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ABSTRACT
Purpose: The potential utility of circulating tumor cells (CTCs) as liquid biopsies 

is of great interest. We hypothesized that CTC capture using EpCAM based gating is 
feasible for most breast cancer subtypes.

Results: Cancer cells could be recovered from all intrinsic subtypes of breast 
cancer with IE/FACS, however, claudin-low cell lines showed very low capture rates 
compared to the four other groups (p = 0.03). IE/FACS detection of CTC mimic cells 
was time sensitive, emphasizing controlling for pre-analytic variables in CTC studies. 
Median fluorescent intensity for flow cytometry and RNA flow cell type characterization 
were highly correlated, predicting for CTC isolation across molecular subtypes. RNA-
Seq of IE/FACS sorted single cell equivalents showed high correlation compared to 
bulk cell lines, and distinct gene expression signatures compared to PB.

Materials and Methods: Ten cell lines representing all major subtypes of breast 
cancer were spiked (as CTC mimics) into and recovered from peripheral blood (PB) 
using immunomagnetic enrichment followed by fluorescence-activated cell sorting (IE/
FACS). Flow cytometry and RNA flow were used to quantify the expression of multiple 
breast cancer related markers of interest. Two different RNA-Seq technologies were 
used to analyze global gene expression of recovered sorted cells compared to bulk cell 
lines and PB.

Conclusions: EpCAM based IE/FACS detected and captured a portion of spiked 
cells from each of the 10 cell lines representing all breast cancer subtypes, including 
basal-like but not claudin-low cancers. The assay allows for the isolation of high 
quality RNA suitable for accurate RNA-Seq of heterogeneous rare cell populations.

INTRODUCTION

Metastasis is responsible for the vast majority of 
breast cancer related deaths [1]. The shedding of tumor 
cells from their primary site into the systemic circulation 

via hematogenous spread is thought to be a major cause 
of distant metastasis [2–4]. These circulating tumor cells 
(CTCs) are extremely rare, with approximately one cancer 
cells per 106−7 white blood cells (WBC), which makes 
their detection and capture formidably challenging [5]. 
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CTCs have been demonstrated to be prognostic in all 
stages of breast cancer [6–9]. Several methods exist for 
enumerating CTCs, including filtration and affinity based 
strategies [6, 10, 11]. Filtration based methods rely mostly 
on marginal size difference between CTCs and WBCs, 
with 13 μm and 10 μm diameter on average, respectively 
[12]. Affinity based CTC assays most commonly involve 
the epithelial cell surface marker Epithelial Cell Adhesion 
Molecule (EpCAM), a transmembrane glycoprotein. Breast 
cancer may be classified into intrinsic subtypes based on 
primary tumor transcriptional profiling that describe the 
heterogeneity of disease [13, 14]. Intrinsic subtypes predict 
for metastasis patterns and risk of recurrence in breast cancer 
[13, 15]. Sieuwerts et al reported that the U.S. Food and 
Drug Administration-approved CellSearch Assay (Janssen 
Diagnostics, Raritan NJ) was unable to detect CTCs of 
the normal-like intrinsic subtype [16]. Recent studies 
have questioned the existence of the normal like subtype, 
and raised concerns about it being a potential artifact of 
normal breast tissue contamination and low sample cancer 
cellularity [13]. Instead, a claudin-low intrinsic subtype of 
breast cancer has been described as a subset of basal-like 
breast cancers characterized by low to absent expression 
of claudin 3 and E-cadherin (CDH1), as well as stem-
cell like features [17, 18]. In this report, we implement a 
newly described technique of immunomagnetic enrichment 
followed by fluorescence-activated cell sorting (IE/FACS) 
for the isolation of spiked cancer cells (CTC mimics) from 
blood suitable for use for whole transcriptome analysis at 
the single cell level [19, 20]. Unlike other methods, which 
usually have substantial inherent leukocyte contamination, 
our workflow for spiked cell isolation enables us to 
efficiently enrich and extract these cells with high purity. 
The aim of this paper was to evaluate the ability of multi-
marker IE/FACS based on immunomagnetic separation with 
EpCAM to recover spiked cancer cells across the spectrum 

of intrinsic subtypes in breast cancer. We hypothesized that 
CTC capture using EpCAM based gating is feasible for 
most breast cancer subtypes. A secondary aim of this paper 
was to report the accuracy of next generation sequencing 
(NGS) of IE/FACS sorted spiked cells.

RESULTS

Recovery rates

Table 1 provides the IE/FACS recovery rates from 
phosphate buffered saline (PBS) and peripheral blood 
(PB) for all 10 cell lines and according to molecular 
subtype [20]. The overall mean recovery rates were 
51.4% from PBS and 39.5% from PB. The specific cell 
type being analyzed was a more significant source of 
variation (p = 0.03) than was whether measurements 
were made from PBS or PB (p = 0.26). Figure 1A 
demonstrates that the 2 claudin-low cell lines had 
lower IE/FACS recovery rates than the other 4 intrinsic 
subtypes (p = 0.03). A time course experiment revealed 
that the time from blood draw to cell harvest is critical 
for the maximization of viable cell retrieval (Figure 1B). 
Within one hour, a reduction of 32% was observed in 
CTC mimic cells enumerated via IE/FACS from blood 
specimens drawn into EDTA tubes.

Purity of the sorted cells

To verify cancer cell purity after recovery from 
blood, BT-474 cells were spiked into PB and sorted 
using our IE/FACS assay. TaqMan real-time reverse 
transcription polymerase chain reaction (qRT-PCR) 
comparison of PB markers (CD45 and CD31) showed 
similarly low expression levels in BT474 bulk and sorted 

Table 1: IE/FACS recovery rates
Cell line PBS  

(% recovered)
PB  

(% recovered)
ER PR HER2 Subtype [20]

T47D 28.9 12.6 + + − Luminal A

MCF7 99.3 28.6 + +/− − Luminal A

BT474 94.1 42.6 + +/− + Luminal B

ZR-75-1 49.4 50 + +/− + Luminal B

SKBr3 68.0 49.5 − − + Her2

MDA-MB-453 60.7 65.7 − − + Her2

SUM149 64.9 69.5 − − − Basal

SUM190 83.3 55.4 − − + Basal

MDA-MB-231 0.1 0.23 − − − Claudin-low

Hs578T 0.002 0.004 − − − Claudin-low
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cells as well as a significantly higher expression in blood 
(Figure 2). Markers highly expressed on normal and 
cancerous epithelial breast cells (EpCAM and HER2) 
highly correlated between BT474 bulk and sorted cells, 
with significantly higher expression levels compared to 
PB (Figure 2). In summary, this data indicated high purity 
of sorted cells using IE/FACS, with minimal blood cell 
contamination.

Cell characterization using RNA flow and FACS

Density plots demonstrate the cell line specific 
distribution of all four probe sets (ER, HER2, 
mesenchymal and epithelial) used for RNA flow 
(Figure 3A). The majority of cells in all 10 cell lines 
expressed epithelial markers present in the multi-marker 
probes (between 90 and 99.7%) (Figure 3B). The median 
fluorescence intensity (MFI) for epithelial markers was 
not statistically significantly different based on intrinsic 
subtype for RNA flow cytometry (p = 0.45) although 
MFIs for individual cell line types were highly variable 
(range 2376–27,148) (Figure 3C). Similarly, mesenchymal 
marker MFI was also not statistically significantly different 
based on intrinsic subtype (p = 0.4), while considerable 
variations between cell lines types were noted (range 
200–33,679) (Figure 3B). The percentage of positive 
cells differed depending on cell line and subtype for 
mesenchymal markers (Figure 3B). The claudin-low cell 
lines MDA-MB-231 and Hs578T contained 99.1% and 
98.8% positive cells, respectively. The basal-like cell lines 
SUM149 and SUM190 exhibited 55.8% and 0.8% positive 
cells, respectively. Both luminal (A and B) subtypes 
displayed low expression levels of the mesenchymal 
markers (Luminal A: T47D 1.5%, MCF7 2.5%; Luminal 

B: BT474 0.6%, ZR-75-1 1.2%). RNA flow results for ER 
(FACS positive cells lines MFI values range 216–1799, 
FACS negative cell lines MFI 129–317) and HER2 (MFI 
range for HER2 positive = 612–5120; MFI range for 
HER2 negative = 185–927) are presented in Figure 3C. 
RNA expression showed a wide dynamic range depending 
on the cell line. Figure 3D provides histograms to display 
single antibody staining fluorescence results for 6 breast 
cancer cell markers (HER2, EpCAM, CDH1, EGFR, 
Thioflavin, CD45) for the purpose of characterizing cell 
line heterogeneity. EpCAM MFI were greater than 186 for 
most cell lines with the exception of the claudin low cell 
lines (Hs578T and MDA-MB-231), which both showed 
virtually no separation between stained and unstained 
controls for the EpCAM antibody (MFI range 2.52–11.11 
for claudin-low versus 186.2–14,445.6 for all others). 
Subtype specific analysis showed statistically significant 
MFI variation (p = 0.04).

Helicos low abundant RNA sequencing

To verify if RNA-Seq is feasible for low RNA 
inputs, 10 pg and 500 pg of total RNA were first analyzed 
using Helicos Low Abundant Molecule Next Generation 
Sequencing a significant correlation was observed for 
10 and 500 pg RNA inputs (R = 0.94, Figure 4A). RNA 
derived from twenty sorted BT474 cells spiked into PB 
highly correlated to 10 pg total RNA from bulk BT474 
cells and validated that the IE/FACS CTC mimic cell 
isolation strategy did not alter gene expression (correlation 
co-efficient R = 0.87, Figure 4B). A comparison of sorted 
BT474 cells with RNA obtained from PB demonstrated 
statistically significant separation of spiked cancer cells 
from PB (R = 0.32, Figure 4C). A principal component 

Figure 1: A. Bar graph representation of recovery rates (n = 3 for each cell line). Overall recovery rates for PBS 51.4%, PB 39.5%. 
Recovery rates are statistically significantly different based on subtype (p = 0.02). B. Time course experiment demonstrating the rapid 
decline in cell recovery as a function of blood draw-to-isolation time (n = 3 per time point).
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analysis comparing sorted BT474 cells and BT474 bulk 
cell RNA inputs shows similarity between these samples, 
with a clear separation from PB (Figure 4D). Unsupervised 
hierarchical clustering (HC) for these samples identified 
274 differentially expressed genes (FC ≥ ± 2, FDR 
adjusted p < 0.05) that are shared between all BT474 
samples compared to PB (Figure 4E). Further analysis of a 
wide dynamic range of gene expression demonstrated that 
low abundance gene transcripts (absolute expression 1–4) 
as well as highly abundant transcripts (absolute expression 
> 50) could be detected at similar levels, independent of 
RNA input (Figure 5).

Illumina hi-seq

Whole transcriptome analysis was performed on 
20 and 100 IE/FACS-sorted cell aliquots and compared 
to PB, which did not show any statistically significant 
correlation (R = 0.5, PB vs. 20 cells; R = 0.52, PB vs. 100 
cells) (Supplementary Figure S1). Comparing different 
numbers of sorted cells to both bulk RNA and to each other 

showed statistically significant correlation (20 cells vs. 
bulk. R = 0.88; 100 cells vs. bulk, R = 0.91; 20 cells vs. 100 
cells, R = 0.92) (Supplementary Figure S1). Differential 
gene express analysis comparing PB and sorted cells 
identified a total of 123 genes (FC ≥ ± 2, FDR adjusted 
p < 0.05) differentiating isolated spiked cancer cells from 
blood RNA (Figure 6A). qRT-PCR validation of the RNA-
Seq results for the expression of 10 genes selected from 
the RNA-Seq. gene list (GREB1, PRLR, AGR2, ESRP1, 
GOLSYN, MAL2, PGR, KRT8, ERBB2 and TOM1L1) 
confirmed the results and showed similar expression levels 
in sorted BT474 and BT474 bulk RNA, but significantly 
different expression compared to PB (Figure 6B).

DISCUSSION

In the current study we sought to establish whether 
an EpCAM based IE/FACS CTC assay can capture the 
full spectrum of breast cancer subtypes. Furthermore, we 
validated whether this approach allows for the isolation 

Figure 2: qRT-PCR comparing gene expression of bulk BT474 (BT474b) (blue) and sorted BT474 (BT474s) (green) 
to PB. Results are represented as fold change (2−ΔΔCt) (n = 3). Epithelial cell specific genes not expressed by blood cells were significantly 
higher expressed in bulk and sorted BT474 compared to blood: EpCAM (4-fold BT474b, 8.1-fold BT474s), HER2 (2.4-fold BT474b, 5.3-
fold BT474s). Expression of genes predominantly found on blood and endothelial cells was significantly lower in bulk and sorted BT474 
compared to PB: CD45 (not detected in BT474b (*), 0.00003-fold BT474s), CD31 (0.0007-fold BT474b, 0.001 BT474s). Gene expression 
differences between sorted and bulk BT474 was not statistically significant (2-way ANOVA, p = 0.2).
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Figure 3: Characterization of breast cancer subtypes. A–C. RNA flow. A. Density plots representing mesenchymal (FITC, x-axis) 
and epithelial (PE-YG, y-axis) marker RNA expression (top row), as well as ER (APC, x-axis) and HER2 (BV421, y-axis) RNA expression 
in 10 breast cancer cell lines. B. The number of positive cells (panel A) correlated with subtype classification for all probe sets, except for 
epithelial markers. C. MFI revealed bright subpopulations within each cell line, independent of subtype. Cells expressing high levels of 
mesenchymal markers were present in luminal subtypes (T47D, BT474), while the basal like cell line SUM149 showed high expression 
of epithelial markers. D. FACS. Epithelial cell (EpCAM, CDH1) and breast cancer marker-expression (HER2, EGFR) correlated with the 
clinical subtype classification. Staining with the benzothiazole thioflavin (TF) successfully captured nucleated cells. Expression of the 
white blood cell marker CD45 was equally low in all cell lines.
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Figure 4: Helicos sequencing data. A–C. Scatter plots demonstrating high correlation between low (10 pg) and high (500 pg) RNA 
inputs (R = 0.94, A.) low RNA input and sorted cells (R = 0.87, B.) but no correlation between sorted cells and PB (R = 0.32, C.) (Pearson’s 
correlation analysis). D. PCA analysis demonstrated similarity between sorted BT474 and different RNA inputs from bulk BT474, and 
separation from PB. E. HC of 274 genes, which show differential expression of FC ≥ ± 2 (FDR adjusted p < 0.05) and differentiate BT474 
(sorted cells and bulk cell RNA) from PB blood.

Figure 5: Helicos sequencing gene expression detection sensitivity. A detailed analysis of detected genes based on transcript 
abundance shows high correlation between low and high RNA inputs.
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and whole transcriptome analysis of CTC gene expression. 
Both research questions have direct impactions for breast 
cancer diagnosis and treatment. Metastatic breast cancers 
(MBC) have been documented to change their clinical 
biomarker profiles when compared to a primary tumor 
[21, 22], with direct implication for targeted therapeutic 
approaches. Several authors have reported discordance of 

up to 19% for ER between primary tumors and metastatic 
sites, without prior treatment [23, 24]. Niikura et al. 
showed that 24% of patients with HER2 positive primary 
tumors had HER2 negative metastases [25]. Meng et al. 
demonstrated that CTCs as liquid biopsies might be 
superior to capture the dynamic changes between primary 
tumor and distant metastasis [26]. They also demonstrated 

Figure 6: Illumina high seq. data. A. Unsupervised hierarchical clustering of RNA-Seq data from PB and sorted BT474. A signature 
of 123 differentially expressed genes (FC ≥ ± 2, FDR adjusted p < 0.05) clearly separate sorted cancer cells from PB (n = 3 each). B. qRT-
PCR validation. Ten genes selected from the RNA-Seq results show similar expression trends in BT474 sorted and bulk compared to PB. 
Expression levels are not statistically significantly different between sorted and bulk cells (2-way ANOVA, p = 0.7).
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HER2 amplification in CTCs of patients with recurrent 
HER2 negative disease. Most remarkably, treatment 
with trastuzumab based on this information resulted in 
beneficial outcomes for a subset of patients. Thus, the true 
biology of MBC and current options for targeted therapies 
cannot be ascertained by profiling what the tumor once was 
and CTCs could be a valuable tool to inform therapeutic 
decisions. We have previously established a method 
for the isolation and expression profiling of EpCAM 
positive CTCs [27], which allows for the rapid and 
efficient isolation of viable cells and high quality RNA for 
downstream analysis. In the current study, using 10 breast 
cancer cell lines representing the heterogeneity of breast 
cancer, we were able to demonstrate that using IE/FACS, 
all cell lines were extracted with high efficiency from 
PBS and PB spikes, except for the claudin-low subtype 
cell lines. Negative control PB specimens from healthy 
individuals could successfully define a consistent gating 
strategy that captured zero cells from healthy individuals 
and permitted acquiring a portion of CTC mimic cells from 
each of the 10 cell lines. Significant variation occurred 
in recovery rates of spiked and sorted cells depending 
on cell line and subtype, with the lowest recoveries from 
the claudin-low subtype. Several studies have shown that 
CTCs can exhibit substantial pleomorphism, including 
stem like features [28], and could (co-) express epithelial, 
mesenchymal, and cancer stem cell (CSC) markers. Future 
studies could include antibodies against mesenchymal/
EMT as well CSC markers to avoid missing clinically 
relevant CTC populations [29].

We used FACS and RNA flow to characterize all 
10 cell lines based on widely used breast cancer markers. 
FACS reliably separated the cell lines according to intrinsic 
subtype. RNA flow overall confirmed subtype differences 
in epithelial and mesenchymal transcript expression. 
Previous studies demonstrated that the triple negative 
claudin-low subtype expressed low levels of EpCAM. 
RNA flow results supported the low abundance (low 
MFI) of EpCAM transcripts in the claudin-low subtype 
cells. Nevertheless, EpCAM transcripts were detected in 
100% of the cells in the claudin-low subtype, albeit at very 
low levels (MFI at least 16-fold less compared to other 
subtypes). Surprisingly, lower MFI were also detected 
for T47D, while EpCAM antibody staining was highly 
positive. This may be driven by the unique expression 
pattern of T47D, which showed high mesenchymal 
marker MFI. Overall, RNA flow for mesenchymal markers 
showed higher expression levels in basal like cell lines 
(Hs578T, MDA-MB-231, SUM149) than the remaining 
cell lines [16]. Nevertheless, subpopulations with high 
expression levels of mesenchymal markers were detected 
in luminal subtype cell lines (T47D, BT474). Overall, 
RNA flow cytometry results did not fully correlate 
with known protein expression levels for the 10 cell 
lines - with considerable overlap between ER positive 
lines and ER negative lines. HER2 gene expression 

by RNA flow cytometry correctly identified 100% of 
the 5 HER2 positive cell lines; however, overlapping 
intervals were found with 20% (1/5) HER2 negative cell 
lines (T47D) showing MFI in the HER2 positive range. 
The discrepancies between FACS and RNA flow should 
be further investigated. This could be dependent on the 
specific cell type and could identify mechanisms by which 
cancer cells change their phenotype (e.g. transcriptional 
vs. translational alterations). It is also possible that these 
results are an indication that most cell lines tested are 
of epithelial origin (EpCAM expression), with some 
undergoing an EMT like process (mesenchymal marker 
expression), which has been linked to CSC like features 
[30, 31].

Validation of cell purity using qRT-PCR showed 
good concordance between bulk and IE/FACS sorted 
cells. However, the true capability of our EpCAM-
based IE/FACS strategy to isolate rare cells from 
heterogeneous patient CTC samples with high purity 
will have to be investigated in subsequent studies. Our 
results demonstrated that the time interval between blood 
draw and processing of IE/FACS sorted cells drastically 
impacted the rate of viable cell detection, emphasizing 
the need for an expeditious and standardized sample 
processing practice. Some previous studies paid little 
attention to this aspect, with greatly varying sample 
processing times of up to 72 h [16]. Utilizing our rapid 
processing algorithm should minimize pre-analytic 
variability such as cell loss and RNA degradation. Using 
two independent NGS methods, we demonstrated that, 
independent of cell number or amount of input RNA, 
our assay could capture rare cell cancer cell populations, 
preserve high quality RNA and achieve accurate NGS 
from single or small pools of cells. Using sorted cells and 
bulk cells or their respective isolated RNA showed that the 
EpCAM based IE/FACS sorting and capture does not seem 
to affect the transcriptome of cancer cells at a significant 
level, as high correlation in gene expression between both 
populations was found. Presently, relatively few clinically 
actionable predictive biomarkers exist for breast cancer 
[32]. Our unbiased whole transcriptome analysis of CTCs 
could potentially be used to identify novel biomarkers as 
well as actionable drug targets.

MATERIALS AND METHODS

Cell lines and culture conditions

Ten breast cancer cell lines were acquired from 
the ATCC and authenticated by short tandem repeat 
profiling using the Identifiler polymerase chain reaction 
(PCR) kit (AmpFSTR, Applied Biosystems, Foster 
City, CA) at the University of Arizona Genetics Core. 
Cell lines were stratified according to subtype [33]: 
HER2 positive (SKBR3, MDA-MB-453), luminal A 
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(T47D, MCF7), luminal B (BT474, ZR-75-1), basal-like 
(SUM149, SUM190) and claudin-low (MDA-MB-231, 
Hs578T). All cell lines were cultured according to ATCC 
guidelines in a humidified incubator at 37°C and 5% 
CO2, except for MDA-MB-453, which required zero 
percent CO2.

Immunomagnetic enrichment and fluorescence 
activated cell sorting (IE/FACS)

100,000 cells were spiked into PBS and PB 
from healthy female donors. IE/FACS was performed 
as previously described [20] but with an emphasis on 
the preservation of RNA to be isolated directly from 
CTC mimic cells. FACS sorting was performed using 
a FACS Aria II (BD Biosciences, San Jose, CA) and 
a gating strategy devised based on negative controls 
(n = 23) (Supplementary Figure S2). All specimens were 
analyzed using consistent gates (Supplementary Figure 
S2) and single antibody-fluorochrome compensation 
controls prepared for each experiment. Samples were 
processed immediately following blood draws and all 
lysates were immediately placed on ice. Absolute cell 
counts and recovery rates were determined using the 
TruCOUNT method (BD Biosciences) with acquisition 
of 35,000 beads. Positive cells, identified as EpCAM 
positive, thioflavin positive, and CD45 negative, were 
sorted into 1 ml RNA Protect Cell Reagent (Qiagen, 
Hilden, Germany). A threshold of a single cell meeting 
these criteria qualified as a positive test result. For 
subtype specific characterization of all 10 cell lines 
based on cell surface marker expression, single 
antibody-fluorochrome staining’s were performed 
using HER2 (FITC), EpCAM (PE), CDH1 (PerCP-
Cy5.5), EGFR (Alexa Fluor 647), CD45 (PE-Cy7) 
and Thioflavin (Pacific Orange). Unstained cells 
served as negative controls for each antibody. Using 
FlowJo data analysis software (Ashland, OR), MFI was 
calculated based on gating of stained versus unstained 
populations.

RNA flow cytometry

RNA flow cytometry was performed following 
the previously published method by Hanley et al. [34]. 
This technology allows for the detection of single 
mRNA molecules of the transcripts of interest using 
simultaneous signal amplification of branched DNA and 
background suppression. Briefly, cells were fixed with 
1% paraformaldehyde (Electron Microscopy Sciences, 
Hatfield, PA) for 10 min at room temperature (RT). Cell 
permeabilization was performed for 15 min at RT in BD 
FACS lysing solution (BD Biosciences) containing 0.2% 
saponin (Sigma, St. Louis, MO). Sequential hybridizations 
were performed in microcentrifuge tubes with target-
specific probes, pre-amplifiers, amplifiers, and fluorophore 

conjugated labeled probes. The target probes were 
multiplexed and included HER2 (BV421), ER (APC), 
a mesenchymal cocktail containing FN1, CDH2, and 
SERPINE1 (FITC), and an epithelial cocktail containing 
CK8, CK14, CK17, CK18, CK19, CK20, EpCAM, and 
MUC1 (PE-YG). Flow cytometry data was acquired on 
a BD LSRFortessa (BD Biosciences, San Jose, CA). 
Probes and reagents were designed and manufactured by 
Advanced Cell Diagnostics (Hayward CA). Data were 
analyzed for the percentage of cells expressing the target 
probes as well as MFI.

Helicos single-molecule RNA-seq

This technology enables nucleic acids quantitation 
and sequencing without ligation or amplification [35]. 
Genomic DNA is sheared, tailed with poly-A and 
hybridized to a flow-cell surface containing oligo-dT for 
initiating sequencing-by-synthesis. For BT474, total RNA 
was isolated using the Qiagen AllPrep Mini Kit (QIAGEN, 
Venlo, Netherlands). RNA from PB was isolated using the 
QIAamp RNA Blood Mini Kit (QIAGEN). Input RNA 
was directly hybridized to the flow cell allows for direct 
sequencing and quantitation of RNA molecules bound to 
the DNA probes. No PCR, sample selection or ligation 
is required, thus avoiding possible biases. Each tailed 
cDNA sample is injected into one of 50 flow-cell channels 
and sequenced on a Helicos Genetic Analysis System 
(HeliScope).

Illumina hiSeq RNA-seq

For sample preparation from low cell number and 
BT474 small total RNA inputs (10ng-10pg) the Ovation 
Single Cell RNA-Seq System (NuGEN, San Carlos, CA) 
was used. For the BT474 bulk cells and PB cell total 
RNA isolation was performed using the AllPrep Mini 
Kit and QIAamp RNA Blood Mini Kit (QIAGEN) and 
library preparation for RNA-Seq was performed using 
the Ovation RNA amplification system V2 (NuGEN) 
and Ultra Low Library System V2 were used (NuGEN). 
Briefly, 10-500pg of total RNA was first subjected to 
first strand cDNA synthesis using oligo-dT plus selective 
priming that targets non-ribosomal RNA sequences in 
the transcriptome. Nucleotide analog and the original 
template RNA were degraded, leaving only single 
stranded antisense cDNA fragments (average size of 230 
nucleotides). The fragments are primed using a random 
octamer with the forward adaptor attached to the 5′ end. 
Following end repair, the reverse adaptor was ligated to 
the free end of the now double stranded cDNA, which was 
enriched for coding and regulatory sequences. A dedicated 
read barcode design was used for sample identification. 
Final amplification PCR yielded the strand-specific cDNA 
libraries. These libraries were sequenced as 100bp paired 
end reads using an Illumina HiSeq 2000.
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qRT-PCR

For reverse transcription the qScript cDNA 
SuperMix (Quanta Biosciences, Gaithersburg, MD) was 
used according to the user guide. RNA was isolated from 
BT474 cells using TRIzol reagent (Life Technologies, 
Carlsbad, CA) and 1ug of total RNA was used per 20 μl 
reaction. The TaqMan Gene Expression Master Mix 
(Applied Biosystems) was used for real time qRT-PCR and 
gene expression quantification and validation. All TaqMan 
gene expression assays (Applied Biosystems) used in this 
study are listed in Supplementary Table S1. The genes 
were selected to validate cell purity as well as based on 
a list of differentially expressed genes generated from the 
RNA-Seq analysis comparing sorted and bulk cancer cells 
to PB. All samples were run as technical duplicates and 
biological triplicates. Gene expression was normalized 
against glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) and differential expression calculated using the 
ΔCt-method (2−ΔΔCt) [36].

Statistical analysis

One-way ANOVA with a Kruskal-Wallace test 
was used to analyze for differences in recovery rates and 
marker MFI between intrinsic subtypes (Prism, GraphPad 
Software Inc., La Jolla, CA). For the Helicos experiments, 
the reads were aligned to the human reference genome 
(hg18) using the Burrows-Wheeler aligner (BWA) [37]. 
This method corresponds to a maximum edit distance of 
2 within 32 nucleotide long seed regions. Mismatch, gap 
open and gap extension penalties were set to 3, 11 and 4 
respectively. For the Illumina experiments, TopHat 1 [38], 
which uses Bowtie 1 [39], was used to align the reads to 
hg18, using one mismatch. Reads were counted on exons 
and normalized as Reads Per Kilobase per Million mapped 
reads (RPKM). The RPKM values were first adjusted 
by globally matching the count distribution at the 75th 
percentile and then adjusting counts to have a uniform 
distribution across all samples. Differential expression was 
calculated with a significance of p < 0.05 after Benjamini 
and Hochberg correction using a null model constructed 
from 1% of transcripts showing the closet average level 
of observation to estimated experimental noise. All NGS 
data files have been deposited within NCBI GEO with the 
accession number pending.

CONCLUSION

The current study demonstrated that our EpCAM 
based IE/FACS CTC isolation strategy can efficiently 
capture most breast cancer subtypes. We further show that 
we could successfully analyze captured CTC mimic cells 
using whole transcriptome RNA sequencing. Combined, 
this could provide a powerful, unbiased “liquid biopsy” 
tool for breast cancer research and diagnosis to assess 

in real time a patient’s unique tumor biology and inform 
treatment decisions.
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