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ABSTRACT

Databases pertaining to various diseases provide valuable resources on particular 
genes of interest but lack the molecular subtype and epithelial-mesenchymal 
transition status. CSIOVDB is a transcriptomic microarray database of 3,431 human 
ovarian cancers, including carcinoma of the ovary, fallopian tube, and peritoneum, 
and metastasis to the ovary. The database also comprises stroma and ovarian surface 
epithelium from normal ovary tissue, as well as over 400 early-stage ovarian cancers. 
This unique database presents the molecular subtype and epithelial-mesenchymal 
transition status for each ovarian cancer sample, with major ovarian cancer histologies 
(clear cell, endometrioid, mucinous, low-grade serous, serous) represented. Clinico-
pathological parameters available include tumor grade, surgical debulking status, 
clinical response and age. The database has 1,868 and 1,516 samples with information 
pertaining to overall and disease-free survival rates, respectively. The database also 
provides integration with the copy number, DNA methylation and mutation data from 
TCGA. CSIOVDB seeks to provide a resource for biomarker and therapeutic target 
exploration for ovarian cancer research.

INTRODUCTION

Every year, it is estimated that 238,700 women will 
develop ovarian cancer worldwide. Epithelial ovarian 
cancer (EOC) is the fifth-most common cause of female 
cancer death, with an estimated 151,900 deaths [1]. Even 
though the 5-year survival rates for localized, regional, 
and distant ovarian cancer are 91%, 72% and 27%, 
respectively, 61% of cases are presented at a stage when 
the disease is already widely metastatic [2], explaining 
the high mortality rate for this disease [3]. The majority 
of EOC patients respond well to first line platinum-
based chemotherapy but about two-thirds of patients will 
eventually relapse with disease regardless of the initial 

clinical response [3]. Patients with recurrent EOC may 
initially respond to further chemotherapeutic agents but 
eventually develop chemoresistant disease and succumb 
to their illness.

At least 5 different histological subtypes of EOC 
exist and may reflect the clinical heterogeneity of this 
disease [4] in terms of chemotherapeutic response and 
outcome. Recently, it is becoming increasingly clear 
from the molecular analysis of EOC that this is also a 
molecularly heterogeneous disease [5–7]. While the 
relative clinical significance of these individual EOC 
molecular subtypes, as defined by high-throughput 
transcriptomics, remains unclear, recent data suggest that 
the gene expression profiles of EOC may have predictive 
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value in determining patient benefit from targeted 
therapeutic agents such as bevacizumab (Avastin®) in 
frontline therapy [8]. Specifically, the mesenchymal/
C1 [5–7] and Stem-A/Proliferative/C5 [5–7] subtypes 
were demonstrated to respond better to bevacizumab-
containing regimen in ICON7 trials, with improvements 
in progression-free survival of 8.1 and 10.1 months, 
respectively [9]. Likewise, our group has also previously 
described that the Stem-A molecular subtype of EOC 
is sensitive to microtubule-targeted compounds such 
as vincristine and vinorelbine. On the other hand, the 
epithelial-mesenchymal transition (EMT) spectrum 
based on gene expression has also been described in 
EOC, where differential responses for epithelial-like and 
mesenchymal-like ovarian cancers have been reported; for 
example, mesenchymal ovarian cancer is reported to be 
more sensitive to cisplatin and benefits from a paclitaxel-
containing treatment regimen [10, 11]. These studies 
suggest the clinical relevance of ovarian cancer molecular 
subtyping, and the potential to identify targeted therapies 
utilizing the molecular subtyping or EMT status.

Databases such as cBioportal [12, 13] and KMplotter 
[14] offer valuable resources to investigate genes of 
interest in various diseases, including ovarian cancer. In 
addition, OvMark [15], a database dedicated to investigate 
mRNA and miRNA expression in ovarian cancer provided 

tremendous insight into progression of the disease. 
However, none provide an indication of molecular subtype 
or EMT status. In this work, we built a transcriptomics 
database of human ovarian cancer, referred to as CSIOVDB 
(Ovarian cancer database of Cancer Science Institute 
Singapore; http://csibio.nus.edu.sg/CSIOVDB/CSIOVDB.
html), which is furnished with molecular subtype and EMT 
information. Through this database, we seek to provide a 
complementary resource for gene expression profiling in 
ovarian cancer, particularly, the differential expression 
of molecular subtypes and its correlation with the EMT 
status. By delineating these transcriptomic subtypes and 
EMT status of EOC, it is envisaged that our database will 
facilitate further strategies to explore and guide targeted 
therapeutic approaches in this challenging disease.

RESULTS

Profiles of CSIOVDB

CSIOVDB comprises 3,431 microarray samples 
from 48 cohorts of private, in-house and public human 
ovarian cancer datasets (Materials and Methods; Figure 1; 
Suppl. Figure 1; Suppl. Table 1). The database contains 
3,261 unique samples of mainly primary and metastatic 

Figure 1: Structure of CSIOVDB. CSIOVDB housed data of human ovarian carcinoma from GEO, ArrayExpress, TCGA, ExpO, and 
private/in-house. The data from different cohorts were compiled, and subjected to quality check, RMA normalization, and standardization 
to remove batch effect. Clinical annotation was extracted from the data repository or original publication. User can query a gene of interest 
to CSIOVDB using a browser. Output of the query includes clinical association of the gene expression, gene expression profiles in different 
histologies, molecular subtypes, as well as survival correlation. Molecular subtype-specific correlation is also provided.
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ovarian cancers (91.49%), as well as fallopian tube 
carcinoma (0.44%), peritoneal carcinoma (1.45%), 
metastasis to the ovary from elsewhere (1.95%), and 
ovarian cancer stroma (1.065). Non-cancerous samples 
constitute 3.63% of CSIOVDB and include normal ovarian 
surface epithelium (2.66%), normal ovary stroma (0.24%), 
and normal fallopian tube (0.73%; Figure 2A). Epithelial 
ovarian cancer is the main component of CSIOVDB; non-
epithelial ovarian cancer, such as ovarian germ cell tumors, 
sex-cord stromal, and sarcoma (Figure 2B) comprise less 
than 1% of the database. Note, however, that CSIOVDB 
does not mirror the actual frequency of ovarian cancer, 
where non-epithelial ovarian cancer accounts for 10% of 
all ovarian cancers [16]. In terms of morphology, high-
grade serous ovarian cancer is the most prevalent (73.75%) 
in CSIOVDB; this closely follows the 70% prevalence of 
high-grade serous ovarian cancer [4]. Ovarian cancers of 
other histologies, however, are slightly under-represented 
in CSIOVDB (CSIOVDB% vs reported%): mucinous 
(2.36% vs 3%), endometrioid (5.61% vs 10%), clear cell 
(4.43% vs 10%), and serous with low malignant potential 
(3.21% vs 5%) [4]. Late- (III & IV), and early-stage 
(I & II) tumor samples represent 65.35% and 12.72%, 
respectively, of the database (Figure 2C). The median 

age of the CSIOVDB samples is 58 years (Figure 2D). 
No menopausal information is available. Ovarian cancer 
grading is assessed either by FIGO (64.4%) or by the 
University of Texas M. D. Anderson Cancer Center [17] 
system (1.6%). High-grade ovarian cancers form the 
majority of CSIOVDB (63.27%; Figure 2E). Optimal 
(27.35%) and suboptimal (15.19%) surgical debulking 
status is also noted (Figure 2F), as this status is associated 
with ovarian cancer survival [18]. Surprisingly, whereas the 
surgical debulking status is associated with survival, this 
parameter does not contribute significantly to the molecular 
differences in ovarian cancer (Suppl. Figure 6D). Overall 
and disease-free survival data are available for 1,868 and 
1,516 samples, respectively, with a median overall survival 
of 31.67 months and median disease-free survival of 17.09 
months (Suppl. Table 2). Finally, molecular subtyping and 
EMT scores are provided in CSIOVDB. The database 
comprises 11.75% of ovarian cancer with an Epi-A 
subtype, 29.04% with Epi-B, 29.01% with Mes, 19.2% 
with Stem-A and 8.23% with Stem-B ovarian cancer; 
this spread of tumors mirrors the distribution of previous 
analyses [5] (Suppl. Figure 6A). Thus, overall, CSIOVDB 
represents a large and diverse collection of ovarian cancer 
that could be useful for assessing a gene of interest.

Figure 2: Clinico-pathological profiles of CSIOVDB. Pie charts or histogram showing distribution of various parameters in 
CSIOVDB: A. disease state, B. WHO histology, C. FIGO staging, D. age, E. FIGO grading or MDACC two-tier grading, and F. surgery 
debulking status. Abbreviation: N.A., not available.



Oncotarget43846www.impactjournals.com/oncotarget

Features of CSIOVDB

A screenshot of CSIOVDB is given in Figure 3 
summarizing the features available. At the main page, 
there are two functions available: first, users can choose 
to query a gene of interest to CSIOVDB. At the result 
page of gene queried, the expression profiles of gene of 
interest are organized into different categories: disease 
state, histology, clinico-pathological parameters, and 
molecular subtype. In addition, molecular subtype-specific 
copy number, mutation, and DNA methylation profile 
from TCGA of the queried gene are provided in a separate 
tab. Quantitative statistics such as mean, median, upper 
and lower quantiles are available. Pairwise and binary 
significance assessments were performed using Mann-
Whitney, Spearman correlation coefficient, or log-rank 
test. Multivariate Cox regression of queried gene and 
clinico-pathological parameters was also performed. User 
can select a subset of categories to be printed. Second, 
users can upload dataset for computation of ovarian 
molecular subtype. The computation method is based 
on two-sample Kolmogorov-Smirnov test and a subtype 

signature as described in previous work [5]. Computation 
of EMT score can be requested through email or from [10].

Querying a gene of interest

CSIOVDB seeks to provide users with the 
expression profiles of certain genes of interest relevant 
to ovarian cancer; in particular, the molecular subtype 
distribution and subtype-specific outcomes in terms 
of overall survival and disease-free (progression- and 
recurrence-free) survival. Figure 4 and Table 1 show 
a subset of outputs available from CSIOVDB when 
the gene CDH1 is queried (http://csibio.nus.edu.sg/
CSIOVDB/pages/CSIOVDB_CDH1.html). CDH1 is 
an epithelial marker that codes for E-cadherin. The 
loss of E-cadherin expression has been linked to cancer 
progression and metastasis [19] and shown to display a 
differential expression profile in ovarian cancer (Figure 4). 
Interestingly, there is no significant difference in CDH1 
expression between ovarian cancer and normal ovarian 
surface epithelium (p = 0.415; Figure 4A), and this 
adheres to the previous findings that ovarian surface 

Figure 3: Screenshot of CSIOVDB. Snapshot of CSIOVDB showing functions available on CSIOVDB. Firstly, query a gene of 
interest; and secondly, predict ovarian cancer subtype. Red or blue boxes indicate the features available on the main page: queried gene 
page and the page of predicting ovarian cancer subtype.
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epithelium has both mesenchymal and epithelial features 
[20]. Neither peritoneal (p = 0.0177) nor fallopian tube 
carcinoma (p = 0.459) shows differential expression of 
CDH1 with ovarian carcinoma. As expected, ovarian 
cancer stroma, which is more mesenchymal-like, has 
a significantly lower CDH1 level than its carcinoma 
counterpart (p = 0.004). From a histological perspective, 
high-grade serous and endometrioid ovarian cancers 
have the lowest CDH1 expression (Figure 4B). The less-
aggressive serous carcinoma with low malignant potential 
has significantly higher CDH1 expression compared 
with high-grade serous ovarian cancer (p = 4.12E-08). 
Also not surprisingly, the more metastatic and aggressive 
late-stage (p = 1.44E-12) and high-grade (p = 4.42E-05) 
ovarian cancer have significantly lower CDH1 expression 
(Figure 4C); however, there is no difference in CDH1 
expression for clinical response (Figure 4C). Since CDH1 
is an epithelial marker, it displays a negative correlation 
with EMT score (Rho = -0.32; Figure 4D). No correlation 
was observed between CDH1 expression and age (Rho 
= -0.067; Figure 4D). Importantly, CDH1 was found to 

be lowest in the Mes subtype (p = 7.15E-38; Figure 4E), 
which is enriched with metastatic ovarian cancers [5] and 
supports the conjecture that a loss of CDH1 promotes 
metastasis [19]. Despite evidence for the loss of CDH1 
in tumors with a Mes subtype, as well as the association 
between a Mes subtype and metastasis, our database 
shows no correlation for CDH1 with overall survival for 
any of the subtypes (Figure 4E, 4F). This is likely due to 
the fact that CDH1 is expressed in Stem-A, another poor 
survival subtype (Figure 4E, Suppl. Figure 6B).

This example of the data obtained as an output from 
CSIOVDB also demonstrates the range of descriptive 
statistics provided (mean, median, quantiles and statistical 
significance evaluations). Furthermore, a multivariate Cox 
regression analysis of CDH1 gene expression levels and 
known ovarian cancer prognostic factors, such as stage, 
grade, surgical debulking status, histology and age, is 
provided (Table 1). Importantly, CSIOVDB provided not 
only gene expression profiles of molecular subtypes, but 
also subtype-specific survival outcomes.

Figure 4: CDH1 gene expression in ovarian cancer. An example of CSIOVDB outputs for a gene queried. Gene expression profiles 
of CDH1 in ovarian cancer disease state A. histology B. FIGO stage C. Left panel FIGO grade C. Middle panel. clinical response C. Right 
panel epithelial-mesenchymal transition (EMT) score D. Upper panel age D. Lower panel molecular subtype E. and overall survival F. Left 
panel overall survival within subtype F. Right panel. Median expression was used to define CDH1-high and CDH1-low groups. Linear 
regression line fit is shown in red in (D). Abbreviation: OSE, ovarian surface epithelium; FTE, fallopian tube epithelium; Mets, metastasis; 
LMP, low-malignant potential; Epi, epithelial; Mes, mesenchymal; Stem, stem-like. Error bar is median ± quantile.
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DISCUSSION

CSIOVDB is a transcriptomics database of human 
ovarian cancer comprising 3,431 microarray data from 48 
cohorts. Each sample is coupled with histology, molecular 
subtype and EMT information to enable the user to 
explore and investigate genes of interest. To the best of 
our knowledge, this is the first database that integrates 
molecular subtype and EMT with ovarian cancer. This 
unique feature of CSIOVDB allows interrogation of 
subtype-specific expression as well as survival profiles. It 
is our hope that the database will provide a complementary 
resource to existing general [12–14] or databases 
specifically dedicated for ovarian cancer [15] for the 
investigation of clinical associations for genes of interest 
and, more importantly, for the localization and assessment 
of potential biomarkers or therapeutic targets for ovarian 
cancer. The previously determined preferential responses 
of mesenchymal-like ovarian cancer to paclitaxel [10], 
and platinum [11], the chemosensitivity to vincristine 
and vinorelbine in Stem-A ovarian cancer [5], and the 
chemosensitivity to bevacizumab in mesenchymal and 
Stem-A (proliferative) ovarian cancer [9] all suggest the 
feasibility of targeted therapeutics for ovarian cancer and, 
by extension, the utility of CSIOVDB.

However, it is important to note that ovarian cancer 
is an extremely heterogeneous disease [21]—95% of 
ovarian cancers are clonally heterogeneous and many have 
four or more subclones [22]. Not surprisingly, therefore, 
most ovarian cancer exhibit properties of multiple 
subtypes [23]. There are as many as 82% of the TCGA 
and 42% of the Mayo ovarian cancer cohorts displayed 
properties of at least two subtypes [24]. Thus, ovarian 
cancer treatment regimens may require a multi-agent 
approach, targeting the different subclones that exhibit 
diverse subtypes; it is plausible that targeting one subclone 
will only allow another to take over [25]. Adding to this 
complexity, studies have shown that the molecular subtype 
of a tumor may change post-chemotherapy [26], prompting 
the need for a continuous subtype re-assessment during 
the course of chemotherapy. In CSIOVDB, samples are 
assigned to the strongest phenotypic subtype (as a subtype 
gene expression signature [5]). Given that each subtype 
is represented by a sufficiently large number of samples, 

the influence of sample heterogeneity on subtype gene 
expression may be mitigated.

Aside from heterogeneity within a sample, a further 
caveat of using CSIOVDB is that the database is built 
based on public data from different repositories contributed 
by various authors and laboratories. While we have made 
every endeavor to limit the effect of a center-related batch 
effect, factors [27] such as reagents, protocols, procedures, 
elapsed time from sample collection, therapy regimen, and 
many others, could not be accounted for because of a lack 
of data. Thus, the data obtained through CSIOVDB should 
be viewed as a preliminary analysis, and users are urged to 
exercise due diligence in validating their findings.

On a side note, to ensure the relevance of 
CSIOVDB, we plan to annually update CSIOVDB to 
include new publicly available data as well as update 
of clinical and annotation data. In addition, we intend 
to replicate the process of building CSIOVDB to other 
cancers and allow users to query a gene of interest in 
multiple cancers and molecular subtypes.

MATERIALS AND METHODS

Eligibility criteria

As our purpose was to compile a database of 
broader generalizations and larger sample size, we adopted 
less stringent eligibility criteria [28]. Three private, one 
in-house and 44 publicly available microarray ovarian 
cancer datasets from Gene Omnibus (GEO; http://www.
ncbi.nlm.nih.gov/gds), ArrayExpress (http://www.ebi.
ac.uk/arrayexpress/), Expression Project for Oncology 
(ExpO; http://www.intgen.org/), and The Cancel Genome 
Atlas (TCGA; http://cancergenome.nih.gov/) were 
downloaded by Jan 2015 (Figure 1; Suppl. Table 1). Only 
datasets obtained using Affymetrix Microarrays HG-
U133A (16.38%), HG-U133A2 (2.88%), HG-HT-U133A 
(17.25%), HG-U133-Plus2 (49.2%), and human gene 1.0 
ST (14.29%) were used. These datasets are inclusive of 
primary and metastatic ovarian cancers, fallopian tube 
carcinoma, peritoneal carcinoma, ovarian cancer stroma, 
and normal ovarian surface epithelium, fallopian tube, and 
stroma tissues (Figure 2). No limit was imposed on the 

Table 1: Multivariate Cox regression analysis of ovarian cancer overall survival
Prognostic Factor Cox Coefficient p-value

Stage (I,II vs III, IV) 1.40 1.0E-5

Grade (G1 vs G2,G3) 0.65 0.0931

Surgical Debulking (optimal vs suboptimal) 0.2 0.0373

Histology (Non-serous vs serous) 1.29 0.0105

Age (< 55 vs ≥ 55) 0.16 0.0777

CDH1 -0.05 0.5966
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race, pre-treatment history or medical condition, stage, 
grade, or histology of the disease.

National University Hospital cohort

Frozen archival EOC samples from Department of 
Obstetrics & Gynecology, National University Hospital 
of Singapore were collected from 2006 to 2014. Frozen 
tumor samples were kept frozen at all times prior to 
evaluation. Each frozen tumor sample was pounded to a 
fine powder in liquid nitrogen using a pre-chilled mortar 
and pestle, and the powdered sample collected into a 
pre-chilled microfuge tube. Samples were homogenized 
in Trizol (Life Technologies, Carlsbad, CA) using a 
sterile 1-ml syringe and a 21-G hypodermic needle 
(BD Precision, Oxford, AL). After homogenization, 
RNA was purified using a Qiagen miRNeasy kit, as per 
manufacturer’s protocol (Hilden, Germany). RNA sample 
quality was determined by Eukaryote Total RNA Nano 
Series II, 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA). RNA samples with a RIN value above 6.5 
were used for the Affymetrix GeneChip® Human Gene 
1.0 ST Array (Affymetrix, Inc., Santa Clara, CA). Data 
has been deposited in GEO with the accession GSE69207.

Clinico-pathological parameters

All clinical and pathological information were 
extracted either from ArrayExpress and GEO, or from 
publications associated with the data. Samples without 
sufficient information are flagged as ‘Not Available’. 
In some categories, abstraction or simplification was 
performed to have a sizeable group; for example, the 
histopathology of ovarian carcinoma, as classified 
according to the World Health Organization (WHO; 
http://www.who.int), is restricted to (high-grade) serous, 
borderline/low-malignant potential (LMP) serous, 
mucinous, endometrioid, and clear cell. Other less-
prevalent ovarian cancers, such as Brenner, Signet ring 
cell, sex cord-gonadal stromal, and mixed Mullerian 
tumors, and ovarian cancers with mixed histologies 
are grouped as ‘other’ and ‘mixed’, respectively; no 
distinction is made for the International Federation of 
Gynecology and Obstetrics (FIGO; http://www.figo.org) 
group within each stage (e.g. stages IA, IB, IC are grouped 
as stage I). Grading of ovarian cancer was conducted using 
FIGO or the two-tier grading system proposed by the 
University of Texas M. D. Anderson Cancer Center [17]; 
these two grading systems usually show good correlation 
[17]. The optimal surgical debulking status is defined as 
having residual tumor of less than 1 cm. Clinical response 
is defined by either response evaluation criteria in solid 
tumors (RECIST) version 1.0 and above, or the serum 
level of CA-125; these two tests also show comparable 
results [29]. Pathological response is also available in 
some of the ovarian cancer samples, where pathological 

complete response is defined as no residual carcinoma or 
no residual invasive tumor. For simplicity, we categorized 
clinical response into ‘sensitive’ (RECIST complete 
response; pathological complete responder), ‘resistant’ 
(RECIST partial response, stable disease; pathological 
non-complete responder), and ‘refractory’ (RECIST 
progressive disease; pathological non-responder). Overall 
survival was computed by the difference between the 
date of last follow-up (or date of death) and the date of 
diagnosis, regardless of the cause. Disease-free survival 
encompasses progression-, local and distant recurrence-
free survival.

Preprocessing of affymetrix expression data

A total of 3,431 arrays corresponding to 3,261 
unique patients were collected. Prior to normalization, 
quality control was performed on the Affymetrix chips 
using R version 3.1.2 (2014–10-31) and Bioconductor 
packages (affy version 1.42.3, affyQCReport version 1.42) 
for 3′IVT arrays (HG-U133 series), or Affymetrix Power 
Tools version 1.15.2 for human exon array (human gene 
1.0 ST). Details of R session information can be found in 
the Supplementary Information. Quality metrics and the 
following criteria were analyzed: average perfect-match 
(PM) intensity, background, scale factor, GAPDH 3′:5′ 
ratio, β-actin 3′:5′ ratio, area under the curve (AUC) of 
positive versus negative controls, relative log expression 
median, relative log expression inter-quantile range 
(Suppl. Figure 2). All chips passed at least one of the 
criteria, and hence, none of the samples was discarded.

For the post-quality check, the data from the 48 
cohorts was combined and normalized using frozen robust 
multichip average (fRMA) [30] version 1.16. Annotation 
details for each platform, as required by fRMA, are 
given in the R session information in the Supplementary 
Information. Three datasets—U133A-U133P2-
Gene1.0ST, U133P2-Gene1.0ST, and Gene1.0ST—were 
compiled to obtain probes/genes unique to each platform 
(Suppl. Figure 3). Probe matching was performed based 
on Affymetrix HG-U133-Plus2 to human gene 1.0 ST 
good- and perfect-matched probe-sets (the product sheet is 
available at http://www.affymetrix.com/support/technical/
byproduct.affx?product=hugene-1_0-st-v1). In the case 
where multiple-to-one or one-to-multiple probes matched, 
only those probe-sets with highest intensities were kept. 
Annotation of the probes is based on the Affymetrix 
annotation version na34. The combined and normalized 
data were subsequently standardized using ComBat 
[31] to remove any batch effect by the cohorts and the 
centers. The influence of batch effect was assessed for 
clinico-pathological parameters and potential confounding 
factors: cohort, processing batch, centers and platform, 
pre- and post-ComBat standardization (Suppl. Figure 4A). 
A Kruskal-Wallis test of the first 45 principal components 
(>90% variance) and the parameters/factors indicates 
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that the batch effect due to cohort, processing batch, 
center and platform were minimized post-standardization 
without removing differences due to clinico-pathological 
parameters (Suppl. Figure 4A; Suppl. Info). Inter-sample 
correlations and subtype concordance analyses of JPKO 
(GSE30311) samples available on both Affymetrix U133-
Plus2 and human gene 1.0 ST provide additional support 
that the batch effect was not overwhelming in CSIOVDB 
(Suppl. Figures 4B & 4C; Suppl. Info).

Ovarian cancer molecular subtype and 
epithelial-mesenchymal transition (EMT) status

Gene expression values of ovarian cancer 
molecular subtype signatures [5] were extracted from 
the standardized dataset and subjected to clustering 
using Bioconductor ConcensusClusterPlus version 1.18. 
Parameters chosen were hierarchical clustering with 
agglomerative average linkage, with Euclidean distance 
and a sub-sampling ratio of 0.8 for 1000 iterations. The 
condition Kmax was set to 5 to assign each sample to one 
of the ovarian cancer molecular subtypes: Epithelial-A 
(Epi-A), Epi-B, Mesenchymal (Mes), Stem-like (Stem)-A, 
or Stem-B (Suppl. Info). EMT scores for each sample 
were computed using an ovarian cancer-specific EMT 
signature and two-sample Kolmogorov-Smirnov test, as 
described previously [10].

TCGA ovarian cancer data integration

Level-3 and level-2 data of ovarian cancer SNP 
array, Illumina human 27K DNA methylation array and 
exome-sequencing were respectively downloaded from 
TCGA data portal (https://tcga-data.nci.nih.gov/tcga/) 
on August 31, 2015. Samples were matched by TCGA 
patient ID and samples with molecular subtype available 
(computed in this study) were used for analyses.

Multivariate cox regression analysis

Multivariate survival analyses of known ovarian 
cancer prognostic factors (stage, grade, age, histology 
and surgical debulking status) and gene expression 
were computed using Cox regression on 987 (overall 
survival) or 778 (disease-free survival) ovarian cancer 
samples with all clinico-pathological data available. 
In the multivariate Cox regression analysis, the factors 
and gene expression parameters are converted to binary 
states: stage is categorized as early (I, II) or late (III, IV); 
grade is categorized as low (G1) or high (G2, G3); age 
is categorized as young (< 55) or old (≥ 55); histology is 
categorized as non-serous or serous; and gene expression 
is categorized as low (< median expression) or high 
(≥ median expression).

Statistical analysis

Statistical analyses were conducted using Matlab ® 
R2012a version 7.14.0.739, and statistics toolbox version 
8.0 (MathWorks; Natick, MA). Statistical significance of 
differential expression was evaluated using either Kruskal-
Wallis or Mann-Whitney U-test. A Spearman correlation 
coefficient test was applied to assess significance of 
correlation. Kaplan-Meier analyses were conducted using 
GraphPad Prism ® version 5.04 (GraphPad Software; La 
Jolla, CA). Statistical significance of the Kaplan-Meier 
analysis was calculated by log-rank test.
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