, a 
perfect segregation among the carcinoma, melanoma 
and non-cancerous classes was also observed (Fig. 2E). 
The complete ranked protein lists that resulted from the 
three methods are available in Supplementary Table S4; 
the plots showing the spectral count distribution in the 
melanoma, carcinoma and non-cancerous cells for the 
130 candidate biomarkers retrieved from NSC can be 
found in Supplementary Fig. S2.

In addition to the hierarchical clustering and heat 
map analysis, similarity trees were constructed from a 
Euclidean distance matrix of the 18 samples considered 
for the feature selection analyses. Fig. 3 shows that the 
Neighbor Joining (NJ) trees were capable of showing the 
most similar elements of the set, which were present in 
the same or in nearby branches. In this work, a reasonable 
separation of the three classes was found when the 
whole dataset was considered in the NJ tree construction 
(Fig. 3A) (silhouette coefficient, SC > 0.2). However, as 
was also shown by the previous unsupervised hierarchical 
clustering and heat map analysis for the whole dataset, 
the melanoma samples were the only ones that clustered 
together in the same or nearby branches connected to 
the same node, separated from the carcinoma and non-
cancerous samples, which were distributed in different 
branches and did not show a perfect segregation in their 
respective classes. On the other hand, as expected, there 
was an improvement in the NJ clustering and silhouette 
coefficients that were calculated after feature selection, 
considering only the candidate biomarkers that were 
retrieved from each model (Fig. 3B–3D). For instance, if 
a labeled dataset has a silhouette coefficient that is closer 
to 1 (ranging from −1 to 1), then the classes are almost 
homogeneous and different from each other and classifiers 
will probably perform well in constructing a good model 
with a low double cross-validation error. Consequently, 
this finding also means that sets of good discriminating 
features (proteins) among the classes could be retrieved 
by feature selection analysis.

Besides the feature selection methods described 
above, the univariate ANOVA test was also performed in 
our data to compare our results to a classical statistical 
method. In total, ANOVA retrieved 875 differentially 
abundant proteins (p < 0.05, Supplementary Table S4). 
The ANOVA result corroborates the results obtained by 
the three methods proposed in our pipeline, which can be 
observed by the intersections in a second Venn diagram 
built for the four output lists of candidate biomarkers 
(Supplementary Fig. S3). However, it brought over 384 
exclusive proteins from a total of 987 proteins selected 
by the four methods (~40%), which is a large percentage 
for ANOVA to be considered in the pipeline as a method 
that could contribute with an optimal set of features for 
selecting candidates. Moreover, when we compare the 
rank index of candidate biomarkers retrieved by the 
three feature selection methods proposed in the pipeline 
to the rank index given by ANOVA, we observed that 

the reduced list of candidates selected by the three 
approaches were not the top candidates chosen by ANOVA 
(Supplementary Table S4).

The same feature selection analyses were also 
performed for a published proteomics dataset on prostate 
cancer [23] to validate our approach. The output final 
ranked lists of candidate biomarkers that resulted from 
each method (Supplementary Tables S7–S11) were 
analyzed by a Venn diagram, which showed that five 
candidates that were validated/verified by different 
approaches in the original work by Kim et al. [23] were 
also identified in the intersections of the Venn diagram 
(Supplementary Table S10 and Supplementary Fig. S4), 
which reinforces the effectiveness of the proposed 
discovery-to-targeted pipeline.

Bioinformatics analyses

To evaluate the protein interaction profile within 
each tumor class, protein-protein interaction networks 
were constructed using the IIS software for the 
candidate biomarkers obtained by the feature selection 
methods and estimated to be associated to carcinoma 
or melanoma classes (Supplementary Table S6.). The 
networks represent a “snapshot” of the secretome of both 
classes, which illustrate the proteins that most probably 
play a role in the secretome regulation of each tumor 
type (Fig. 4, Supplementary Tables S12 and S13). Our 
network analysis showed direct connections between 
the identified candidate biomarkers and the proteins that 
are involved in enriched KEGG pathways (p ≤ 0.05), 
highlighting the most important pathways that are likely 
to be activated/inhibited in each disease. Accordingly, 
the networks suggested a potentially important role for 
carcinoma biomarkers in focal adhesion, regulation of 
actin cytoskeleton, ECM-receptor interaction, glutathione 
metabolism, glycolysis/gluconeogenesis and, especially, 
complement and coagulation cascades, which were not 
enriched among the melanoma biomarkers (Fig. 4A). In 
contrast, focal adhesion, cell cycle, regulation of actin 
cytoskeleton, ECM-receptor interaction, cell adhesion 
molecules, glycolysis/gluconeogenesis and ubiquitin-
mediated proteolysis were identified as being significantly 
enriched (p ≤ 0.05) pathways in the melanoma secretome; 
these pathways presented at least one candidate biomarker 
that participates in each of them. Focal adhesion and 
ECM-receptor interaction, especially, appear to have 
a relevant role in melanoma due to the outstanding, 
differential abundance of the proteins that belong to these 
two pathways (Fig. 4B). All of the significant enriched 
pathways that were extracted from both carcinoma and 
melanoma networks are listed in Supplementary Tables 
S12 and S13, respectively.

Furthermore, to verify whether the candidate 
biomarkers for carcinoma and melanoma had been 
previously described as related to cancer or to some 
biomarker application, an Ingenuity (IPA) biomarker filter 
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module analysis and a search in the Human Protein Atlas 
Database were performed.

The IPA biomarker analysis retrieved 45 (32%) 
proteins of the candidate biomarkers identified in our study 
for carcinoma and 76 (28%) for melanoma, which have 
been previously described as being strongly associated with 
cancer and/or involved in biomarker applications. Likewise, 
the Human Protein Atlas Database retrieved 32 (23%) 
and 60 (22%) proteins of the carcinoma and melanoma 
candidates, respectively, which were found to be previously 
associated with cancer (Supplementary Table S6).

These analyses were also performed for the set of 
candidate biomarkers that were retrieved by the feature 
selection methods applied to the prostate cancer proteomics 

dataset published by Kim et al. [23]. Interestingly, from 
the 47 proteins that were identified in the intersection 
of the three methods (Supplementary Table S10 and 
Supplementary Fig. S4), IPA determined that 13 (28%) 
proteins had been associated with some biomarker 
application, whereas 17 (36%) proteins had already been 
described as candidate cancer biomarkers according to the 
Human Protein Atlas Database (Supplementary Table S11).

Validation of the expression of candidate 
markers for melanoma and carcinoma

Based on the available commercial antibodies, 
six up-regulated proteins retrieved by Beta-binomial, 

Figure 3: Neighbor joining (NJ) clustering calculated from a Euclidean distance matrix of the secretome dataset 
samples, considering A. all features (1,697 proteins), B. Beta-binomial (601 proteins), C. NSC (130 proteins) and D. SVM-RFE 
(13 proteins) features. SC (tree) stands for silhouette coefficient calculated from the NJ tree and SC (data) stands for silhouette coefficient 
calculated directly from the original data of each analysis.
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NSC and/or SVM-RFE models were chosen to be 
validated by immunoblotting. The overexpression of 
Fibronectin (FN1), Tenascin-C (TNC) and Growth/
differentiation factor 15 (GDF15) in melanoma cell lines 
and of Complement factor B (CFB), Talin-1 (TLN1) and 
Epidermal growth factor receptor (EGFR) in carcinoma 
cell lines was confirmed in the conditioned media of the 
six cell lines (Supplementary Fig. S5).

To further investigate whether those candidate 
markers were clinically associated with tumors, we used 

tissue microarrays with human melanoma samples to 
examine TNC and GDF15 expression. Both TNC and 
GDF15 were found in the cytoplasm of the nevoid cells, 
with significantly higher expression levels in the tumor 
cells compared with normal cells (Fig. 5A and 5B). 
Interestingly, the expression of GDF15 was significantly 
higher in metastatic than in primary melanomas (one-way 
ANOVA, p < 0.0001).

The expression of CFB was limited to the cytoplasm 
of the basal and suprabasal layers of the normal oral tissue, 

Figure 4: Interaction networks of the identified A. carcinoma and B. melanoma candidate biomarkers by Beta-binomial, NSC 
and SVM-RFE analyses. The selected most relevant enriched KEGG pathways (p ≤ 0.05) among the up-regulated (red), down-regulated 
(green), non-regulated (yellow) and background intermediary proteins (grey) from the IIS database are depicted by clustering with a 
circular layout proteins involved in each respective pathway. Clusters were assigned only to pathways containing more than three proteins 
with at least one protein from the proteome dataset (disease pathways or pathways specific for defined cell types were not considered); 
proteins belonging to more than one pathway were assigned to the pathway clusters with the best enrichment p-values; some proteins were 
also assigned to different pathway clusters based on complementary data from the Uniprot database. In magenta, pathway clusters exclusive 
of each network; in black, pathway clusters in common. The node sizes of up, down and non-regulated proteins are proportional to their 
fold change (−1.3 ≥ fold change ≥1.3, compared to the non-cancerous class). The protein-protein networks were built using the IIS software 
and visualized using Cytoscape.
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whereas broad positivity was found in the tumor cells 
(Fig. 5C). Considering the intensity levels, the expression 
of CFB was significantly higher in tumors compared 
with normal mucosa (Mann Whitney U test, p = 0.0057, 
Fig. 5C). Similarly, C3 was found in the cytoplasm of the 
epithelial cells, but the intensity was significantly higher 
in tumor cells compared to normal keratinocytes (Mann 
Whitney U test, p = 0.016, Fig. 5D). Immunoreactivity for 
C3 was also observed in inflammatory and endothelial cells.

Label-free targeted MS

To further test the strength of the pipeline in 
selecting candidate biomarkers that were retrieved by all 
of the methods, we prioritized two candidates from the 

carcinoma secretome to have their abundance assessed 
in the saliva of Oral Squamous Cell Carcinoma (OSCC) 
patients, as a first step toward biomarker evaluation in 
clinical samples. We believe that saliva is a promising 
biofluid for investigation due to the ease of its collection 
and its direct contact with oral cancer lesions. The samples 
were collected from OSCC patients, who were divided 
into two groups: patients who had undergone surgical 
resection (named as “no lesion”, n = 7) and those who had 
active oral malignant lesion (named as “lesion”, n = 10) 
at the time of the saliva collection (Supplementary Table 
S14). Saliva samples from healthy individuals were also 
used as a control (n = 7).

We validated both C3 and CFB, and C3 was 
selected for being top ranked in the three feature selection 

Figure 5: Validation of the higher expression of A. tenascin-C and B. GDF15 (I-Benign lesion; II- Primary Melanoma; III-Metastatic 
Melanoma) on melanoma cancer tissue microarrays and C. CFB and D. C3 (I- Normal Mucosa; II- Oral SCC) on carcinoma cancer tissue 
microarrays. Tenascin-C showed statistically significant expression among the categories benign lesion, primary melanoma and metastatic 
melanoma, but not between primary melanoma and metastatic melanoma (One-way ANOVA, benign lesion vs. primary melanoma, 
p < 0.0001; benign lesion vs. metastatic melanoma, p < 0.0009; primary melanoma vs. metastatic melanoma, p = 0.1748). GDF15 showed 
statistically significant expression among the categories benign lesion, primary melanoma and metastatic melanoma (One-way ANOVA, 
benign lesion vs. primary melanoma, p < 0.0001; benign lesion vs. metastatic melanoma, p < 0.0001; primary melanoma vs. metastatic 
melanoma, p < 0.0001). CFB and C3 showed higher expression in OSCC compared with normal mucosa (Mann Whitney U, p = 0.009 and 
p = 0.0005, respectively).
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analysis results (SVM-RFE rank index = 1; NSC rank 
index = 13; Beta-binomial rank index = 15) as well as 
for being assigned to the complement and coagulation 
cascades pathway, an enriched (p-value = 1.52e−08) 
carcinoma-exclusive KEGG pathway that is based 
on complementary data from the Uniprot database. 
Regarding CFB, it was simultaneously retrieved by NSC 
(rank index = 33) and Beta-binomial (rank index = 31), 
and very importantly, it takes part in the same pathway 
as C3. In addition, both CFB and C3 have not been 
previously reported to be related to cancer biomarkers, 
according to the IPA biomarker analysis and The Human 
Protein Atlas.

We selected two peptides for each protein based 
on the following criteria: uniqueness, high relative 
abundance, MS/MS spectral quality, experimental 
observation of proteomic data repositories (PeptideAtlas) 
and DDA analysis performed using LTQ Orbitrap Velos. 
The targeted proteomics were performed using selected ion 
monitoring (SIM) of each targeted peptide in high mass 
resolution for quantitation, followed by scheduled MS/MS 
for confirming targeted peptide sequences (Supplementary 
Table S15). The peak area of each targeted peptide was 
extracted using the Xcalibur software (Supplementary 
Table S16) and normalized to the angiotensin internal 
standard (Supplementary Table S17), spiked in all of the 
samples to a final concentration of 5 fmol/μl to correct 
run-to-run variations.

The averages of the normalized intensities of 
each peptide in each sample were visualized in a scatter 
plot graph, and ANOVA followed by Tukey’s test was 
performed to evaluate the statistical significance among 
the conditions (Fig. 6). It was observed that the saliva 
from the OSCC patients with lesions had a significantly 
higher normalized intensity of the precursor area of both 
CFB and C3 compared to healthy subjects with respect to 
all of the peptides evaluated (Fig. 6A–6D). Additionally, 
the C3 peptide, IPIEDGSGEVVLSR, and the CFB 
peptide, YGLVTYATYPK, both showed a significant 
difference between the patients without a lesion and with 
a lesion (Fig. 6B and 6C). When the sum of the three 
transitions of each peptide (normalized by the sum of the 
three transitions of the angiotensin internal peptide) was 
considered, similar results were found (Supplementary 
Fig. S6). The extracted ion current peak area from MS1 
and the three MS/MS transitions as well as the CV% of 
each replicate are shown in Supplementary Tables S16 
and S17.

The performance of the method was evaluated 
using angiotensin spiked in the HEK cell lysate digest 
(500 ng) in five different concentrations, for which each 
sample was run in triplicate. Good linearity (R = 0.998) 
(Supplementary Fig. S7) and CV <15% were observed at 
three concentration points (Supplementary Table S18).

CFB knockdown decreased the migration of 
A431 cells and impaired the chemoattraction of 
human macrophages

The final approach that was used to explore the 
strength of the pipeline was to perform functional assays, 
which was chosen because of the implication that CFB 
could have in biological processes that are related to 
cancer.

It is well known that complement proteins are 
considered to be powerful proinflammatory molecules 
in the body [24], and recently, C3 was evidenced as a 
key player in the production and activation of ovarian 
cancer growth and progression [25]; however, there is 
still no evidence associated with CFB in oral tumorigenic 
processes. Therefore, we performed the knockdown of CFB 
in the A431 cell line using siRNA, and we first evaluated 
the effect of this protein in cell migration. As observed in 
Fig. 7A, CFB knockdown decreased the migration of A431 
cells compared with mock and control siRNAs (one-way 
ANOVA followed by Tukey’s test, n = 2, p < 0.001).

Furthermore, CFB is a protein that is secreted by 
macrophages, fibroblasts, endothelial cells and tumor cells 
[24]. Therefore, we evaluated the paracrine effect that 
CFB depletion in tumor cells could exert on macrophage 
chemotaxis. To accomplish this goal, macrophages 
were placed in the upper chamber of a transwell plate, 
whereas A431 cells that were treated either with mock, 
control siRNA or siRNA against CFB were laid in the 
lower chamber of the same plate. Macrophage migration 
through the transwell was significantly reduced in CFB 
knockdown A431 cells, which suggested that the presence 
of this protein in the conditioned medium had the 
ability to modulate macrophage taxis (Fig. 7B, one-way 
ANOVA followed by Tukey’s test, n = 2, p < 0.001). 
Cell knockdown for CFB was confirmed by qRT-PCR 
(Fig. 7C). Together, these experiments showed that CFB 
protein plays a role in tumorigenic processes such as 
macrophage chemotaxis and cell migration.

DISCUSSION

This study introduced an integrative analysis based 
on a pipeline that combines MS-based discovery followed 
by feature selection methods, clustering, Venn diagram, 
network analyses, and targeted approaches to generate 
reliable hypothesis-driven targets based on shotgun 
proteomics, to provide a bridge between discovery MS 
and targeted MS.

Well-controlled proteomic data from the secretomes 
of three classes of human cell lines were analyzed with 
respect to the protein content of their secretomes using 
discovery-based proteomics. To retrieve ranked lists 
of candidate biomarkers, a combination of a univariate 
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method (Beta-binomial), a semi-multivariate method 
(NSC) and a multivariate method (SVM-RFE) was tested. 
The great advantage of the feature selection methods used 
in this work is that NSC and SVM-RFE models summarize 
thousands of features into a few key components that 
capture the maximal variance in the data. Together with 
the Beta-binomial model, which was used to test the 
significance of differential protein abundances expressed 
in spectral counts, the three ranked lists of candidate 
biomarkers were retrieved and compared using the Jaccard 
similarity coefficient and a Venn diagram, to be further 
evaluated by bioinformatic analyses (interaction networks, 
pathway enrichment and biomarker investigation) and 
targeted proteomics. Moreover, both the initial and final 
datasets were compared by different clustering techniques 
(heat map/hierarchical clustering and neighbor joining 
clustering) and silhouette coefficients, which showed 
an improvement in both the clustering and silhouettes 

after feature selection and served as a proof-of-concept 
that the set of retrieved candidates was constituted by 
good discriminating proteins for distinguishing the three 
secretome classes.

Our approach proved to be of great value in 
tracking potentially promising candidate biomarkers from 
proteomics data, since many of these proteins have already 
been demonstrated to be associated with cancer. For 
example, both the IPA and Human Protein Atlas Database 
analyses retrieved, respectively, 32% and 23% of the 
carcinoma candidates and 28% and 22% of the melanoma 
candidates that were previously found to be associated 
with cancer (Supplementary Table S6).

To further explore the biological role of these 
findings, we integrated the proteomics data into networks 
that highlighted the direct connections between the 
selected candidates and their possible roles in each disease 
(Fig. 4). Despite the highly complex and dynamic nature 

Figure 6: CFB and C3 peptides showed higher normalized intensities in OSCC saliva samples than in healthy saliva 
samples. PseudoSRM analytical approach for peptides of C3 (precursor m/z 631.05, +3; 735.89, +2) and CFB (precursor m/z 638.33, 
+2; 939.13, +3) normalized with 5 fmol/μl of angiotensin (m/z 432.89, +3) as an internal reference peptide. These data represent two 
technical replicates of saliva samples from healthy patients (n = 7), saliva samples from patients who undergone surgical resection of OSCC 
(named no lesion, n = 7) and saliva samples from patients with active OSCC lesion without any treatment (named lesion, n = 10) (ANOVA 
followed by Tukey’s test). The normalization to the internal reference peptide was performed for each run.
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of network biology [26], our interaction networks enabled 
us to easily sum up all of the proteomics data and decipher 
the main cellular contexts of the candidate biomarkers in 
carcinomas and melanomas. The proteins were clustered 
in highly enriched pathways and were visualized by 
their relative abundances through node colors and sizes; 
most of the candidates were found to be related to cell-
cell communication and interactions. Specifically, this 

analysis retrieved exclusive pathways for the carcinoma 
candidates, such as complement and coagulation cascades 
(Fig. 4A), and for the melanoma candidates, such as 
cellular functions associated with the cell cycle, cell 
adhesion and ubiquitin-mediated proteolysis (Fig. 4B).

In the final steps of the proposed pipeline, we 
tested the promising proteins CFB and C3 as candidate 
carcinoma biomarkers, which in addition to being 

Figure 7: CFB knockdown decreased the migration of skin-derived epidermoid carcinoma (A431) cells and reduced 
the chemotaxis of human macrophages. A. A431/untreated (mock), A431/control (scrambled) and A431/siRNA CFB cells were 
seeded in serum-free media in the upper chamber of a 96-well transwell plates. RPMI media, which was supplemented with 1% FBS, was 
added in the lower chamber (n = 2, triplicate, one-way ANOVA followed by Tukey’s test, *p < 0.05). B. Chemotaxis of human macrophages 
was reduced when were seeded in the upper chamber, and A431 cells treated with mock, control siRNA and siRNA against CFB were added 
in the lower chamber of the transwell (n = 2, triplicate, a one-way ANOVA followed by Tukey’s test, *p < 0.05). C. Real-time quantitative 
PCR confirms the expression of CFB after transient transfections in A431 cells. The data were normalized with the (glyceraldehyde-3-
phosphate dehydrogenase gene was used as internal reference). Each bar represents mean ± SD of three independent experiments.
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associated with the enriched complement and coagulation 
cascade pathway, were validated using immunoblotting, 
tissue microarrays and retrieved in the intersections of the 
feature selection methods.

In the first approach, we have indeed found a 
higher expression of CFB and C3 proteins using a label-
free pseudoSRM analysis of human saliva from Oral 
Squamous Cell Carcinoma (OSCC) patients in comparison 
with healthy individuals (Fig. 6). Because saliva is simple 
to collect and process, it may lead to a useful clinical 
tool for the noninvasive prognosis of oral cancer in the 
future [14, 27]. It is important to highlight that oral cancer, 
primarily OSCC, is the sixth most common cancer and is 
an important public health concern worldwide [28], with 
low 5-year survival rate due to the compounding factors of 
late detection and lack of truly effective therapies [29, 30].

Although complement components are primarily 
synthesized locally by many cell types, including 
macrophages, fibroblasts and endothelial cells [31], some 
neoplastic cells have also been shown to synthesize and 
secrete components of the C system [32–34]; however, 
the role of the complement system in tumor cells remains 
controversial. Recently, an autocrine effect of complement 
proteins has been shown; specifically, C3 and C5 are 
secreted by ovarian cancer cells on tumor growth [25]. It 
is also well known that the complement system contributes 
to inflammation, mainly through C3a and C5a, which 
are the most powerful proinflammatory anaphylatoxins 
in the body [24, 35] and to immunosuppression through 
components such as C3, C4 and C5a [36]. Interestingly, 
the adopting characteristics that involve the inflammatory 
state and the ability to avoid the immune system have been 
emerging as hallmarks in cancer [37].

Because no evidence was shown regarding the 
function of CFB in cancer cells, in the second approach, 
we explored the functional role of CFB in tumorigenic 
processes, such as cell migration and chemotaxis. The CFB 
knockdown in the skin-derived epidermoid carcinoma 
(A431) cells decreased the ability of the cells to migrate 
and the chemotaxis of human macrophages (Fig. 7A–7B), 
which suggests that, in addition to a higher expression in 
OSCC tissues and saliva, CFB might mediate these events 
in carcinomas.

Furthermore, we applied our pipeline for a published 
label-free proteomic dataset [23], which previously reported 
the identification of 133 significantly differentially expressed 
proteins in extracapsular and organ-confined prostate cancer 
direct-EPS fluids using a hierarchical Bayesian statistical 
algorithm known as QSpec. Among these proteins, five 
proteins were validated/verified using different methods 
(ELISA, Western blot and SRM-MS). Using the feature 
selection methods proposed in our pipeline, the same five 
proteins validated by Kim et al. [23] were also found in the 
intersections of our Venn diagram analysis (SFN, MME, 
TGM4, TIMP1 and PARK7, Supplementary Table S10), 
reinforcing the effectiveness of our approach.

In conclusion, the proposed integrative analysis 
based on a discovery-to-targeted pipeline was able to 
pre-qualify potential candidates from discovery-based 
proteomics to targeted MS and can contribute to the 
next phases of biomarker development in translational 
initiatives to drive either patient stratification, decision 
making or intervention.

MATERIALS AND METHODS

Cell culture

SCC-9 cells (squamous cell carcinoma, a tumor 
cell line originated from a human tongue squamous 
cell carcinoma) were obtained from the American Type 
Culture Collection (ATCC, Manassas, VA) and cultured 
in DMEM/Ham’s F12 medium (Cultilab), supplemented 
with 10% fetal bovine serum (FBS), antibiotics and 
0.4 μg/ml hydrocortisone. Human keratinocyte HaCaT 
(immortalized, but not transformed, epithelial cell line), 
Human embryonic kidney HEK293 and human melanoma 
A2058 cell lines (isolated from a metastatic site in a 
skin-derived lymph node) were maintained in DMEM 
containing 10% FBS and antibiotics. Human melanoma 
SK-MEL-28 cells (malignant skin-derived melanoma 
cell line) and human epidermoid carcinoma A431 (skin-
derived epidermoid carcinoma cell line) were grown in 
Roswell Park Memorial Institute (RPMI) − 1640 medium 
supplemented with 10% FBS and antibiotics. All cells 
were maintained at 37°C in a 5% CO2 atmosphere.

Sample preparation for MS

Label-free Discovery Proteomics: Cells at 80% 
confluence (two 15-cm dishes per condition per 
experiment) were gently washed three times in phosphate 
buffered saline (PBS) and incubated in a serum-
free medium (20 ml per dish) for 24 h at 37°C. After 
collection of the conditioned media EDTA and PMSF 
(Phenylmethylsulfonyl fluoride) were added at a final 
concentration of 1 mM. Cell debris and intact cells were 
eliminated by centrifugation at 4,000 rpm (Eppendorf 
Centrifuge 5810R) for 5 min at 4°C and the conditioned 
media were subsequently concentrated using a 3000-Dalton 
centrifugal filter (Millipore, Billerica, MA) at 4,000 x g 
at 4°C. Protein concentrations were determined using a 
Bradford assay (Bio-Rad, Hercules, CA, USA). Proteins 
(80 μg) were treated with a final concentration of 1.6 M 
urea, following reduction (5 mM dithiothreitol, 25 min 
at 56°C), alkylation (14 mM iodoacetamide, 30 min at 
room temperature in the dark) and digestion with trypsin 
(1:50, w/w). The reaction was stopped with 1% TFA and 
desalted with Sep-pack cartridges (Waters). The samples 
were dried in a vacuum concentrator, reconstituted in 
0.1% formic acid and analyzed by LC-MS/MS. Three 
independent experiments were performed for each cell line.
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Label-free Targeted Proteomics: The saliva was 
collected from healthy individuals (n = 7), patients who 
underwent surgical resection (named as no lesion, n = 7) 
and patients with active oral malignant lesion (named 
as lesion, n = 10). Individuals were asked to first rinse 
their mouth with 5 ml of drinking water and to harvest the 
saliva into a glass receptacle. Saliva was then aliquot in 
2 ml tubes and immediately frozen at −80°C. All patients 
and volunteers enrolled signed a formulary stating their 
awareness and consent for the study, approved by the 
Research Ethics Committee of Faculdade de Odontologia 
de Piracicaba, Universidade Estadual de Campinas, 
UNICAMP, Piracicaba, Brazil.

Proteins were extracted by homogenizing the 100 μl 
of whole saliva with 100 μl of a solution containing 100 mM 
Tris-HCl, pH 7.5, 8 M urea, 2 M thiourea containing 
Protease Inhibitor Cocktail cOmplete Mini Tablets (Roche, 
Auckland New Zealand), 5 mM EDTA, 1 mM PMSF 
and 1 mM DTT. Samples were sonicated for 10 min and 
centrifuged at 10,000 x g for 5 min. Protein concentrations 
were determined using a Bradford assay (Bio-Rad, 
Hercules, CA, USA). Five fmol/μl of angiotensin synthetic 
peptide (precursor m/z 432.8998, +3, DRVYIHPFHL, 
Sigma-Aldrich) were added to each peptide mixture (600 ng 
of total protein) as an internal reference peptide.

Mass spectrometric analysis

Peptide samples were analyzed on an ETD-enabled 
LTQ Orbitrap Velos Mass Spectrometer (Thermo Fisher 
Scientific) connected to a nanoflow liquid chromatography 
column (LC-MS/MS) by an EASY-nLC System (Proxeon 
Biosystem) through a Proxeon nanoelectrospray ion 
source. The mass spectrometry analysis for label free 
discovery and target proteomics as well as the proteomics 
data analysis for protein identification are described in the 
Supplementary Material and Methods.

Feature selection analyses of proteomics data

Heat map and hierarchical clustering analyses

Files containing the identified proteins and their 
spectral counts were used for the clustering and heat maps 
generation, as well as to perform the feature selection 
analyses. Heat maps and hierarchical clustering were 
constructed in the web-based chemometrics platform 
MetaboAnalyst 2.0 using the Pearson distance measure. 
For this specific analysis, protein spectral counts were 
previously z-score transformed.

Neighbor joining trees

In order to evaluate how similar the three classes 
were when considering their spectral counts distribution 
within the samples, the secretome dataset was analyzed 
using the neighbor joining (NJ) clustering method [38]. 
The phenetic trees were constructed from a Euclidean 

distance matrix using the VisPipeline software (http://
vicg.icmc.usp.br/infovis2/Tools), developed at Instituto 
de Ciências Matemáticas e de Computação, Universidade 
de São Paulo, USP, São Carlos, Brazil. The silhouette 
coefficients [39] were also calculated for the 18 secretome 
dataset samples (both the raw data and their NJ clustering) 
using the VisPipeline software. The closest to 1 the 
silhouette coefficient (ranging from −1 to 1), the more 
efficient is data clusterization. Silhouette coefficients were 
also calculated after feature selection, in order to check for 
the coefficients improvement.
Identification of candidate biomarkers

The univariate Beta-binomial model was used to 
test the significance of protein differential abundances 
expressed in spectral counts in our label-free mass 
spectrometry-based proteomics dataset. The Beta-
binomial model was constructed using a software package 
implemented in R according to Pham et al. [21].

In addition, protein spectral counts were submitted 
to other two different approaches: the semi-multivariate 
Nearest Shrunken Centroids (NSC) and the multivariate 
Support Vector Machine-Recursive Features Elimination 
(SVM-RFE). The NSC and the SVM-RFE models were 
also performed using software packages implemented 
in R according to Tibshirani et al. [40] and Guyon et al. 
[41], respectively. For both methods, a double cross-
validation procedure was applied to define the optimal 
feature (protein) subsets (N) from the ranked proteins 
lists (independently ranked by each method). In the 
case of the SVM-RFE model, the optimal feature subset 
was the smallest set that provided the minimum mean 
classification error, whereas for the NSC model it was 
the subset that minimized the classification error and 
maximized the sum of true class probabilities [22]. The 
double cross-validation procedure was developed and 
implemented in R based on the work of Christin et al. [22]. 
Both feature selection methods had their performance 
assessed in terms of accuracy, sensitivity and specificity, 
using the caret package implemented in R [42]. The output 
final ranked lists of candidate biomarkers that resulted 
from each model (N defined by p < 0.05, in the case of the 
Beta-binomial model, or by double cross-validation, in the 
case of NSC and SVM-RFE models) were also compared 
with each other using the Jaccard similarity coefficient and 
a Venn diagram and considered for further analyses.

To compare our results to a classical statistical 
method, besides the methods described above, the 
univariate ANOVA test was also performed in our 
data using the ScaffoldQ+ software, with N defined by 
p < 0.05.

The same feature selection analyses using the three 
methods were performed for a published proteomics 
dataset of prostate cancer [23] in order to validate our 
proposed pipeline. The output final ranked lists of 
candidate biomarkers that resulted from each model were 
also compared by a Venn diagram.
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Double cross-validation

The double cross-validation (DCV) is a type of 
statistical validation stricter than the cross-validation 
(CV), as in DCV a CV is performed within another CV. 
A CV error is an inappropriate estimate of the prediction 
error of the model, since this error is not based on an 
independent test set, as all data – both test and training 
samples – are used at once. Therefore, in order to avoid 
overly optimistic performance estimates, a “nested” 
CV scheme was performed in the DCV to estimate the 
prediction error, in which the parameter optimization is 
executed in an internal loop (inner loop) and the prediction 
error is estimated in an external loop (outer loop) on a 
completely independent set of samples [22, 43]. More 
details about how double cross-validation was used in 
NSC and SVM as well as the estimation of protein class 
are available in the Supplementary Material and Methods.

Bioinformatics analyses

To explore the biological significance of the 
variables that greatly contributed to the characterization 
of each tumor class, protein-protein interaction networks 
were constructed using the Integrated Interactome System 
(IIS) software [44], developed at Laboratório Nacional de 
Biociências, CNPEM, Campinas, Brazil, for the candidate 
biomarkers identified by either the Beta-binomial, NSC 
and SVM-RFE models, and further estimated to be 
associated to the carcinoma or melanoma classes (Table 
E4). Enrichment analyses were performed in the networks 
using the IIS software for the curated pathways from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[45]. Significantly enriched KEGG pathways (p ≤ 0.05) 
for proteins of carcinoma and melanoma secretomes were 
assigned as clusters in the networks and different colors 
and sizes were attributed to proteins proportionally to their 
fold change compared to the non-cancerous secretome class 
(−1.3 ≥ FC ≥ 1.3). Zero values were replaced by one in 
order to calculate the fold change. The resultant networks 
were visualized using the Cytoscape 2.8.2 software [46].

To evaluate whether the candidate biomarkers for 
melanoma and carcinoma were previously described related 
to cancer or to some biomarker application, a biomarker 
analysis was performed using the Ingenuity Systems 
Pathway software (IPA; Ingenuity Systems, Redwood City, 
CA). The Ingenuity biomarker filter module analysis was 
performed based on the following criteria: biofluids – “all”, 
disease – “cancer”, species – “human”, and biomarker 
application – “all”. Moreover, the Human Protein Atlas [47] 
was used to determine whether the retrieved candidates 
were previously indicated as cancer biomarkers.

Immunoblotting

Proteins (5 μg) in the conditioned media from 
HaCaT, SCC-9, A431, A2058, SK-MEL-28 and HEK293 

cell lines were separated under disulfide reducing 
conditions using SDS-polyacrylamide gel electrophoresis 
(SDS-PAGE) and transferred onto nitrocellulose 
membranes. The membranes were blocked in 5% dry 
milk in Tris-Tween buffered saline (TTBS). Membranes 
were then incubated overnight at 4°C with the following 
antibodies: anti-fibronectin (1:1000, Abcam), anti-
tenascin-C (1:1000, Abcam), anti-GDF15 (1:1000, 
Abcam), anti-talin-1 (1:1000, Abcam), anti-EGFR (1:5000, 
Santa Cruz) and anti-CFB (1:1000, Abcam). Membranes 
were washed, incubated in horseradish peroxidase 
conjugated secondary antibodies and developed using 
enhanced chemiluminescence detection according to the 
manufacturer’s instructions (Amersham Biosciences).

Tissue array immunohistochemistry and 
statistical analysis

High density tissue microarrays were obtained 
from Biomax (OR601a and ME1004a). The presence of 
Complement Factor B (CFB) and Complement Component 
3 (C3) was analyzed in 10 cancer-adjacent normal tissues 
and in 47 primary oral squamous cell carcinomas by 
immunohistochemistry using the streptavidin-biotin 
peroxidase complex (Dako). For tenascin-C and GDF15, 
20 benign nevoid lesions (intradermal and compound 
nevus), 50 primary melanomas and 20 metastatic 
melanomas were subjected to immunohistochemical 
analysis with phosphatase alkaline/permanent red-
based method (Dako). More details about the protein 
quantification of the tissue microarray staining intensity 
are available in the Supplementary Material and Methods.

Small interfering RNA transfection

For silencing CFB gene, 3 × 105 skin-derived 
epidermoid carcinoma (A431) cells were seeded in a 
six-well culture plate and transfected with 50 nM small 
interfering RNA (siRNA) duplex (sc-44510, Santa Cruz) 
and Lipofectamine 2000 according to the manufacturer’s 
instructions (Invitrogen). Random stealth siRNA duplexes 
coding for nonfunctional RNAs served as control (sc-37007, 
Santa Cruz). After 72 h of incubation at 37°C and 5% CO2 
atmosphere, transfection success was evaluated by real-time 
quantitative PCR and the cells have proceeded immediately 
for cell migration assay as described below.

Real-time quantitative PCR

Skin-derived epidermoid carcinoma (A431) 
cells had their total RNA extracted by TRIzol reagent 
(Invitrogen Corporation), and 2 μg of total RNA were 
used for retro-transcription with a First-Strand cDNA 
Synthesis Kit (GE Healthcare). Real-time quantitative 
PCR for CFB was performed using a SYBR Green PCR 
Master Mix (Applied Biosystems), and dissociation curves 
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were generated to confirm the specificity of the products. 
The threshold cycle (CT) values of the targeted gene were 
normalized relative to the glyceraldehyde-3-phosphate 
dehydrogenase gene expression, and relative expression 
ratios were calculated using the 2-∆∆ Ct method. Three 
independent experiments were performed in triplicates. 
The following PCR primers were used: CFB forward 
5′-TCTCAG TCATTCGCCCTTCA-3′ and reverse 
5′-CCTACGCTGACCTTGAT-3′; GAPDH forward 
5′-GAAGGTGAAGGTCGGAGTCAAC-3′ and reverse 
5′-CAGAGTTAAAA GCAGCCCCTGGT-3′.

In vitro differentiation of macrophages derived 
from monocytes

Peripheral blood mononuclear cells (PBMCs) were 
collected from healthy volunteers through apheresis, 
performed in a Trima Accel System (Cobe BCT, Denver, 
CO, USA), at the Hospital Alemão Oswaldo Cruz, 
São Paulo, Brazil, after informed consent of donors. 
This procedure was approved by the Research Ethics 
Committee of the same institution. The procedure for 
differentiation of macrophages derived from monocytes 
is described in the Supplementary Material and Methods.

Transwell migration assay

Untreated (mock), control siRNA-transfected 
(scramble) and CFB siRNA-transfected skin-derived 
epidermoid carcinoma (A431) cells (3 × 105 cells) allowed 
to migrate for 16 h toward the lower chamber containing 
RPMI medium supplemented with 1% FBS. Two 
independent experiments were performed in triplicate.

For the co-culture assay, macrophage cells 
(7.5 × 104 cells) were added in the upper chamber, and 
either mock, scrambled or CFB siRNA-transfected A431 
cells (7.5 × 104 cells) were added into the transwell plate 
lower chamber in 150 μl of serum-free RPMI-1640. At the 
end of the assay, the remaining cells at the top chamber 
were removed using a cotton swab, whereas the cells at the 
bottom of the insert filter were fixed with 10% formaldehyde 
for 10 min, washed with PBS and stained with 1% toluidine 
blue solution in 1% borax for 5 min. The dye was eluted 
in 1% SDS and absorbance was measured at 620 nm. Two 
independent experiments were performed in triplicate.
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